
Sankhyā : The Indian Journal of Statistics
Special issue on Ergodic Theory and Harmonic Analysis
2000, Volume 62, Series A, Pt. 3, pp. 360–366

ON AUTOMORPHISM GROUPS ACTING ERGODICALLY ON
CONNECTED LOCALLY COMPACT GROUPS*

By S.G. DANI
Tata Institute of Fundamental Research, Mumbai

SUMMARY. We show that a connected Lie group admitting an ergodic group of Lie automor-

phisms is nilpotent. Some extensions of this and examples are discussed.

1. Introduction

In his 1956 book on ergodic theory Halmos asked whether an automorphism
of a locally compact but non-compact group can be an ergodic measure-preserving
transformation (see Halmos, 1956, page 29). The question was addressed by several
authors and the answer is known to be in the negative (see Dateyama and Kasuga,
1985 for details; see also Dani, 1982 for the case of connected groups; it may be men-
tioned that in these papers ergodicity of affine automorphisms is also considered).
In this note we consider a similar question with regard to ergodicity of actions of
groups of automorphisms (rather than a single automorphism) of locally compact
groups. It may be seen that there do exist noncompact groups with ergodic actions
by groups of automorphisms; e.g. the group GL(n, IR) acts ergodically (in fact
transitively except for one point) on IRn, n ≥ 1, as a group of automorphisms, and
there also exist countable subgroups of GL(n, IR) such as SL(n, ZZ) acting ‘prop-
erly’ ergodically on IRn (see Zimmer, 1984, § 2.2, for example). We show however
that a connected finite-dimensional locally compact group satisfying the condition
is nilpotent (see Corollary 1.2 below for a precise statement).

For a locally compact group G we denote by Aut (G) the group of all bicontinuous
automorphisms of G (by an ‘automorphism’ we shall always mean a bicontinuous
automorphism, with no further mention). We shall in fact prove the following result,
which may be compared with the main theorem in Dani, 1982 in the case of a single
affine automorphism; on the other hand the result for single automorphism can be
readily deduced from the theorem, in the case of connected locally compact groups
(see Corollary 2.3).
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Theorem 1.1. Let G be a connected finite-dimensional locally compact group.
Suppose that the action of Aut (G) on G has a dense orbit. Then G is nilpotent.

The theorem gives a necessary condition for ergodicity of the actions of au-
tomorphism groups. We recall that a (σ finite Borel) measure µ on G is said
to be quasi-invariant under the action of a subgroup Γ of Aut (G) if for γ ∈ Γ,
µ(γ−1(E)) = 0 for a Borel subset E of G if and only if µ(E) = 0; when this holds
the Γ-action is said to be nonsingular with respect to µ. The Γ-action is said to be
ergodic with respect to a quasi-invariant measure µ, if for every Γ-invariant Borel
subset E, either µ(E) = 0 or µ(G − E) = 0. We shall say that a measure µ on G
has full support if µ(Ω) > 0 for all nonempty open subsets of G. From the theorem
we deduce the following.

Corollary 1.2. Let G be a connected finite-dimensional locally compact group.
Suppose that there exist a subgroup Γ of Aut (G) and a measure µ on G such that
µ has full support and the action of Γ on G is nonsingular and ergodic with respect
to µ. Then G is a nilpotent group.

The Corollary applies in particular to the Haar measures on G (whether left
or right); that is, if the action of Aut (G) on G is ergodic with respect to a Haar
measure then G is nilpotent. The theorem applies also to measures with full support
which may be quasi-invariant only under the action of a proper subgroup Γ, if the
action is ergodic.

It turns out that even all nilpotent Lie groups may not admit groups of automor-
phisms acting ergodically, or with a dense orbit. We give an example in section 3 in
this respect. While there are also many examples of nonabelian nilpotent Lie groups
with ergodic actions by the automorphism groups, precisely which groups satisfy
the condition is not clear. In section 4 we discuss some complements, including
necessity of the finite-dimensionality condition in the above results.

2. Proofs

We will prove the theorem first for Lie groups and then deduce the general case.
Let G be a connected Lie group and let G be the Lie algebra of G. We realise Aut (G)
as a subgroup of GL(G) by identifying each automorphism γ with the derivative dγ
on G.

