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1 Introduction

By now, several observations have confirmed that our universe is in a phase of accelerated expansion. Fur-
ther, it is also clear that this acceleration had set in at a relatively recent time in the cosmological calen-
dar. Starting with observations of Type 1A supernovae[1, 2], this feature of the Universe is now strongly
suggested by observations of cosmic microwave background (CMB)[3], large-scale structures[4], baryon
acoustic oscillations[5] and gravitational lensing[6]. Although observational confirmations are piling up, a
convincing theoretical framework is still lacking. Several interesting mechanisms have been suggested to ex-
plain this feature of the universe, such as cosmological constant[7], quintessence[8], modified gravity[9–11],
chaplygin gas[12, 13] and many others. However, these models have their own shortcomings. For exam-
ple, models with a non-zero cosmological constant need a high degree of fine tuning [8, 14–19] whereas
potentials required for quintessence models are unnaturalin the context of particle physics[20]. Appeal-
ing to higher dimensional cosmological models is another promising mechanism to explain this mysterious
phenomenon. This is the line of approach we adopt in this paper.

There are various possible constructs in the extra dimensional context including (but not limited to)
brane world models [21–23]. Here, we consider a particular simple model akin to that used in Ref[24].
Whereas Ref[24] invoked extra dimensions to solve the horizon problem in early universe, using an anisotropic
fluid residing in1+D1+D2 dimensions, we adapt the formalism to produce a late time acceleration instead.

Motivated by observations, we assume that the universe is filled with a uniform density matter. How-
ever, the pressure exerted by the matter in the normal dimensions is different from that in the compact
dimensions, while being isotropic within each subspace. Aswe will argue, observations severely constrain
the functional dependence of the pressure on the density. Within this constraint, however, a very simple
form of the equation of state gives an excellent agreement with data. Although pressureless matter would,
normally, decelerate the expansion of the universe rather than accelerating it, it is the interplay with the
hidden dimensions that provides the impetus for this expansion.

It should be clarified at this stage that our construct is not abrane-world scenario and that we do
not attempt to address issues such as the hierarchy problem in the Standard Model of Particle Physics.
We, rather, make the simplifying assumption that these extra dimensions are compactified to a scale small
enough to play essentially no direct role at the TeV scale. Inthis sense, the spirit is closer to more canonical
scenarios defined in dimensions larger than four (an examplecould be a generic model derived from String
Theory). Possible phenomenological manifestations of such models are postponed to future discussions.

The rest of the paper is constructed as follows. In section 2,the formalism of the model is developed,
and the equation of state argued for. In the subsequent section, we present the solutions to the ensuing
evolution equations. In Section 4, we compare the predictions of the model with data and infer the preferred
values of the parameters. And, finally, we conclude in Section 5.
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2 Evolution Equations

We start with a spacetime which has, in addition to one temporal and three normal spatial dimensions,D
extra spatial dimensions. This1 + 3 +D dimensional spacetime is described by the line element

ds2 = −dt2 + a2(t)

(

dr2

1− k1r2
+ r2dΩ

)

+ b2(t)

(

dR2

1− k2R2
+R2dΩD−1

)

. (2.1)

We reserve the super(sub)script ‘0’ for the time dimension. Whereas lower-case Roman indices (i, j =
1, 2, 3) denote the normal spatial dimensions, upper case Roman indices denote the extra dimensions and
take the valuesI, J = 4, 5, .....,D+3. Here,D is a parameter which takes integral values and is to be fixed
by comparing with observations.

In eq. (2.1), a(t) denotes the scale factor in the normal (3)- dimensions andb(t) represents the scale
factor in the extra dimensions. Since we consider the entire(1 + 3 +D)-dimensional universe to be homo-
geneous, the two scale factorsa andb are functions only of the timet. As is well known, the visible universe
is well described by a vanishing spatial flatness (k1 = 0) and we shall assume the situation to be so. For
reasons of simplicity as well as symmetry with the observed sector, we shall assumek2 = 0 as well.

