A NOTE ON INVARIANT FINITELY ADDITIVE MEASURES

S. G. DANI¹

ABSTRACT. We show that under certain general conditions any finitely additive measure which is defined for all subsets of a set X and is invariant under the action of a group G acting on X is concentrated on a G-invariant subset Yon which the G-action factors to that of an amenable group. The result is then applied to prove a conjecture of S. Wagon about finitely additive measures on spheres.

It is well known that if G is an amenable group acting on a set X then there exist plenty of G-invariant finitely additive probability measures on $(X, \mathfrak{P}(X))$ where $\mathfrak{P}(X)$ is the class of all subsets of X (cf. [3] for details). However, such measures may fail to exist when G is nonamenable. In [6] S. Wagon conjectured that if G is a group of isometries of S^n , the n-dimensional sphere, such that for any Ginvariant subset Y, the group $\{g/Y \mid g \in G\}$ of restrictions of elements of g to Y is nonamenable, then there does not exist any G-invariant finitely additive probability measure on $(S^n, \mathfrak{P}(S^n))$:

In this note we establish the above-mentioned conjecture. Further, we formulate a condition on actions of (abstract) groups, involving the isotropy subgroups and fixed point sets, which implies similar assertions in a more general situation (cf. Theorem 1.1). The condition holds for actions of subgroups G of any compact Lie group \mathfrak{G} acting on homogeneous spaces of \mathfrak{G} . It also holds for actions of subgroups G of algebraic \mathbf{R} -groups \mathfrak{G} acting on homogeneous spaces of \mathfrak{G} by algebraic \mathbf{R} subgroups. Thus, in all these cases we are able to conclude that G-invariant finitely additive probability measures (defined for all subsets) are concentrated on invariant sets on which the action factors to that of an amenable quotient of G (cf. §2).

A particular consequence is that if G is a nonamenable subgroup of $GL(n+1, \mathbf{R})$ acting irreducibly on \mathbf{R}^{n+1} , then for the natural G-actions on $\mathbf{R}^{n+1} - (0)$, S^n or \mathbf{P}^n , there exist no invariant finitely additive probability measures (cf. Corollaries 2.2 and 2.4). We recall that by a theorem of A. Tarski [5] this is equivalent to existence of paradoxical decompositions for the action (cf. [6 and 7] for motivation and some results in that direction).

In some of the G-actions discussed above, e.g. G a group of isometries of S^n or G a subgroup of a compact Lie group \mathfrak{G} acting on a homogeneous space of \mathfrak{G} , there exists a natural countably additive G-invariant probability measure defined on the class of Borel subsets. We prove that the measure extends to a G-invariant finitely additive measure defined on all subsets if and only if G is amenable (cf. Theorem

©1985 American Mathematical Society 0002-9939/85 \$1.00 + \$.25 per page

Received by the editors January 10, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 28A70.

Key words and phrases. Invariant finitely additive measures, amenable groups.

¹Supported in part by NSF MCS-8108814 (A02).

1.4 for a general result). For the case of groups of isometries of S^n this was first proved by S. Wagon [6].

In [1] the author obtained results analogous to those discussed above for the case of subgroups of $GL(n, \mathbb{Z})$ acting on \mathbb{T}^n as group automorphisms. The present method is analogous but much simpler. In the case of the action on \mathbb{T}^n the condition of Theorem 1.1 is not satisfied and consequently the proofs depend on various specific features of \mathbb{T}^n .

1. Main results. Let G be a group acting on a set X. For $x \in X$ we denote by G_x the isotropy subgroup under the G-action; viz. $G_x = \{g \in G \mid gx = x\}$. For any subgroup H of G we denote by F_H the set of fixed points of H; that is $F_H = \{x \in X \mid hx = x \text{ for all } h \in H\}$.

