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Dedicated to G.A. Margulis on the occasion of his sixtieth birthday

It was around 1980 that Margulis got interested in the area of Diophantine
approximation. The main focus at that time was on the Oppenheim con-
jecture, and the Raghunathan conjecture formulated in that connection for
flows on homogeneous spaces induced by unipotent one-parameter subgroups.
Raghunathan’s conjecture was formulated around 1975, and some of my work
during the interim was driven by it. In print it was introduced in my paper
on invariant measures of horospherical flows [6], where its connection with the
Oppenheim conjecture, pointed out to me by Raghunathan, was also noted.
By mid-eighties it was in the air that Margulis had proved the Oppenheim
conjecture. I got a preprint, with complete proof, in 1987. An announcement
with a sketch appeared in Comptes Rendus in 1987 [34], and expositions of
proof followed [35], [36].

From then on Margulis has played a leading role in the study of problems
in Diophantine approximation via study of dynamics of flows on homogeneous
spaces, with an impressive array of results on a variety of problems in the
area. The aim of this article is to review some of this work, tracing along
the way the development of ideas on the themes concerned. To be sure there
are various survey articles, including by Margulis as also the present author,
giving accounts of the area. The present article, apart from including some
recent results in the area, is also different from the existing accounts in various
respects: exposition from a historical point of view, the measure of details with
regard to various concepts and results, focus on the contributions of Margulis
etc. and the author hopes that it would help the reader in getting a quick
introduction to the topic.

The article is organised in terms of sections on the major themes involved.

∗This is an expanded version of a talk given at the conference in honour Margulis at Yale
University, New Haven, during 24-27 February 2006.
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§1. Oppenheim conjecture

The first result to be proved was the following:

1.1. Theorem (Oppenheim conjecture) Let Q(x1, . . . , xn) = Σn
i,j=1aijxixj

be a nondegenerate indefinite quadratic form in n ≥ 3 real variables, and sup-
pose that it is not a scalar multiple of a rational form, i.e. aij/akl is irrational
for some distinct pairs (i, j) and (k, l), with akl 6= 0. Then

min{Q(x) | x ∈ Z
n, x 6= 0} = 0.

The conjecture goes back to a 1929 paper of Oppenheim (for n ≥ 5). Exten-
sive work was done on the conjecture by methods of analytic number theory in
the 1930s (Chowla, Oppenheim), 40s (Davenport-Heilbronn), 50s (Oppenheim,
Cassels & Swinnerton-Dyer, Davenport, Birch-Davenport, Davenport-Ridout)
. . . . Papers of Birch-Davenport, Davenport-Ridout and one of Ridout in 1968
together confirmed the validity of the conjecture for n ≥ 21, together with
partial results for lower values of n, involving conditions on signature, diago-
nalisability etc. (see [31] and [38] for details). Partial results continued to be
obtained in the 70s and 80s (Iwaniec, Baker-Schlickewei) by number-theoretic
methods, but there was a gradual realisation that the methods of analytic
number theory may not be adequate to prove the conjecture for small number
of variables.

Margulis obtained the result by proving the following:

1.2. Theorem Let G = SL(3, R), Γ = SL(3, Z). Let H be the subgroup
consisting of all elements of G preserving the quadratic form Q0(x1, x2, x3) =
x1x3 − x2

2 (viz. the special orthogonal group of Q0). Let z ∈ G/Γ and Hz

be the stabilizer {g ∈ G | gz = z} of z in G. Suppose that the orbit Hz is
relatively compact in G/Γ. Then H/Hz is compact (equivalently, the orbit Hz
is compact).

By the well-known Mahler criterion (see [47] for instance) Theorem 1.2
implies Theorem 1.1, a priori for n = 3 and then by a simple restriction
argument for all n ≥ 3; for n = 3 the two statements involved are in fact
equivalent. The possibility of proving the Oppenheim conjecture via this route
was observed by Raghunathan, which inspired Margulis in his work. Margulis
discovered later, as reported in his survey article in Fields Medallists’ Lectures
(1997) [41], that in implicit form the equivalence as above appears already in
an old paper of Cassels and Swinnerton-Dyer [5].

In response to Margulis’s preprint [35] on the above mentioned theorems
A. Borel pointed out that Oppenheim was in fact interested, in his papers in
the fifties, in concluding the set of values Q(Zn) to be dense in R, under the
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hypothesis as in Theorem 1.1. By a modification in the original argument this
was also upheld by Margulis in a later preprint [36].

In 1988 Margulis was visiting the Max Planck Institute, Bonn, and he
arranged, with the help of G. Harder, for me to visit there and we could work
together. We strengthened Theorem 1.2 to the following [14]:

1.3. Theorem Let the notation be as in Theorem 1.2. Then for every z ∈ G/Γ
the H-orbit Hz is either closed or dense in G/Γ.

This implies Theorem 1.1, and it also implies the stronger assertion of
density of Q(Z3) more directly, without recourse to the Mahler criterion used
earlier: the quadratic form Q may be assumed to be given by v 7→ Q0(gv) for
all v ∈ R

3, where g ∈ G; then Q(Z3) = Q0(gZ
3) = Q0(HgΓZ

3), and hence if
HgΓ is dense in G then Q(Z3) is dense in R; it turns out that if HgΓ is closed
then Q is a multiple of a rational form. The theorem also implies the following
strengthening of the Oppenheim conjecture.

1.4. Corollary If Q is as in Theorem 1.1 and P denotes the set of all primitive
integral n-tuples, then Q(P) is dense in R.

To prove the corollary, and in particular the Oppenheim conjecture, one
does not need the full strength of Theorem 1.3. Let ν be the matrix of the
nilpotent linear transformation given by e1 7→ 0, e2 7→ 0 and e3 7→ e1 ({ei}
denotes the standard basis). Then it suffices to prove that for z ∈ G/Γ such
that Hz is not closed, the closure Hz in G/Γ contains a point y such that
either {(exp tν)y | t ≥ 0} or {(exp tν)y | t ≤ 0} is contained in Hz. Based on
this observation we gave an elementary proof of Corollary 1.4, involving only
basic knowledge of topological groups and linear algebra [16]; see also [13].