For this line-element, the components of the Einstein tensor Gµν (with µ, ν = 0, 1, . . . ,D + 3) read

G0
0 = −3D

ȧ

a

ḃ

b
− 3

ȧ2

a2
−

D(D − 1)

2

ḃ2

b2
(2.2)

Gi
i = −2

ä

a
−D

b̈

b
− 2D

ȧ

a

ḃ

b
−

ȧ2

a2
−

D(D − 1)

2

ḃ2

b2
∀ i (2.3)

GI
I = (1−D)

b̈

b
− 3

ä

a
+ 3(1 −D)

ȧ

a

ḃ

b
+ (D − 1)(1 −

D

2
)
ḃ2

b2
− 3

ȧ2

a2
∀I . (2.4)

The energy-momentum tensor is assumed to be of the form

T µ
ν = diag(−ρ, Pa, Pa, Pa, Pb, . . . , Pb) (2.5)

whereρ is the energy density of the fluid andPa (Pb) is the pressure exerted in normal (extra) dimensions.
This form of energy momentum implies that there is isotropy within the subspace associated with the nor-
mal dimensions and also within the orthogonal subspace spanned by the extra dimensions. However, the
pressures in the two subspaces are different. Note that it isthe observed large-scale isotropy of the universe
that prompts one to consider an isotropic matter distribution. No such restriction applies to the pressure
exerted in the extra dimensions, and thus, we could as easilyhave considered more elaborate structure for
T I
J . However, other than adding more freedom to the model, this would not have resulted in any particular

qualitative improvement to the scenario. Hence, we desist from adopting such a course and adopt eq. (2.5).
The fact thatT µ

ν needs to be divergenceless (T µ
ν;µ = 0) implies

d

dt
(ρa3bD) + Pab

D d

dt
a3 + Pba

3 d

dt
bD = 0 . (2.6)

In standard (3-dimensional) cosmology, the constituents of the universe today are dark energy (essentially in
the form of a cosmological constant), dark matter and baryons. (The radiation energy density has substan-
tially redshifted and hence, has negligible contribution to the energy density of the universe.) Of these, both
dark matter and baryons are very well approximated by pressureless matter. Indeed, the nature of the dark
matter can be inferred very well as compared to the dark energy. Consequently, we start by assuming that
the matter does not exert any pressure in the three visible directions andPa = 0. On the other hand, in the
extra dimensions, it does exert a pressure of the formPb = Pb(ρ). Note that this implies that it is asingle
fluid that exerts such an anisotropic pressure. A mechanical analogy would be that of gas molecules filling
a space but constrained to move only along a subspace. We could, of course, have adopted a scenario with
two fluids, each inhabiting a subspace. However, this would only have increased the degrees of freedom
in the theory without adding qualitatively to our understanding. Hence we desist from doing this, although
such a course of action may well be necessitated when one attempts to construct a microscopic theory.

– 2 –



The dark energy is, thus, directly ‘visible’ only in the extra dimensions. The effect (late time accelera-
tion) in the normal dimensions is through the evolution of extra dimensions. An infinite variety of equation
of states for this dark energy are possible. For simplicity,we will assume a monomial form, viz.Pb = wbρ
with

wb =
w

ρ̄γ
, (2.7)

wherew andγ are parameters of the model to be chosen so as to reproduce theobservational data and̄ρ is
defined in eq.3.1. Once again, this choice (reminiscent of a generalized Chaplygin gas [25]) also serves to
minimize the number of free parameters in the theory.