Theorem 2.1. Let G be a connected Lie group such that the action of Aut (G)
on G has a dense orbit. Then G is nilpotent.

Proof. Let G denote the Lie algebra of G and let ρ : G → GL(G) be the adjoint
representation of G. Let n be the dimension of G (and hence also the vector space
dimension of G). For i = 1, . . . , n let Vi = ∧i G, the i th exterior power of G as a
vector space and ρi : G → GL(Vi) be the i th exterior power of ρ. Let ci : G → IR,
i = 1, . . . , n, be the functions defined by ci(g) = Tr ρi(g), where ‘Tr’ stands for the
trace of the linear transformation. Let c0(g) = 1 for all g ∈ G. Then it is easy
to see that for each g ∈ G, Σn

i=0 ci(g)tn−i is the characteristic polynomial of ρ(g).
Now let O be a dense orbit of Aut (G) on G. Consider any g1, g2 ∈ O and let σ1
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and σ2 be the inner automorphisms of G corresponding to g1 and g2 respectively.
There exists τ ∈ Aut (G) such that τ(g1) = g2. Then for any g ∈ G we have
τ ◦σ1(g) = τ(g1gg−1

1 ) = g2τ(g)g−1
2 = σ2 ◦ τ(g) and hence τ ◦σ1 = σ2 ◦ τ . Therefore

dτ ◦ρ(g1) = ρ(g2)◦dτ . This implies that ρi(g1) and ρi(g2) are conjugate (by ∧i (dτ))
and hence ci(g1) = ci(g2) for all i = 1, . . . , n. Thus the functions ci are constant on
O. But they are continuous functions on G and since O is dense in G this implies
that ci’s are constant on the whole of G. Hence the characteristic polynomial of
any ρ(g), g ∈ G, coincides with that of the identity matrix, which means that ρ(g)
is unipotent for all g ∈ G. Thus ρ(G) consists of unipotent matrices and hence it is
a nilpotent Lie group. Since the kernel of ρ is the center of G it follows that G is a
nilpotent Lie group. This proves the theorem.

Lemma 2.2. Let G be a connected finite-dimensional locally compact group. Let
F be the class of all compact totally disconnected normal subgroups F of G such
that G/F is a Lie group. Let Q be the smallest closed subgroup containing all F in
F . Then Q is a compact normal subgroup contained in the center of G, and G/Q
is a Lie group.

Proof. As a connected locally compact group, G admits maximal compact
subgroups and any two of them are conjugate to each other (cf. Montgomery and
Zippin, 1955, Theorem 4.13), and hence G has a unique maximal compact normal
subgroup. This implies that Q as in the hypothesis is a compact subgroup. Also,
since G is connected every neighbourhood Ω of the identity contains a compact
normal subgroup F such that G/F is a Lie group (cf. Montgomery and Zippin,
1955, Theorem 4.6) and, since G is finite-dimensional, when Ω is sufficiently small
the subgroup F is totally disconnected. This shows that F is nonempty, and in
turn that G/Q is a Lie group. We now show that Q is contained in the center of G.
Let Ω be any neighbourhood of the identity in G and let F ∈ F be contained in Ω.
We note that for any F ′ ∈ F , F ′F/F is a compact totally disconnected subgroup
of G/F and since the latter is a Lie group it follows that F ′F/F is finite. Since
G/F is a connected Lie group and F ′F/F is a normal subgroup, it now follows that
F ′F/F is contained in the center of G/F , for all F ′ ∈ F . Hence Q/F is contained
in the center of G/F . This shows that every commutator of the form gqg−1q−1,
where g ∈ G and q ∈ Q, is contained in F , and hence in Ω. Since this holds for
every neighbourhood of the identity it follows that Q is contained in the center of
G.

Proof of theorem 1.1. Let Q be the subgroup of G as in the conclusion of
Lemma 2.2. Then Q is invariant under all bicontinuous automorphisms of G and
in particular the H-action on G factors to an H-action on G/Q by automorphisms.
Moreover since the H-action on G has a dense orbit the H-action on G/Q has a
dense orbit. Since G/Q is a Lie group, by Theorem 2.1 it follows that G/Q is a
nilpotent Lie group. Since Q is contained in the center of G this shows that G is
nilpotent, thus proving the theorem.