One of the main ideas in the proof of Theorem 1.2 consists of the following:
Let U be a connected unipotent Lie subgroup of G and X be a compact U -
invariant subset of G/Γ which is not a U -orbit. The goal then is to show that
X contains an orbit of a larger connected Lie subgroup of G. To this end
one studies the minimal U -invariant subsets of X and the topological limits
of orbits of points from a sequence in X tending to one of the minimal sets.
When we get a larger subgroup as above, if it is unipotent we can continue
further along the same lines; if it is not unipotent, the strategy cannot be
readily continued, but in the cases considered the argument is complemented
by structural considerations. For example in the proof Theorem 1.2 given the
compact H-invariant subset X = Hz, this strategy is applied with respect to
a unipotent one-parameter subgroup U contained in H, and we get a larger
subgroup W and a W -orbit contained in X. The argument is then completed
by showing that if W is not contained in H the W -orbit cannot have compact
closure, while W being contained in H implies that X is a H-orbit; this is
achieved by a closer look at the subgroups of SL(3, R). The argument thus
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shows that the compact invariant subset Hz has to be a compact orbit of H.

In proving Theorem 1.3, as X = Hz may not be compact, in applying
the strategy one first needs to ensure that it contains a compact minimal U -
invariant subset. This depends on “non-divergence” properties of orbits of
these actions, which I shall discuss later, in §4.

§2. Raghunathan conjecture

I will next discuss the developments around the Raghunathan conjecture,
which had been formulated as means for proving the Oppenheim conjecture.
In this respect it will be convenient to consider a general connected Lie group
G and a lattice Γ in G, viz. a discrete subgroup such that the quotient space
G/Γ admits a finite measure invariant under the G-action, even though our
primary interest will be in the case of G = SL(n, R) and Γ = SL(n, Z) which
is a lattice in SL(n, R). In the general case we shall say that an element
g ∈ G is unipotent, if the adjoint transformation Ad g of the Lie algebra of G
is unipotent.

The following is a more general form of the Raghunathan conjecture, for-
mulated by Margulis in his ICM address at Kyoto, 1990 [40].

Conjecture Let G be a connected Lie group and Γ be a lattice in G. Let H
be a Lie subgroup of G with the property that it is generated by the unipotent
elements contained in it. Then for any z ∈ G/Γ there exists a closed subgroup
F of G such that Hz = Fz.

(The Raghunathan conjecture is the special case of this, with H a unipotent
one-parameter subgroup of G).

In the case when G = SL(2, R), and H a unipotent one-parameter subgroup
this is a classical result due to Hedlund (1936). In this case the orbits are either
dense or closed, so F = G or H, and only the first case occurs if the quotient
SL(2, R)/Γ is compact. It is instructive to see a proof of this, especially in
the case when Γ is a cocompact lattice, using the overall strategy introduced
by Margulis, described at the end of the last section; see [1], Chapter IV, for
details. A distinguishing feature of this case is that H is a “horospherical
subgroup”, namely there exists a g ∈ G such that H = {h ∈ G | gjug−j →
e, as j → ∞}, e being the identity element of G. The case of the conjecture
with G any reductive Lie group and H a horospherical subgroup was proved
in [9], generalising Hedlund’s result to this case. For solvable (connected) Lie
groups G the conjecture was proved by A.N. Starkov, in 1984 (see [52] for
details).

Theorem 1.2 confirmed the conjecture for G = SL(3, R) and H the special
orthogonal group of a nondegenerate indefinite quadratic form.
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Pursuing further the methods involved in the results of the last section
Margulis and I proved in [15] the following special case of the Raghunathan
conjecture.

2.1. Theorem Let G = SL(3, R) and Γ be a lattice in G. Let U be a unipotent
one-parameter subgroup of G such that u − I has rank 2 (as a matrix) for all
u ∈ U\{I}. Then for every z ∈ G/Γ there exists a closed subgroup F such
that Uz = Fz.

Unlike in the case of SL(2, R) mentioned above, F can have more possibil-
ities in this case; when Γ = SL(3, Z), the following subgroups of G have closed
orbits on G/Γ: the subgroup consisting of all elements of SL(3, R) fixing a
nonzero vector under the natural action on R

3, the subgroup of elements leav-
ing invariant a linear functional on R

3 under the contragradient action, and
the special orthogonal group consisting of elements leaving invariant the form
Q0 as in Theorem 1.2 - these subgroups can occur in the place of the subgroup
F in the above discussion.

Theorem 2.1 has the following consequence in the study of values of quadratic
forms (see [15] and also [12]).

2.2 Corollary Let Q be a nondegenerate indefinite quadratic form on R
3. Let

L be a linear form on R
3. Let

C = {v ∈ R
3 | Q(v) = 0} and P = {v ∈ R

3 | L(v) = 0},

and suppose that the plane P is tangential to the cone C. Suppose also that no
linear combination αQ+βL2, with (α, β) 6= (0, 0) is a rational quadratic form.
Then {(Q(x), L(x)) | x ∈ P} (with P as before) is dense in R

2, viz. given any
a, b ∈ R and ε > 0 there exists x ∈ P such that

|Q(x) − a| < ε and |L(x) − b| < ε.

It may be mentioned here that for n ≥ 4 the answer to the analogous
problem is not completely understood yet; see Theorem 2.5 and the remark
following it.

Margulis nurtured the hope that the overall method of “building up” or-
bits of larger subgroups inside a given closed set invariant under the action
should lead to a proof of Raghunathan’s conjecture. This however has not yet
materialised.

The Raghunathan conjecture was in the meantime proved by Marina Rat-
ner, in 1990-91 ([48], [49]), where she also proved the above-mentioned general
conjecture under the additional condition that every connected component of
H contains a unipotent element. The general statement of the conjecture was
proved by Nimish Shah, building up on her work [51].
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Ratner’s work involved classifying the invariant measures of actions of
unipotent subgroups [48], proving a conjecture that I had formulated in con-
nection with the Raghunathan conjecture. The following classification theorem
was proved by Ratner [48] under the additional condition as mentioned above,
and was completed by N.A. Shah [51].

2.3 Theorem (Ratner) Let G be a connected Lie group and Γ be a discrete
subgroup of G (not necessarily a lattice). Let H be a closed subgroup of G which
is generated by the unipotent elements contained in it. Let µ be a finite H-
invariant and H-ergodic measure on G/Γ. Then there exists a closed subgroup
F of G and a F -orbit Φ such that µ is F -invariant and supported on Φ (the
two conditions determine the measure up to a scalar multiple).

Though a proof of the Raghunathan conjecture eluded Margulis, later he
contributed a more transparent proof of Theorem 2.3 (jointly with Tomanov) [45],
in the crucial case of G a real algebraic group. Though the proof is influenced
by Ratner’s arguments it also involves new approach and methods.