The aforementioned energy momentum tensor governs the evolution of the 1+3+D dimensional space-
time. Let us now consider the Einstein equations, namely

Gµ
ν = κT µ

ν , (2.8)

with κ = 8πG. The ‘00’ component can be expressed as

ȧ2

a2
+D

ȧ

a

ḃ

b
+

D(D − 1)

6

ḃ2

b2
=

8πGρ

3
. (2.9)

Solving for ȧ/a and bringing it to a form close to the familiar form of the FRW equations, we have

ȧ2

a2
=

8π Gρ

3
+

D (2D + 1)

6

ḃ2

b2
∓

D

2

ḃ

b

√

D (D + 2)

3

ḃ2

b2
+

32π Gρ

3
(2.10)

In the absence of the last two terms on the R.H.S., this equation would, understandably, reduce to the
standard form. In other words, theḃ/b dependent terms act as an effective dark energy source1.

Since the scale factor,b(t), corresponding to the extra dimensions enters the equations only through
ḃ/b (= dlnb/dt), what is relevant for the evolution ofa(t) is not the absolute value ofb but only the ratio
by which b(t) changes with time. This is because in our model, spatial curvature in the hidden dimension
k2 = 0. In other words, it is not the size of the hidden world that matters, but its fractional rate of change
(compression or expansion). It is this rate of compression of the extra dimensions that effectively acts like a
dynamical dark energy source for the visible universe. Notethat, for a non-zerȯb/b, the scale-factor in our
world, a(t), evolves non-trivially even in the absence of any matter (ρ = 0). This is not unexpected, because
gravity does couple the two subspaces and the contraction (expansion) of one can lead to the expansion
(contraction) of the other. To be specific,ρ = 0 leads to a power-law evolution of the two scale-factors (the
exponents being determined byD) wherein one of them increases with time and the other decreases.

As is well known, usual (1+3)-dimensional deSitter cosmologies admit both expanding and contract-
ing solutions. We choose one of the solutions, namely, the expanding one, because we observe that the
universe is expanding and not contracting. The situation here is a little more subtle. As far the ‘00’ com-
ponent of the Einstein equations goes, there is still a generalized symmetry of the form(ȧ, ḃ) ↔ (−ȧ,−ḃ).
However, as the form of the other components ofGµν shows, this symmetry is not manifest. A consequence
of this and the preceding discussion is that a pressureless fluid (even in a higher-dimensional world) would
not admit ‘late time acceleration’, although uniformly accelerating/decelerating solutions are possible[26].

3 Cosmological Solutions

The evolution of the universe is governed by the Einstein equations along with eq. (2.6 & 2.7). Not all of
these are independent, though. For example, using the constraint equation (G0

0 = 8πGρ) and the continuity
equation (T µ

ν;µ = 0) we may eliminatëb. Before we do so, it is convenient to rescale the variables interms
of dimensionless quantities, namely

t ≡
τ

H0

A′ ≡
a′

a
=

ȧ

aH0

ρ̄ ≡
ρ

ρc
B′ ≡

b′

b
=

ḃ

bH0

,

(3.1)

1It is worth pointing out that, in models of non-minimal coupling, terms that are linear iṅa/a do appear on the right hand side
of the FRW equations as in eq. (2.9)
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where1/ρc = 8πG/(3H2
0 ) and primes denote derivative with respect toτ . In terms of these variables, the

equations of motion now read

0 = (D + 2)A′′ + 3(D + 1)A′2 +
D (1−D)

2
B′2 +D (D − 1)A′ B′ + 3DΩ0 ρ̄ wb

ρ̄′ = −ρ̄ [3A′ +D (1 + wb)B
′]

B′ = (D − 1)−1

[

−3A′ ±

√

3D−1

{

(D + 2)A′2 + 6
(D − 1)

D
ρ̄Ω0

}

]

.