For any set E we denote by $\mathfrak{P}(E)$ the class of all subsets of E. A (possibly empty) subclass \mathfrak{C} of $\mathfrak{P}(E)$ is said to be of *type* \mathfrak{L} if the following holds: for any family $\{E_{\alpha}\}_{\alpha\in\Lambda}$, where Λ is an indexing set and $E_{\alpha}\in\mathfrak{C}$ for all $\alpha\in\Lambda$, there exist $k\geq 1$ and $\alpha_1,\alpha_2,\ldots,\alpha_k\in\Lambda$ such that $\bigcap_{\alpha\in\Lambda}E_{\alpha}=\bigcap_{i=1}^k E_{\alpha_i}$.

THEOREM 1.1. Let G be a group acting on a set X. Suppose $\{G_x \mid x \in X\}$ and $\{F_H \mid H \text{ a subgroup of } G\}$ are of type \mathfrak{L} . Let μ be a G-invariant finitely additive probability measure on $(X, \mathfrak{P}(X))$. Then there exists a normal subgroup Q of G such that G/Q is amenable and $\mu(F_Q) = 1$.

We need the following lemma from [4] (cf. Proposition 3.5 of [4]).

LEMMA 1.2. Let G be a group acting on a set X. Suppose that for all $x \in X$ the isotropy subgroup G_x is amenable. Suppose also that there exists a G-invariant finitely additive probability measure μ on $(X, \mathfrak{P}(X))$. Then G is amenable.

We first prove the following.

PROPOSITION 1.3. Let G be a group acting on a set X. Suppose $\{G_x \mid x \in X\}$ is of type \mathfrak{L} . Suppose also that there exists a G-invariant finitely additive probability measure μ such that for any nontrivial subgroup H of G, $\mu(F_H) < 1$. Then G is amenable.

PROOF. If possible let G be nonamenable. Let \mathcal{N} be the class of all nonamenable subgroups S of G such that either S = G or $S = \bigcap_{i=1}^{k} G_{x_i}$, where $k \ge 1$ and $x_1, \ldots, x_k \in X$. Let \mathcal{M} be the subset of \mathcal{N} consisting of minimal elements of \mathcal{N} ; that is $M \in \mathcal{M}$, $N \in \mathcal{N}$, and $N \subset M$ implies N = M. Since the class of subgroups $\{G_x \mid x \in X\}$ is of type \mathfrak{L} , it follows that \mathcal{M} is nonempty and that in fact any $N \in \mathcal{N}$ contains a minimal element (otherwise there would exist a sequence x_1, \ldots, x_k, \ldots , in X such that $\bigcap_{i=1}^{n} G_{x_i}$ is a strictly decreasing sequence).

Let $M \in M$. Being nonamenable, in particular M is nontrivial. Hence, by hypothesis, $\mu(F_M) < 1$ or, equivalently, $\mu(X - F_M) > 0$. In particular, $X - F_M$ is nonempty. Consider the M-action on $X - F_M$. The isotropy subgroup of any $x \in X - F_M$ under the M-action is $M \cap G_x$ and it is a proper subgroup of M. We note that $M \cap G_x$ is amenable for all $x \in X$; if not, $M \cap G_x \in \mathcal{N}$, which would mean M is not minimal in \mathcal{N} . On the other hand, on $X - F_M$ we have an M-invariant finitely additive probability measure ν defined by $\nu(E) = \mu(E)/\mu(X - F_M)$ for all $E \subset X - F_M$. By Lemma 1.2 these observations imply that M is amenable—a contradiction. Hence G must be amenable. PROOF OF THE THEOREM. Consider the class of subgroups $\mathfrak{C} = \{H \mid \mu(F_H) = 1\}$. Let $F = \bigcap\{F_H \mid H \in \mathfrak{C}\}$. Since $\{F_H \mid H \subset G\}$ is of type \mathfrak{L} there exist $k \geq 1$ subgroups $H_1, \ldots, H_k \in \mathfrak{C}$ such that $F = \bigcap_{i=1}^k F_{H_i}$. Then $\mu(F) = 1 - \mu(X - F) \geq 1 - \sum \mu(X - F_{H_i}) = 1$. Let Q be the subgroup generated by $\bigcup\{H \mid H \in \mathfrak{C}\}$. Since μ is G-invariant, \mathfrak{C} is invariant under conjugation and consequently Q is a normal subgroup of G. Further, clearly $F_Q = F$ so that $\mu(F_Q) = 1$ and hence Q is the unique maximal element of \mathfrak{C} . To complete the proof, we need only show that G/Q is amenable. F_Q is a G-invariant set and the action of G on F_Q factors to an action of G/Q. The restriction of μ to F_Q is a G/Q-invariant finitely additive probability measure on F_Q . It is evident that the G/Q-action on F_Q satisfies the conditions of Proposition 1.3 (G/Q and F_Q in the place of G and X respectively). While the isotropy subgroups form a class of type \mathfrak{L} because of the corresponding property for the G-action, the set of fixed points of any nontrivial subgroup has μ -measure < 1 because of our choice of Q as the unique maximal element of \mathfrak{C} as defined above. Hence, by Proposition 1.3, G/Q is amenable, which proves the theorem.