The Raghunathan conjecture was deduced by Ratner from Theorem 2.3,
in [49], by proving the following result on uniform distribution.

2.4 Theorem (Ratner) Let G be a connected Lie group, Γ be a lattice in
G and U = {ut} be a unipotent one-parameter subgroup of G. Let z ∈ G/Γ.
Suppose that there is no proper closed connected subgroup G1 of G, with U ⊂
G1, such that G1z is closed and admits a finite G1-invariant measure. Then the
U-orbit of z is uniformly distributed in G/Γ, viz. for every bounded continuous
function f on G/Γ

1

T

∫ T

0

f(utz)dt →

∫

G/Γ

f(gΓ)dm(gΓ),

where m is the normalised G-invariant measure on G/Γ.

Note that if there exists a proper closed connected subgroup G1 containing
U and such that G1z is closed and admits a finite G1-invariant measure then
(by downward induction) there is a minimal one with that property and the
U orbit is uniformly distributed in the orbit under that subgroup; furthermore
the subgroup is unique.

Ratner also deduced from Theorem 2.4, with further work, the generalised
conjecture stated in the beginning of the section, under the additional condition
that every connected component of H contains a unipotent element. Her result
also yields that the orbit closure Hz = Fz as in the conclusion admits a
finite F -invariant measure; viz. the closure is a homogeneous space with finite
invariant measure. In [51] Nimish Shah showed, following up on the work
of Ratner, that the conjecture holds for any subgroup H which is contained
in Zariski closure of the subgroup generated by unipotent elements contained
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in it. However, in the general case it was only concluded (in the place of
the above assertion of Fz admitting a finite F - invariant measure) that the
the connected component F 0z of Fz admits a finite F 0-invariant measure.
It was proposed as a conjecture that Fz has only finitely many connected
components, and hence in fact admits a finite F -invariant measure. The issue
was reduced to the question whether the orbit closure is finite whenever it is
discrete. This question was settled in the affirmative by Eskin and Margulis
[20], thus completing the picture. I may mention that the proof in [20] involves
a random walk version of recurrence properties that I will discuss in § 5.

Ratner’s results have been used in various contexts, including in problems of
Diophantine approximation. The reader is referred to [4], [11], [30], [46], [52] for
details. I will however mention here the following recent result of A. Gorodnik
[25], which complements Corollary 2.2, and is proved using Ratner’s results.

2.5 Theorem (Gorodnik) Let Q be a nondegenerate indefinite quadratic
form on R

n, n ≥ 4, and let L be a linear form on R
n. Suppose that (i) the

restriction of Q to the subspace {v ∈ R
n | L(v) = 0} is an indefinite quadratic

form, and (ii) no linear combination αQ + βL2, with α, β ∈ R and (α, β) 6=
(0, 0) is a rational quadratic form. Then {(Q(x), L(x)) | x ∈ P} (with P as
before) is dense in R

2.

The analogue of the above corollary is not true for n = 3; this was noted
in [12], and depends on Theorem 4.4 below, due to Kleinbock and Margulis.
On the other hand Theorem 2.5 does not complete the picture for n ≥ 4 since
condition (i) can not be expected to be a necessary condition for the conclusion
to hold. It is conjectured in [25] that the conclusion holds if (i) is replaced by
a condition equivalent to the following, which is indeed a necessary condition:
{(Q(v), L(v)) | v ∈ R

n} = R
2. The case to be settled happens to be that of

a pair (Q, L) for which there exists g ∈ SL(n, R) such that v 7→ Q(gv) and
v 7→ L(gv) are the forms x2

1 + · · ·+x2
n−2 +xn−1xn and xn (quadratic and linear

respectively). It is stated in [25] that the proof of the result in the other case
there can be adapted to prove this statement for n = 4. For n ≥ 5 however, it
is open.

Before concluding this section it may be remarked that the theme of ad-
dressing problems in Diophantine approximation via study of flows on homo-
geneous spaces, got strengthened by Margulis’s work, and in turn inspired
similar work on the question of values of cubic forms at integer points and a
conjecture of Littlewood in the topic. It however involves actions of subgroups
which are quite the contrary to being generated by unipotent elements. In
this context Margulis has proposed a conjecture about the behaviour of orbits
under actions of subgroups which are not generated by unipotent elements
(see [42]). There has been considerable work towards the conjecture and its
applications to the Littlewood conjecture; in the general form the conjecture
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is still open however. We will not go into the details of these topics here. The
reader is referred to [19] and [32], and the references there for an exposition of
the area.

§3. Uniform versions of uniform distribution.

I had the opportunity of collaborating with Margulis once again, following
Ratner’s proof of Theorem 2.3. We proved certain uniform versions of uniform
distribution of orbits of unipotent flows, and applied them to study asymptotics
of the set of solutions of quadratic inequalities as in the Oppenheim conjecture
[17].

Let G be a connected Lie group and Γ be a lattice in G. For any x ∈ G/Γ,
any unipotent one-parameter subgroup U = {ut} of G and T > 0 let λ(x, U, T )
denote the probability measure on the arc {utx | 0 ≤ t ≤ T} in G/Γ, uniform
along the parameter t; viz. λ(x, U, T ) is the measure such that for every
continuous function ϕ with compact support, on G/Γ,

∫

G/Γ

ϕ dλ(x, U, T ) =
1

T

∫ T

0

ϕ(utx) dt.

For any closed subgroup F and x ∈ G/Γ such that Fx is closed and admits
a finite F -invariant measure let µ(x, F ) denote the F -invariant probability
measure on G/Γ.

Ratner’s uniform distribution theorem (viz. Theorem 2.4 above) means
that for any x ∈ G/Γ and any unipotent one-parameter subgroup U there exists
a closed subgroup F such that Fx is closed and admits a F -invariant measure,
and the family of probability measures {λ(x, U, T )} converges to µ(x, F ) as
T → ∞ (in the weak topology with respect to bounded continuous functions).
In this respect one may also consider the dependence of the convergence on
the point x and the one-parameter subgroup U .

We say that a point x ∈ G/Γ is generic for the U -action of a unipotent
one-parameter subgroup U if Ux is dense in G/Γ, or equivalently uniformly
distributed in G/Γ, and we say that x is singular, for the U -action, if it is not
generic.