(3.2)

These are two first order differential equations inA′ and ρ̄ with the last of the three being an algebraic
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Figure 1. Behaviour of the scale factorsa(τ) [left panel] andb(τ) [right panel] with the rescaled timeτ . The numbers
in the parentheses refer to(D,w, γ).

relation. Note that the Einstein equations can only determine A′(τ) andB′(τ) and not the scale factors
themselves, a situation exactly analogous to the (1 + 3)-dimensional case. To solve eq. (3.2) for A′(τ)
andρ(τ), we require two initial conditions. Since we know the conditions in the present universe relatively
precisely, we will prescribe the conditions today. In otherwords, withτ = 0 referring to the present epoch,
we evolve these equations back in time with the following ‘initial’ conditions

ȧ

a

∣

∣

∣

∣

τ=0

= H0 =⇒ A′|τ=0 = 1

ρ

ρc

∣

∣

∣

∣

τ=0

= 1 =⇒ ρ̄|τ=0 = 1 .

(3.3)

We may now numerically solve the two coupled first order differential equations. Two such solutions exist,
one for each sign in the last of eq. (3.2). We reject here the branch with the ‘−’ sign as it leads to an
accelerated expansion for all times rather than a transition from a decelerated phase to an accelerated one.

The model is characterized by three parameters namelyD, γ andw. In figure1, we present the solu-
tions for the two scale factors for some representative values of these parameters. For ease of comparison,
we have rescaled the solutions2 so that

a|τ=0 = 1 =⇒ A|τ=0 = 0
b|τ=0 = 1 =⇒ B|τ=0 = 0 .

We have a whole class of solutions in whicha, the scale factor for our universe starts from 1 atτ = 0
and decreases monotonically for negative values ofτ . A word of caution is in place here. Since we have
neglected radiation completely, the equations are valid only as long as the universe is matter dominated. The
redshift corresponding to matter-radiation equality is about zeq ∼ 2.9× 104Ωmh2. For the measured values

2This is not to say that the two scale factors are indeed the same in the present epoch, but reflects the fact that the scale factors
are arbitrary upto a constant.
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of Ωm(∼ 0.27) andh(∼ 0.72), we havezeq ∼ 3000. In fact, even before we go as far back asz = zeq, the
approximation breaks down as the radiation density can no longer be neglected. We have checked, though,
that the inclusion of the radiation component does not change the evolution drastically forz >∼ zeq. And,
since we are primarily interested in the evolution of the universe in relatively recent times, the inclusion of
radiation does not affect the results in any discernible way.

As can be easily discerned, the relative evolution inb(τ) is small. In the time interval thata(τ) has
increased by nearly a factor of 3000,b(τ) has decreased by∼ 29%. While the opposing signs of the
evolution was predicted even in a matter-free universe (seediscussion in the preceding section), the large
difference in the magnitude of the evolution is but a consequence of the difference in the pressure exerted
by matter in the two worlds.

The epoch of matter–radiation equality,τeq ≡ τ(z = zeq), has a considerable dependence on the
parameter choice. For a given value ofD andγ, a smallerw shifts τeq further into the past [for example,
with (D, γ) = (6, 0.59), we haveτeq ≈ −0.95,−0.97,−0.99 for w = −2.58,−2.6,−2.62] thus increasing

-0.5

 0

 0.5

 1

 0  1  2  3  4  5

q

z

(3, -3.10, 0.66)
(4, -2.62, 0.64)
(6, -2.80, 0.74)
(8, -2.50, 0.60)

Figure 2. Evolution of the deceleration parameterq with the redshiftz. The numbers in the parentheses refer to
(D,w, γ).

the present-day age of the universe. Similarly, for a given value ofD, andw, as we decreaseγ, once againτeq
shifts further into the past [(D,w) = (6,−2.8) leads toτeq = −0.91,−0.88,−0.86 for γ = 0.7, 0.72, 0.74].
Note, though, that the ranges of parameters are restricted (and correlated). An arbitrary set would tend to
destroy either late time acceleration or shiftτeq to unacceptable values.

As figure1 shows, the curves fora(τ) have a slight upward concavity forτ >∼ −0.3. This is but a
reflection of late time acceleration. Prior to this epoch, the universe was in a decelerated phase, as attested
to by the prominent upward convexity atτ <∼ −0.5 . This becomes clearer when we plot the deceleration
parameterq as a function of the redshift (see figure2).