Proof of corollary 1.2. If G is second countable then the condition as in
the hypothesis implies that the Γ-action has a dense orbit (see Lemma on page 26
of Halmos, 1956 for an idea of the proof) and hence by Theorem 1.1 G is nilpotent.
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This applies in particular when G is a Lie group. The general case follows from this
and Lemma 2.2.

Before concluding the section we observe that from Theorem 1.1 the following
can be deduced, directly, for the action of a single automorphism.

Corollary 2.3. Let G be a connected locally compact group and suppose that
there exists a bicontinuous automorphism with a dense orbit on G. Then G is a
compact Abelian group.

Proof. First suppose that G is a Lie group. Then by Theorem 1.1 G is a
nilpotent Lie group. Hence G has a unique compact subgroup C contained in
the center, such that G/C is a simply connected nilpotent Lie group. Then C
is invariant under all automorphisms and in particular it follows that G/C has
an automorphism with a dense orbit. Suppose, if possible, that G/C is nontrivial.
Then [G,G]C is a proper closed subgroup of G/C invariant under all automorphisms
of G/C and therefore G/[G,G]C has an automorphism with a dense orbit. However
G/[G,G]C is a vector group, and any (continuous) automorphism of a vector group
is a linear transformation (with respect to the vector space structure) and hence
admits no dense orbit. This is a contradiction, showing that G/C is trivial. Thus
G is compact, and since it is also nilpotent, it follows that G is a compact abelian
group, in the case at hand. The general case follows from this special case, together
with Lemma 2.2, by an argument as in the proof of Theorem 1.1.

3. Examples

As noted in the introduction there are noncompact connected locally compact
groups with ergodic actions by groups of automorphisms, with respect to the Haar
measure (though for a single automorphism to be ergodic the group has to be
compact). In the case of G = IRn, n ≥ 2, the automorphism group GL(n, IR)
as well as various subgroups such as SL(n, ZZ) and more generally any lattice in
SL(n, IR) act ergodically on IRn, with respect to the Lebesgue measure (cf. Zimmer,
1984, § 2.2). There are also various nilpotent groups N whose automorphism groups
have an open orbit on N , with a complement of zero Haar measure; e.g. if V is a
finite-dimensional real vector space then V ⊕ ∧2V , where ∧2V denotes the second
exterior power of V , has the structure of a nilpotent Lie algebra of length 2 (it is the
free two-step nilpotent Lie algebra associated to V ) and the corresponding simply
connected Lie group N can be readily seen to satisfy this condition. Similarly for
the group of all upper triangular n×n unipotent matrices it can be verified that the
automorphism group has an open orbit of full Haar measure. In these cases there
also exist subgroups of the automorphism groups whose action, while ergodic, is
nontransitive. We shall not go into details of these observations. It however seems
instructive to note the following:

Proposition 3.1. There exists a 3-step nilpotent Lie group G such that the
action of Aut (G) on G has no open orbit.

Proof. Let V = IR3, with {e1, e2, e3} the standard basis. Let W be the
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subspace of ∧2 V (the second exterior power of V ) spanned by the elements f1 =
e2 ∧ e3 and f2 = e3 ∧ e1. Now let X be the subspace of V ⊗W spanned by the set
{e1⊗f1+e2⊗f2, e2⊗f1−e3⊗f2} and let Y = (V ⊗W )/X. Let G = V ⊕W ⊕Y , as
a vector space. We define a Lie algebra structure on G by prescribing the following
relations:

[e1, e2] = 0, [e2, e3] = f1, [e3, e1] = f2,

[ei, fj ] = (ei ⊗ fj) modX, for all i = 1, 2, 3 and j = 1, 2,

[α, β] = 0 if α ∈ G and β ∈ Y, or α, β ∈ W.

It is straightforward to verify that these relations can be extended (uniquely) to a
Lie algebra structure on G. We see also that [G,G] = W + Y and [G, [G,G]] = Y .
Consider the group Aut (G) of all Lie automorphisms of G, acting on G. We claim
that the action has no open orbit. To see this it is enough to see that the factor
action on G/[G,G] has no open orbit. Let H be the subgroup of GL(V ) consisting of
all elements which are factors of elements of Aut (G), when V is identified canonically
(via the projection) with G/[G,G]. It is enough to show that the (natural) H-action
on V has no open orbit on V . It turns out that H is a 2-dimensional subgroup, and
this can be seen as follows.