Given a sequence Ui = {u
(i)
t } of unipotent one-parameter subgroups of

G and a unipotent one-parameter subgroup U = {ut} of G, we say that Ui

converges to U , and write Ui → U , if u
(i)
t → ut for all t ∈ R. We proved

the following (see Theorem 2 in [17]; the statement there is formulated for
individual integrals):

3.1 Theorem Let {xi} be a sequence in G/Γ converging to x ∈ G/Γ, and
{Ui} be a sequence of unipotent one-parameter subgroups of G converging to a
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unipotent one-parameter subgroup U of G. Suppose that x is a generic point
for U . Then for any sequence {Ti} in R

+ such that Ti → ∞ the sequence
of probability measures {λ(xi, Ui, Ti)} converges to the G-invariant probability
measure on G/Γ.

The main points in the proof in [17] are the following. Consider a limit
point, say σ, of the sequence {λ(xi, Ui, Ti)} of probability measures on G/Γ,
viewed as measures on the one-point compactification of G/Γ. Using results
on non-divergence of orbits of unipotent flows one concludes that σ is a prob-
ability measure on G/Γ, viz. point at ∞ carries zero measure. Clearly σ is
a U -invariant measure. By Ratner’s classification of invariant measures (see
Theorem 2.3) together with ergodic decomposition it follows that if the set of
singular points for the U -action has zero σ-measure then σ is the G-invariant
probability measure.

For any closed subgroup H such that H ∩Γ is a lattice in H let X(H, U) =
{g ∈ G | Ug ⊂ gH}. If g ∈ X(H, U) then gΓ is a singular point for the
U -action, since UgΓ/Γ ⊂ gHΓ/Γ which is a proper closed subset. Conversely
every singular point is of the form gΓ for g ∈ X(H, U) for some H as above.
Furthermore, considering the minimal ones from the subgroups involved, one
can see that H can be chosen from a countable collection. It therefore suffices
to prove that σ(X(H, U)Γ/Γ) = 0 for all proper closed subgroups H such that
H ∩Γ is a lattice in H. For this purpose we associate to each H a linear action
of G on a finite-dimensional vector space VH in such a way that behaviour of
trajectories of U of points near the set X(H, U)Γ/Γ can be compared with that
of trajectories of certain associated points in VH near a U -invariant algebraic
subvariety AH associated with XH . For the latter one shows, using Lagrange
interpolation formula together with the fact that trajectories of unipotent one-
parameter subgroups are polynomial maps, that for any compact subset C of
AH and ε > 0 there exists a compact subset D of AH such that the proportion
of time spent by near C to that spent near D is at most ε. This means
that asymptotically the trajectories spend arbitrarily little time near any fixed
compact subset of the variety, which then yields that σ(X(H, U)Γ/Γ) = 0, for
all H as above.

Theorem 3.1 can also be proved by an argument along the lines of Ratner’s
proof of uniform distribution theorem, namely Theorem 2.4 which it gener-
alises; Ratner has stated that this was pointed out to her by Marc Burger in
1990, prior to our proving the result. The above approach, and especially the
idea of comparing the behaviour of trajectories on G/Γ with that of certain tra-
jectories in finite-dimensional vector spaces, referred to as linearisation, has on
the other hand been useful in proving Theorem 3.2 below, involved in quan-
titative versions of the Oppenheim conjecture, and also in some subsequent
work of other authors.
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Clearly the condition in the hypothesis that x is a generic point for U is
necessary for the stated conclusion to hold. It turns out however that if we fix a
bounded continuous function ϕ and ε > 0, and want to know if

∫

ϕ dλ(xi, Ui, Ti)
differs from

∫

ϕ dµ by at most ε then a weaker hypothesis suffices. This turns
out to be important in applications. The following is a slightly more general
version of Theorem 3 of [17], allowing the unipotent one-parameter subgroups
to vary, which can be proved along the lines of the original proof.

3.2 Theorem Let {Ui} be a sequence of unipotent one-parameter subgroups
of G converging to a unipotent one-parameter subgroup U of G. Let K be a
compact subset of G/Γ, ϕ be a bounded continuous function on G/Γ and ε > 0
be given. Then there exist finitely many proper closed subgroups H1, . . . , Hk

such that Hi ∩ Γ is a lattice in Hi for each i = 1, . . . , k, and a compact subset
K0 of K contained in ∪k

i=1X(Hi, U)Γ/Γ such that the following holds: for any
compact subset F of K\K0 there exist i0 ≥ 1 and T0 > 0 such that for all
x ∈ F , i ≥ i0 and T ≥ T0

∣

∣

∣

∫

ϕ dλ(x, Ui, T ) −

∫

ϕ dµ
∣

∣

∣
< ε.

The proof consists of showing that if the assertion does not hold then there
exists a sequence {xi} in K converging to a generic point of U for which the
conclusion of Theorem 3.1 does not hold.

§4. Quantitative versions of Oppenheim conjecture

Theorem 3.2 was applied in [17] to obtain asymptotic lower estimates for
the number of integral solutions in large balls, for the quadratic inequalities
as in the Oppenheim conjecture.

Let ω be a positive continuous function on the unit sphere {v ∈ R
n | ||v|| =

1}, and Ω = {v ∈ R
n | ||v|| < ω(v)}. For T > 0 let TΩ denote the dilate

{Tv | v ∈ Ω} of Ω by T .

While considering asymptotics of the solutions of the inequalities involving
the quadratic form we shall also consider the dependence on the forms. In
this respect the spaces of quadratic forms will be considered equipped with
the usual topology, arising from the associated symmetric bilinear forms, or
equivalently the topology of convergence as functions. We proved the following.

4.1 Theorem Let O(p, q) denote the space of quadratic forms on R
n with

discriminant ±1 and signature (p, q), with p ≥ 2, q ≥ 1, p ≥ q and p + q = n.
Let K be a compact subset of O(p, q). Let a, b ∈ R, with a < b be given. Then
for any θ > 0 there exists a finite subset F of K such that

i) each Q in F is a scalar multiple of a rational quadratic form, and
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ii) for any compact subset C of K\F there exists a T0 > 0 such that for all
Q ∈ C and T ≥ T0,

#{x ∈ Z
n ∩ TΩ | a < Q(x) < b} ≥ (1 − θ)vol {v ∈ TΩ | a < Q(v) < b}.