4 Observational Constraints

Having established that the model, for some choice of parameters, does lead to correct late time acceleration,
we now seek to confront it with other observational data. Themost important such data relates to Type Ia
supernovae. The very comprehensive Union2 data set [27] lists the distance modulusµ as well as the redshift
for 557 such supernovae. As the distance modulusµ ≡ 5 log dL + 25 is nothing but a rephrasing of the
luminositydL(z), defined through

dL(z) = (1 + z)

z
∫

0

dz′

H(z′)
, (4.1)

we, then, need to calculatedL(z), given our determination ofH(z) for a particular choice of parameters.
We define aχ2–test through

χ2(D, γ,w) =

i=n
∑

i=0

[µobs(zi)− µth(D, γ,w; zi)]
2

σ2
i

, (4.2)
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whereµth defines the value expected in our model for a particular choice of parameters, whereasµobs andσ
are the observational value and the associated root-mean-squared error. We may, now, determine the best-fit
value of the parameters by minimizing theχ2. In table1, we list such best fit values for some choices ofD.
The results are analogous for other choices. Note that, withan increase inD, both|w| andγ decrease. This
is quite understandable as the ensuing smaller extra-dimensional pressures would now have an enhanced
effect in the normal world owing to the larger effective coupling betweenȧ(t) andḃ(t). Thus, if we were to
admit very largeD values, without any concern for the microscopic theory, thefluid would tend to a normal
one.

D χ2
min w γ q0 ztr

2 538.92 −3.71+0.25
−0.63 0.72+0.23

−0.08 −0.49+0.10
−0.26 0.75+0.23

−0.27

3 539.18 −3.10+0.18
−0.55 0.66+0.25

−0.07 −0.47+0.09
−0.27 0.78+0.22

−0.32

6 539.33 −2.50+0.13
−0.47 0.59+0.27

−0.06 −0.44+0.08
−0.29 0.77+0.20

−0.31

10 539.42 −2.31+0.12
−0.38 0.57+0.14

−0.06 −0.46+0.08
−0.36 0.79+0.19

−0.33

35 539.44 −2.06+0.35
−0.11 0.53+0.26

−0.05 −0.45+0.09
−0.26 0.79+0.20

−0.33

100 539.74 −1.98+0.07
−0.38 0.51+0.28

−0.05 −0.43+0.06
−0.30 0.80+0.19

−0.34

Table 1. The values ofw andγ corresponding to the best fit for a given choice ofD. The error bars correspond to the
projections of the 95% C.L. ellipses on the two axes. Also shown are the corresponding values ofq0 andztr.

As theχ2–values listed in table1 show, the fits are excellent. To further compare the shape of the
theoretical spectrum with the Union2 data set, we also performed a Kolmogorv-Smirnov test. For each of
the cases the K-S statistic was found to be smaller than1.8× 10−3 reflecting an extremely good fit. In fact,
so good are the fits, that the current data is unable to differentiate between these choices of parameters.
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 0.8

 0.9

 1

-4.5 -4 -3.5 -3 -2.5 -2 -1.5

γ

w

D = 2
3

4
5 6

100

Figure 3. 95% C.L. contours in theγ − w plane for different values ofD. The points represent the best fit values for
eachD.