Let (X, \mathfrak{M}, m) be a measure space; that is, \mathfrak{M} is a σ -algebra of subsets of X, and m is a (countably additive) measure defined on \mathfrak{M} . Let G be a group acting on X preserving \mathfrak{M} and m; that is, for all $g \in G$ and $E \in \mathfrak{M}$, $gE \in \mathfrak{M}$ and m(gE) = m(E). The G-action is said to be weakly measurable if for any subgroup H of G, $F_H \in \mathfrak{M}$. A weakly measurable action is said to be essentially factorable through a normal subgroup H of G if $m(X - F_H) = 0$. A finitely additive measure μ on $(X, \mathfrak{P}(X))$ is said to extend the measure m on (X, \mathfrak{M}) if $\mu(E) = m(E)$ for all $E \in \mathfrak{M}$.

THEOREM 1.4. Let G be a group acting on a measure space (X, \mathfrak{M}, m) , preserving \mathfrak{M} and m. Suppose m(X) = 1 and the G-action is weakly measurable. Suppose also that $\{G_x \mid x \in X\}$ and $\{F_H \mid H \text{ a subgroup of } G\}$ are of type \mathfrak{L} . Then there exists a G-invariant finitely additive measure μ on $(X, \mathfrak{P}(X))$ extending the measure m on (X, \mathfrak{M}) if and only if the G-action is essentially factorable through a normal subgroup Q such that G/Q is amenable.

PROOF. Suppose there exists a G-invariant finitely additive measure μ on $(X, \mathfrak{P}(X))$ extending m. By Theorem 1.1 there exists a normal subgroup Q of G such that G/Q is amenable and $\mu(F_Q) = 1$. Since $F_Q \in \mathfrak{M}$ and μ extends m, we get $m(F_Q) = 1$, that is, the action is essentially factorable through Q.

Conversely, suppose the action is essentially factorable through a normal subgroup Q such that G/Q is amenable. By a well-known result (cf. [3, Theorem 5.1]) the measure m_Q on (F_Q, \mathfrak{M}_Q) , where $\mathfrak{M}_Q = \{E \cap F_Q \mid E \in \mathfrak{M}\}$, defined by $m_Q(E) = m(E)$ for all $E \in \mathfrak{M}_Q$ extends to a G/Q-invariant (under the factor action) finitely additive measure μ_Q on $(F_Q, \mathfrak{P}(F_Q))$. Put $\mu(E) = \mu_Q(E \cap F_Q)$, for all $E \in \mathfrak{P}(X)$. Then μ is a G-invariant finitely additive measure on $(X, \mathfrak{P}(X))$ extending the measure m on (X, \mathfrak{M}) .