The basic idea involved in proving the estimate may be explained as follows.
For any function f on R

n vanishing outside a compact subset let f̃ be the
function on G/Γ defined by f̃(gΓ) =

∑

v∈gZ
n f(v); since f vanishes outside a

compact set the right hand side expression is in effect a finite sum, and yields a
well-defined function on G/Γ. It can be seen that if f is a measurable function

on R
n then f̃ is measurable on G/Γ. Furthermore, by a theorem of Siegel, if

f is integrable on R
n then f̃ is integrable on G/Γ and

∫

R
n fdλ =

∫

G/Γ
f̃dµ,

where λ is the Lebesgue measure on R
n and µ is the G-invariant probability

measure on G/Γ.

For simplicity we consider only the case with n = 3, and K consisting
of a single quadratic form which is not a multiple of a rational form. Let
Q0 be the quadratic form as before, namely Q0(x1, x2, x3) = x1x3 − x2

2. Let
g ∈ G = SL(3, R) and let Q be the quadratic form v 7→ Q0(gv) for all v ∈
R

3 (as seen before, it suffices to consider only these quadratic forms). Let
U = {ut} be a unipotent one-parameter subgroup contained in SO(Q0). Let
a, b ∈ R, with a < b be given. We are interested in solutions of a < Q(x) < b,
or equivalently a < Q0(gx) < b with x an integral point in a region of the
form TΩ as above. Let B be a subset of R

3 which is a “box” of the form
{uts | |t| < τ, s ∈ S} where τ is a small positive number and S is a small
open set in a plane transversal to the U -action, contained in {v ∈ R

3 | a <
Q0(v) < b}. Let χ denote the characteristic function of B. Let 0 < T1 < T2

and S(T1, T2) = {uts | T1 < t < T2, s ∈ S}. Then
∫ T2

T1

χ(utv)dt ≤ 2τ for

any v ∈ R
3, and hence

∫ T2

T1

χ̃(utgΓ)dt =
∫ T2

T1

∑

v∈gZ
3 χ(utv)dt is bounded by

2τ#(S(T1, T2) ∩ gZ
3). Therefore,

#(S(T1, T2) ∩ gZ
3) ≥

1

2τ

∫ T2

T1

χ̃(utgΓ)dt.

When Q is not a multiple of a rational quadratic form, g can be chosen to be
such that gΓ is generic for the U -action. Then given θ > 0 as in the hypothesis,
when T1, T2 and T2 − T1 are sufficiently large the integral on the right hand
side exceeds (1 − θ)(T2 − T1)

∫

χ̃dµ which, by the theorem of Siegel recalled
above, equals (1 − θ)(T2 − T1)λ(B). Then the cardinality of S(T1, T2) ∩ gZ

3

is at least (1 − θ)(T2 − T1)λ(B)/2τ , which may be seen to be the same as
(1−θ)volS(T1, T2). The proof of the lower estimates for Q as above essentially
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consists of “filling up” more than (1− θ/2) proportion of the regions g(TΩ)∩
{v ∈ R

3 | a < Q0(v) < b} as above, for large enough T , efficiently (in a
way that the overlaps would not matter) by subsets of the form mS(T1, T2)
with m in a certain compact subgroup M of SO(Q0); in the calculations it is
convenient to use equality of the integrals

∫ T2

T1

∫

E

∑

v∈gZ
3

χ(utmv)dσ(m)dt =

∫ T2

T1

∫

E

χ̃(utgmΓ)dσ(m)dt,

for various subsets E of M , where σ is the normalised Haar measure on M .
Using the comparison as above and using Theorem 3.2 we conclude that

#{y ∈ g(Z3∩TΩ) | a < Q0(y) < b} ≥ (1−θ)vol(TΩ∩{v ∈ R
3 | a < Q(v) < b}),

which is equivalent to the desired inequality in the case at hand. The proof in
the general case is analogous, using Theorem 3.2 as above.

It is also proved in [17] that when n ≥ 5 for any compact subset K of
O(p, q) and ε > 0 there exist c > 0 and T0 > 0 such that for all Q ∈ K
and T ≥ T0 the number of x ∈ TΩ ∩ Z

n for which |Q(x)| < ε is at least
c vol {v ∈ TΩ | |Q(v)| < ε}. This in particular gives a quantitative version of
the classical theorem of Meyer that for n ≥ 5 every nondegenerate indefinite
rational form represents zero.

Remarks For an indefinite binary quadratic form the set of values at integral
points need not be dense in R, even when the form is not a scalar multiple of
a rational form; it can be seen that for Q(x, y) = (x + ay)(x + by), {Q(x, y) |
x, y ∈ Z} has zero as a limit point if and only if one of a and b is an irrational
number which is not badly approximable. Conditions for density of the values
on the set of integral points, and also on the set of pairs with positive integer
coordinates are considered in [18]. In the context of the latter it may be
mentioned here that by an argument as in the first part of the sketch of the
proof of Theorem 4.1 it can be shown that for n ≥ 3 for a nondegenerate
indefinite quadratic form Q on R

n which is not a multiple of a rational form,
if the cone {v ∈ R

n | Q(v) = 0} contains vectors with all coordinates positive,
then the set {Q(x1, . . . , xn) | x1, . . . , xn ∈ N} is dense in R.

The lower estimates obtained in [17] were complemented in the work of
Margulis with Eskin and Mozes [21] with upper estimates.

4.2 Theorem (Eskin-Margulis-Mozes) Let the notation be as in Theo-
rem 4.1. If p ≥ 3 then the subset F as in the conclusion can also be chosen so
that for any compact subset C of K\F there exists a T0 > 0 such that for all
Q ∈ C and T ≥ T0,

#{x ∈ Z
n ∩ TΩ | a < Q(x) < b} ≤ (1 + θ)vol {v ∈ TΩ | a < Q(v) < b}.
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The function f̃ as in the remarks following Theorem 4.1 is unbounded
for any nonnegative nonzero function f . Therefore the relation used in ob-
taining the lower estimates is not amenable to computations for upper esti-
mates. The difficulty is overcome in [21] via analysis of integrals of the form
∫

K
f̃(atkΓ)1+δdk, where δ > 0, K is a maximal compact subgroup of SO(p, q)

and {at} is a diagonalisable one-parameter subgroup of SO(p, q).

We note that the right hand side of the inequalities in Theorems 4.1 and 4.2
are asymptotic to cT n−2 for a constant c > 0 (depending on a, b and Ω and
the quadratic form), and thus so is the number of solutions as on the left hand
side, provided p ≥ 3. It is also proved in [21] when p ≥ 3, given K, a, b and
Ω as in Theorems 4.1 and 4.2 there exists an effectively computable constant
C > 0 such that #{x ∈ Z

n ∩ TΩ | a < Q(x) < b} is bounded by CT n−2; we
note here that for the results recounted earlier there are no effective proofs -
the reader is referred to [42] for a discussion on this issue. The corresponding
statement does not hold for p = 2, but CT n−2 log T , serves as a bound, with
an effective constant C.