We realise GL(V ) as GL(3, IR) via the basis {e1, e2, e3}. Let A denote the
subgroup consisting of the diagonal matrices in H. Let d = diag (λ1, λ2, λ3) ∈ A
be the factor of δ ∈ Aut (G) on GL(V ). Since [e2, f1] = [e3, f2] in G we have,
δ([e2, f1]) = δ([e3, f2]), which yields λ2

2λ3[e2, f1] = λ2
3λ1[e3, f2] = λ2

3λ1[e2, f1] and
since [e2, f1] is a nonzero element, we get that λ2

2 = λ1λ3. On the other hand it
can be seen that all diagonal matrices satisfying this condition indeed belong to
H. We note in particular that A contains elements with distinct positive entries
on the diagonal. Let H be the Lie subalgebra corresponding to H, viewed as a
subalgebra of the Lie algebra of 3× 3 matrices, the latter being the Lie algebra of
GL(3, IR). For k, l ∈ {1, 2, 3}, k 6= l, let Ekl denote the matrix (xij) with xij = 1
if i = k and j = l, and 0 otherwise. Considering the decomposition of H with
respect to the adjoint action of A and using the preceding observation we see that
H is spanned by {Ekl | Ekl ∈ H} together with the Lie subalgebra of A. We now
show that in fact no Ekl is contained in H. To show this it is enough to show that
I +Ekl is not contained in H for any k, l, k 6= l, where I is the identity matrix, since
{I + tEkl} is the one-parameter subgroup of H tangential to Ekl. Since [e1, e2] = 0
but [e2, e3] and [e3, e1] are nonzero it follows that I +E31 and I +E32 do not belong
to H. On the other hand the fact that [e3, f2] = [e2, f1] can be seen to imply that
I + E12, I + E13, I + E21 and I + E23 do not belong to H (one can verify that an
automorphism of G factoring to I + Ekl on V , where (k, l) is one of the pairs (1, 2),
(1, 3), (2, 1) and (2, 3), would have to fix one of [e2, f1] and [e3, f2] but not the other,
which gives a contradiction; we omit the details, which are straightforward). Thus
H = A, which is a 2-dimensional subgroup and hence has no open orbit on V . Thus
Aut (G) has no open orbit on G.
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Now let G be the simply connected Lie group with Lie algebra G. Then G is a
nilpotent Lie group and the exponential map exp : G → G is a diffeomorphism of G
onto G. Further, under the exponential map the action of Aut (G) on G corresponds
to the action of Aut (G) on G. It follows therefore that the action of Aut (G) on G
has no open orbit. This proves the proposition.

Proposition 3.1 throws open the question as to which nilpotent Lie groups have
automorphism groups acting with an open orbit. In particular it may be of interest
to ask the following.

Question. Does there exist a 2-step nilpotent Lie group G such that the Aut (G)-
action on G has no open orbit?

4. Complements

While here we have restricted to connected locally compact groups, the analo-
gous question may be asked for a general (not necessarily connected) locally compact
group. For discrete groups of course the action of the automorphism group can-
not be ergodic, since the identity element is fixed and has positive mass. On the
other hand there are totally disconnected locally compact groups with automor-
phism groups acting ergodically; e.g. vector spaces (of finite dimension) over p-adic
fields, for any prime p.

Finally we note the following:

Remark 4.1. The conclusion as in Theorem 1.1 or Corollary 1.2 cannot be
expected to hold without the condition of finite-dimensionality. For example, let
{Ki}i∈ZZ be copies of a compact connected simple Lie group K and G = Π∞−∞Ki

be the cartesian product group. Then G is a compact connected group admitting
ergodic automorphisms (e.g. the bilateral shift defines such an automorphism) but
it is not nilpotent. Conversely it can be seen that if G is a connected locally compact
group such that Aut (G) has a dense orbit (or acts ergodically with respect to the
Haar measure) then there exists a closed normal subgroup H of G such that G/H is
a product of infinitely many copies of a compact simple Lie group; we shall not go
into the details of this. Thus, the condition of finite-dimensionality in Theorem 1.1
and Corollary 1.2 can be weakened to G not admitting such a quotient.
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