SinceD assumes only discrete values, we refrain from treating it asa free parameter for the rest of
the analysis. Rather, for a givenD, we consider theγ-w plane as a two-dimensional parameter space. We
may, then, attempt to define95% C.L. contours in this plane by considering∆χ2. These are displayed in
figure3. As is evident, there is a strong negative correlation between the two parameters. Note, furthermore,
that positivew (hence, positive pressure) is essentially ruled out. Similarly, integral values ofγ are also
essentially ruled out. Further, this is true even if we consider values ofD far larger than those preferred by
microscopic theories of high energy physics. As can be deduced from table1, each of the marked points in
figure3 denotes essentially a global minimum ofχ2, with the position of minima getting increasingly closer
as one increasesD arbitrarily.
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Oncea(τ) and, hence,H(z) is determined in a model, one may also calculate both the present decel-
eration parameterq0 as well asztr, the redshift corresponding to the epoch of transition fromthe decelerated
to the accelerated phase. Note that these values are not uniquely determined by the data alone as the cosmo-
logical model has a strong bearing on this determination. Also shown, in table1, are the values ofq0 and
ztr as determined within our model.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.5  0  0.5  1  1.5  2  2.5  3  3.5  4

q

Log10(1+z)

(6, -2.80, 0.74)
(2, -3.71, 0.72)

Figure 4. Evolution of the deceleration parameterq with the redshift. The numbers in the parentheses refer to
(D,w, γ).

5 Conclusions and Discussion

Several approaches have been explored in the literature to arrive at a late-time acceleration of the Universe.
However, none of the models are completely satisfactory. Most models rely on a mysterious type of mat-
ter (Dark Energy) which gives an effective repulsive gravity which is supposed to provide the observed
accelerated expansion. This mysterious source term is perceived only through its effect on cosmological
expansion.

In this paper, we have followed an approach using higher dimensions. The mysterious behaviour of
matter (a la the Dark Energy) is manifested directly only in the extra dimensions. The accelerated expansion
of the scale factor in normal dimensions is produced only indirectly by the source term through its effect on
the extra dimensions. Thus, in our model, the issue of invoking strange properties for the dark energy fluid
does not arise as it exhibits its unusual property only in theextra dimensions.

The particularly simple scenario we consider here is able toproduce the requisite late time acceleration.
The matter content acts as a pressureless gas in the normal dimensions and has a monomial equation of state
as far as the extra dimensions are concerned. Just this simple ansatz leads to not only a late time acceleration,
but also to a very moderate contraction of the extra dimensions since the epoch of radiation-matter equality
although the normal dimensions have expanded by a factor of∼ 3000 in the same time period. With the
size of the extra dimensions hardly changing, the role of anyfields confined to the extra-dimensions as also
those of any possible Kaluza-Klein towers of the SM fields in the low energy limit has remained essentially
unaltered in this epoch.

For a significantly wide range of parameters, the model showsexcellent agreement with the obser-
vational data on Type Ia supernovae, as attested to by both a low χ2 per degree of freedom as well as the
Kolmogorov-Smirnov statistic. We still need a negative pressure nonetheless, albeit limited to the extra
dimensions. Whether a more complicated scenario, involving a non-isotropic extra dimensional subspace
and/or multiple fluids, obviates this restriction is yet to be seen.

An interesting feature of our model is that the present phaseof accelerated expansion is, generically, a
transient one. In figure4, we plotq(z) againstlog10(1+z). Note that the future is defined bylog10(1+z) <
0. For example,(D,w, γ) = (2,−3.71, 0.72), namely one of our best fit points, the universe will transit to
a decelerating phase atz = −0.23. Similarly, for (D,w, γ) = (6,−2.80, 0.74), which is somewhat away
from a best fit (but within the 95% C.L region), this transition would occur atz = −0.28.

One aspect which we have not dwelt with in this paper is the rate of growth of perturbations. While
a detailed analysis is beyond the scope of this paper and would be addressed elsewhere, let us make a few
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comments. With the dynamics presented here being the dominant driving mechanism post matter-radiation
equality, changes in structure formation would be confined to this epoch. In fact, the quantum of difference
from theΛ-CDM scenario would be of the same approximate size as in a large class of theories with a
dynamical Dark Energy source. This is supported by the fact that q0 in this model (see table1) agrees
(within error bars) with−0.6, the value it assumes in the standardΛ-CDM scenario. Indeed, a careful
analysis of this aspect could prove of value in further narrowing down of the parameter space, with largerD
being less preferred.
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