Indeed, when p = 2, given q = 1 or 2, for every ε > 0 and interval (a, b) in
R there exists a quadratic form Q of signature (2, q), a constant δ > 0 and a
sequence Ti → ∞ such that

#{x ∈ Z
n ∩ TΩ | a < Q(x) < b} ≥ δT q

i (log Ti)
1−ε

for all i (see [21]). The examples, first noticed by P. Sarnak, arise as irrational
forms which are very well approximable by split rational forms. Sarnak also
noted that a hypothesis suggested by Berry and Tabor, on the statistic of
the eigenvalues of the quantisation of a completely integrable Hamiltonian is
related to the asymptotics in the problem as above, in the case of signature
(2, 2). In this context, it is of interest to identify classes of quadratic forms
with p = 2 for which the number of solutions is asymptotic to cT n−2, with c
the constant as above. Sarnak showed that this holds for almost all quadratic
forms from the two-parameter family (x2

1 +αx1x2 +βx2
2)− (x2

3 +αx3x4 +βx2
4).

Apart from the issue of very well approximability there is also another
aspect of forms of signature (2, 2) which precludes the asymptotics as desired.
It may be seen that the c as above depends linearly on (b − a). On the other
hand, whenever a quadratic form of signature (2, 2) has a rational isotropic
subspace, say L, then for any ε > 0,

#{x ∈ Z
n ∩ TΩ | |Q(x)| < ε} ≥ #(Zn ∩ TΩ ∩ L) ≥ σT 2,

where σ > 0 is a constant independent of ε. In this respect the following result
is proved in the recent paper of Eskin, Margulis and Mozes [22].
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4.2 Theorem (Eskin, Margulis, Mozes) Let the notation be as in Theo-
rem 3.1. Let Q ∈ O(2, 2), and suppose that it is not extremely well approx-
imable, in the sense that there exists N > 0 such that for all split integral
forms Q′ and k ≥ 2, ||Q− 1

k
Q′|| > k−N . Let X be the set of points in Z

4 which
are not contained in any isotropic subspace of Q. Then, as T → ∞,

#{x ∈ X ∩ TΩ | a < Q(x) < b} ∼ vol {v ∈ TΩ | a < Q(v) < b}.

§5. View of orbits from infinity

When the underlying space of a flow is noncompact, questions arise about
whether some of the orbits are bounded (relatively compact), or diverge to
infinity etc.; these aspects I refer as view of the orbits from infinity. In the
light of the Mahler criterion, in the case of flows on SL(n, R)/SL(n, Z) these
have close connections with questions in diophantine approximation. One of
the earliest results of this kind was proved by Margulis, in [33]; the statement
had been conjectured earlier by Piatetski-Shapiro, and was used by Margulis
in his work on the arithmeticity theorem for nonuniform lattices.

5.1 Theorem (Margulis) Let G = SL(n, R) and Γ = SL(n, Z). Let {ut}
be a unipotent one-parameter subgroup of G. Then for every x ∈ G/Γ there
exists a compact subset K of G/Γ such that {t ≥ 0 | utx ∈ K} is unbounded;
(in other words, the trajectory {utx}t≥0 does not “go off to infinity”).

Developing upon Margulis’s original proof I strengthened the result to the
following [8]:

5.2 Theorem Let G and Γ be as in Theorem 5.1. Then for every ε > 0 there
exists a compact subset K of G/Γ such that for any x = gΓ ∈ G/Γ and any
unipotent one-parameter subgroup {ut} of G one of the following holds:

i) l({t ≥ 0 | utx /∈ K}) < εT for all large T , or

ii) {g−1utg} leaves invariant a proper nonzero rational subspace of R
n.

Analogous results hold also for general Lie groups G and lattices Γ. One of
the consequences of these results is that every locally finite ergodic invariant
measure of a unipotent flow on G/Γ is necessarily finite; this turned out to
be useful in Ratner’s work on Raghunathan’s conjecture. From the theorem I
deduced also that every closed nonempty subset invariant under a unipotent
one-parameter subgroup contains a minimal closed invariant subset, and the
minimal sets are compact; this was used in our proofs of Theorems 1.3 and 2.1.
The result was extended by Margulis to actions of general connected unipotent
Lie subgroups acting on G/Γ [39].
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The following quantitative version of Theorem 5.1 was proved by Kleinbock
and Margulis, in the course of their study [28] of Diophantine approximation
on manifolds.

5.3 Theorem (Kleinbock and Margulis): Let Λ be a lattice in R
n, n ≥ 2.

Then there exists ρ > 0 such that for any unipotent one-parameter subgroup
{ut} of SL(n, R), T > 0 and ε ∈ (0, ρ),

l({t ∈ [0, T ] | utΛ ∩ B(ε) 6= 0}) ≤ cn(ε/ρ)1/n2

T,

where B(ε) denotes the open ball of radius ε with center at 0, and cn is an
explicitly described constant depending only on n.

(We note that the parenthetical set on the left hand side represents a neigh-
bourhood of infinity in the space of lattices in R

n, depending on ε.)

Actually the results in [28] apply also to a large class of curves, and also
higher dimensional submanifolds, in the place of orbits of unipotent groups in-
volved in the above theorem. The general results along the theme are involved
in dealing with questions in Diophantine approximation on manifolds which
we discuss briefly in the next section. The method involved has been further
sharpened in recent years by Kleinbock; see [26].

It may also be mentioned here that results somewhat similar in flavour as
the above theorems, but in different direction and concerning local behaviour,
may be found in [23]; these were proved by the authors in preparation for their
results on asymptotics of lattice points on homogeneous varieties [24].

In [20] Eskin and Margulis prove a random walk analogue of the recurrence
properties as above, proving in particular that given a connected Lie group
G which is generated as a closed subgroup by the unipotent elements in it, a
lattice Γ in G, and a probability measure µ on G satisfying a certain moment
condition, for every ε > 0 there exists a compact subset K of G/Γ such that
for every x ∈ G/Γ there exists N ∈ N, such that for all n > N , (µ∗n ∗δx)(K) >
1 − ε; here µ∗n denotes the n th convolution power of µ and δx is the point
measure at x. The authors also discuss other variations on the theme. Using
the result the authors deduce the conjecture proposed by Nimish Shah, on the
finiteness of countable orbit closures, mentioned in § 2.

Theorem 5.2 was applied by Margulis to give a new proof of the theorem
of Borel and Harish-Chandra on arithmetic subgroups of semisimple groups
being lattices [37]. The study of recurrence properties of random walks on
homogeneous spaces in [20], discussed above, was also applied in a similar way,
and recently a self-contained proof of the Borel-Harish Chandra theorem was
also given by Margulis [44], via a simplified version of the approach from [20].

In the mid-eighties I observed that the notions of singular systems of linear
forms and badly approximable systems, studied by W.M. Schmidt (see [50]),
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correspond to trajectories of points of SL(n, R)/SL(n, Z) under the action of
certain diagonal one-parameter subgroups of SL(n, R) being divergent (tending
to infinity) or being bounded respectively [7]. It was shown that in certain cases
the orbit being bounded, while certainly not generic, was quite prevalent, if
one took into account the Hausdorff dimension of the set of such points [10].
Margulis followed up the theme and formulated a conjecture on the issue in
his ICM address at Kyoto. The conjecture as presented there needs some
modifications. However, the underlying question was completely solved in a
paper of Kleinbock and Margulis [27], proving the following.

5.4 Theorem (Kleinbock and Margulis): Let G be a connected Lie group
and Γ be a lattice in G. Let {gt} be a one-parameter subgroup of G. Let W be
the normal subgroup of G generated by the two opposite horospherical subgroups
with respect to {gt}. Suppose that WΓ = G. Let B be the set of points x in
G/Γ such that the orbit {gtx} of x is bounded (relatively compact). Then for
every nonempty open subset Ω of G/Γ the intersection B ∩ Ω is of Hausdorff
dimension equal to the dimension of G.

It may be noted that if WΓ is a proper subgroup then the set B as above
is of Hausdorff dimension at most dim G − 1, unless it is the whole of G/Γ;
this is related to Ratner’s work for unipotent flows and its extension to quasi-
unipotent flows (see [52], § 21).

The correspondence between divergence or boundedness properties of tra-
jectories of specific one-parameter subgroups on the one hand and issues in
Diophantine approximation on the other hand was also extended by Klein-
bock to broader classes of one-parameter subgroups (see [30] for details).

§6. Diophantine approximation on manifolds

We next come to yet another area of Diophantine approximation to which
Margulis has made important contributions, which in some ways are continu-
ation of the study of unipotent flows and their applications.

We recall that v ∈ R
n is said to be very well approximable (VWA) if for

some ε > 0 there exist infinitely many positive integers k such that dist (kv, Zn) ≤

k−( 1

n
+ε). Also v is said to be very well multiplicatively approximable (VWMA)

if for some ε > 0 there exist infinitely many positive integers k such that
inf

p∈Z
n Π(kv + p) ≤ k−(1+ε), where Π is the function on R

n defined by Π(v) =

|v1v2 · · ·vn| for v = (v1, v2, . . . , vn). Clearly, if a vector is VWA then it is also
VWMA.

These concepts, arise naturally in higher-dimensional extensions of the the-
ory of approximation of irrationals by rationals in the one-dimensional case.
A vector being VWA or, more generally, VWMA is atypical and in partic-
ular the set of points which are VWMA is of Lebesgue measure 0. In the
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higher-dimensional case this raises an interesting question whether given a
(differentiable) submanifold of the ambient space the set of VWMA (or VWA)
vectors contained in it has measure 0 as a subset of the submanifold (on a
differential manifold there is a natural notion of a set being of measure zero,
namely that the intersection of the set with each chart be of Lebesgue mea-
sure zero). Motivated by a 1932 conjecture due to Mahler that vectors on
the curves {(t, t2, . . . , tn) | t ∈ R} in R

n, n ≥ 2 are not VWA for almost all
t, this question, and certain generalisations, were studied by several number
theorists, including Kasch, Volkmann, Sprindzuk, W.M. Schmidt, A. Baker,
Bernik and also very recently by Beresnevich (see [43] for some references on
the work).

Kleinbock and Margulis (1998) [28] proved the following result settling a
conjecture of Sprindzuk (1980); the latter was a generalisation of a conjecture
of A. Baker which corresponds to the special case of d = 1 and fk(t) = tk,
k = 1, . . . , n in the statement below.

6.1 Theorem (Kleinbock and Margulis) Let Ω be a domain in R
d for

some d ≥ 1 and let f1, f2, . . . , fn be n real analytic functions on Ω such that
Σaifi is not a constant function for any a1, . . . , an in R, not all zero. Then for
almost all v in Ω the vector (f1(v), . . . , fn(v)) is not VWMA (and hence not
VWA either).

Actually the result is proved in [28] in greater generality, allowing f1, . . . , fn

to be Cr functions satisfying a certain “nondegeneracy” condition. The ques-
tion is reduced to one of estimating measures of subsets of the parameter
set Ω for which uf1(v),...,fn(v)Z

n+1 belongs to certain neighbourhoods of infin-
ity (complements of compact subsets), where the neighbourhoods concerned
depend on numerical values for size and also on certain diagonal matrices, by
way of “shape”; for w1, . . . , wn ∈ R, uw1,...,wn

denotes the unipotent element
of SL(n + 1, R) corresponding to the linear transformation given by e0 7→ e0

and ei 7→ ei + vie0 for i = 1, . . . , n, with {ei}
n
i=0 as the standard basis of R

n+1.
From this point on, the ideas are akin to those in Theorems 5.1 and 5.2 but
now appear in quantitative and highly intricate form. The reader is referred to
[43] for an exposition of the ideas involved. A modification of the method was
used in [3] to prove a part (the convergence part) of the Khintchine-Groshev
theorem for nondegenerate smooth submanifolds of R

n; see also [2].

Acknowledgements: The author would like to thank Nimish A. Shah and
the anonymous referee, for comments enabling improvements in the article.
Thanks are also due to the Clay Mathematics Institute for supporting partic-
ipation in the conference at Yale University in honour of the sixtieth birthday
of Margulis, which inspired the article.

17



References

[1] M. Bachir Bekka and Matthias Mayer, Ergodic theory and topological dynamics
of group actions on homogeneous spaces, London Mathematical Society Lecture
Note Series, 269. Cambridge University Press, Cambridge, 2000.

[2] V.V. Beresnevich, V.I. Bernik, D.Y. Kleinbock, and G.A. Margulis, Metric Dio-
phantine approximation: the Khintchine-Groshev theorem for nondegenerate
manifolds, Mosc. Math. J. 2 (2002), 203-225.

[3] V. Bernik, D. Kleinbock, and G.A. Margulis, Khintchine-type theorems on man-
ifolds: the convergence case for standard and multiplicative versions, Internat.
Math. Res. Notices, 2001, 453-486

[4] A. Borel, Values of indefinite quadratic form at integral points and flows on
spaces of lattices, Bull. Amer. Math. Soc. 32 (1995), 184-204.

[5] J.W.S. Cassels and H.P.F. Swinnerton-Dyer, On the product of three homoge-
neous forms and indefinite ternary quadratic forms, Philos. Trans. Royal Soc.
London 248, Ser. A, (1955), 73-96.

[6] S.G. Dani, Invariant measures and minimal sets of horospherical flows, Invent.
Math. 64 (1981), 357-385.

[7] S.G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophan-
tine approximation, J. Reine Angew. Math. 359 (1985), 55-89.

[8] S.G. Dani, On orbits of unipotent flows on homogeneous spaces, II, Ergod. Th.
Dynam. Syst. 6 (1986), 167-182.

[9] S.G. Dani, Orbits of horospherical flows, Duke Math. J. 53 (1986), 177-188.

[10] S.G. Dani, Bounded orbits of flows on homogeneous spaces, Comment. Math.
Helv. 61 (1986), 636-660.

[11] S.G. Dani, Dynamical systems on homogeneous spaces, in: Dynamical Sys-
tems, Ergodic Theory and Applications (Ed. Ya.G. Sinai), Encyclopaedia of
Mathematical Sciences, Vol. 100, Part III, pp. 264-359, Springer Verlag, 2000.

[12] S.G. Dani, On values of linear and quadratic forms at integral points, in: Num-
ber Theory (Ed. R.P. Bambah, V.C. Dumir, R.J. Hans-Gill), Hindustan Book
Agency and Indian National Science Academy, 2000.

[13] S.G. Dani, On the Oppenheim conjecture on values of quadratic forms. Essays
on geometry and related topics, Vol. 1, 2, 257–270, Monogr. Enseign. Math.,
38, Enseignement Math., Geneva, 2001.

[14] S.G. Dani and G.A. Margulis, Values of quadratic forms at primitive integral
points, Invent. Math. 98 (1989), 405-424.

18



[15] S.G. Dani and G.A. Margulis, Orbit closures of generic unipotent flows on
homogeneous spaces of SL(3, R), Math. Ann. 286 (1990), 101-128.

[16] S.G. Dani and G.A. Margulis, Values of quadratic forms at integral points: an
elementary approach (jointly with G.A. Margulis), L’Enseignement Math. 36
(1990), 143-174.

[17] S.G. Dani and G.A. Margulis, Limit distributions of orbits of unipotent flows
and values of quadratic forms, I.M. Gelfand Seminar, 91-137, Adv. Soviet Math.
16, Part 1, American Mathematical Society, 1993.

[18] S.G. Dani and A. Nogueira, On orbits of SL(2, Z)+ and values of binary
quadratic forms on positive integral pairs, J. Number Theory 95 (2002), 313–
328.

[19] M. Einsiedler and E. Lindenstrauss, Diagonal flows on locally homogeneous
spaces and number theory, with Manfred Einsieder, to appear in the Proceed-
ings of the International Congress of Mathematicians 2006.

[20] A. Eskin and G.A. Margulis, Recurrence properties of random walks on fi-
nite volume homogeneous manifolds, Random walks and geometry, pp.431-444,
Walter de Gruyter GmbH & Co. KG, Berlin, 2004,

[21] A. Eskin, G.A. Margulis, and S. Mozes, Upper bounds and asymptotics in
a quantitative version of the Oppenheim conjecture, Ann. Math. 147 (1998),
93-141.

[22] A. Eskin, G.A. Margulis and S. Mozes, Quadratic forms of signature (2, 2) and
eigenvalue spacings on rectangular 2-tori, Ann. Math. 161 (2005), 679-725.

[23] A. Eskin, S. Mozes, and N. Shah, Non-divergence of translates of certain alge-
braic measures, Geom. Funct. Anal. 7 (1997), 48-80.

[24] Eskin, Alex and Mozes, Shahar and Shah, Nimish, Unipotent flows and counting
lattice points on homogeneous varieties, Ann. Math. 143 (1996), 253-299.

[25] A. Gorodnik, Oppenheim conjecture for pairs consisting of a linear form and a
quadratic form, Trans. Amer. Math. Soc. 356 (2004), 4447–4463.

[26] Dmitry Kleinbock, An extension of quantitative nondivergence and applications
to diophantine exponents, preprint (2005).

[27] D.Y. Kleinbock and G.A. Margulis, Bounded orbits of nonquasiunipotent flows
on homogeneous spaces, Sinai’s Moscow Seminar on Dynamical Systems, Amer.
Math. Soc. Transl. Ser. 2, Vol. 171, pp. 141-172, Amer. Math. Soc., Providence,
RI, 1996.

[28] D.Y. Kleinbock and G.A. Margulis, Flows on homogeneous spaces and Dio-
phantine approximation on manifolds, Ann. Math. 148 (1998), 339-360.

19



[29] D.Y. Kleinbock and G.A. Margulis, Logarithm laws for flows on homogeneous
spaces, Invent. Math. 138 (1999), 451-494.

[30] D. Kleinbock, Nimish Shah, and A.N. Starkov, Dynamics of subgroup actions on
homogeneous spaces of Lie groups and applications to number theory, Handbook

of dynamical systems, Vol. 1A, 813-930, North Holland, Amsterdam, 2002.

[31] D.J. Lewis, The distribution of values of real quadratic forms at integer points,
Proc. Sympos. Pure Math. XXIV, pp. 159-174, Amer. Math. Soc., Providence,
RI, 1973,

[32] E. Lindenstrauss, Rigidity of multiparameter actions, Israel J. Math. 149
(2005), 199-226.

[33] G.A. Margulis, On the action of unipotent groups in the space of lattices, Lie
groups and their representations (Proc. Summer School, Bolyai, János Math.
Soc., Budapest, 1971), pp. 365-370, Halsted, New York, 1975.

[34] G.A. Margulis, Formes quadratriques indéfinies et flots unipotents sur les es-
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