2. Examples. We now apply Theorems 1.1 and 1.4 to various situations.

(i) Let $X = S^n$, the *n*-dimensional sphere (of unit vectors in \mathbb{R}^{n+1} , with respect to the usual norm) and let G be a subgroup of O(n + 1), the orthogonal group, acting as isometries of S^n . For each $x \in S^n$, $G_x = G \cap O(n+1)_x$. Since evidently $\{O(n+1)_x \mid x \in S^n\}$ is evidently of type \mathfrak{L} , so is $\{G_x \mid x \in S^n\}$. On the other hand, for each subgroup $H \subset G \subset O(n+1)$, F_H is a compact differentiable submanifold

with finitely many connected components. It follows therefore that $\{F_H \mid H \text{ a subgroup of } G\}$ is of type \mathfrak{L} . Hence we get the following.

COROLLARY 2.1. (a) Let μ be a G-invariant finitely additive probability (or finite) measure on $(S^n, \mathfrak{P}(S^n))$. Then there exists a normal subgroup Q of G such that G/Q is amenable and $\mu(S^n - Y) = 0$, where $Y = F_Q = \{x \in S^n \mid qx = x \text{ for all } q \in Q\}$. Y is a G-invariant set and $\{g/Y \mid g \in G\}$, the group of restrictions of elements of G to Y, is an amenable group.

(b) There exists a G-invariant finitely additive measure μ on $(S^n, \mathfrak{P}(S^n))$ extending the standard (O(n+1)-invariant) measure m on (S^n, \mathfrak{B}) , where \mathfrak{B} is the σ -algebra of Borel sets, if and only if G is amenable.

PROOF. (a) Let Q be as given by Theorem 1.1. Then since Q is normal, $Y = F_Q$ is G-invariant. Since Q fixes each $y \in Y$ the group $\{g/Y \mid g \in G\}$ is a quotient of G/Q and therefore amenable (cf. [2]).

(b) If such an extension exists, then by Theorem 1.4 there exists a normal subgroup Q such that G/Q is amenable and $m(S^n - F_Q) = 0$. The latter condition implies that F_Q is dense in S^n and, since it is closed, we have $F_Q = S^n$. But identity is the only isometry fixing all points. Hence Q is trivial and consequently G is amenable. Conversely, if G is amenable, then by a well-known result (cf. Theorem 5.1 of [3]) there exists a G-invariant finitely additive measure on $(S^n, \mathfrak{P}(S^n))$ extending m.

Part (b) was proved earlier by Wagon (cf. [6]). He also noted part (a) in the particular case n = 2 and conjectured its validity for all n (cf. [6]); the corollary establishes the conjecture. (We should, however, note the following: In the statement of the conjecture in [6, p. 81], it is not explicit whether the measure is meant to be finite. But in the particular case of S^2 which is settled in [6] and from which the author motivates the conjecture, the measure is implicitly assumed to be finite (cf. Theorems 6 and 7 and Proposition 1 in [6]). Whether the conjecture is true for σ -finite additive measures is not clear, even for S^2 .)

In [6] it is actually shown (cf. Theorem 7 of [6]) that for any nonamenable group G of isometries of S^2 there does not exist any (finite) G-invariant finitely additive measure on $(S^2, \mathfrak{P}(S^2))$. We note that if G is a nonamenable subgroup of O(3) then the natural action of G on \mathbb{R}^3 is irreducible (that is, there is no proper nontrivial invariant subspace). The above-mentioned assertion from [6] generalizes to the following.

COROLLARY 2.2. Let G be a nonamenable subgroup of O(n + 1) acting irreducibly on \mathbb{R}^{n+1} . Then there does not exist any G-invariant finitely additive probability measure on $(S^n, \mathfrak{P}(S^n))$.

PROOF. If possible let μ be such a finitely additive measure. By Corollary 2.1 there exists a normal subgroup Q of G such that G/Q is amenable and $\mu(F_Q) = 1$. Evidently, $F_Q = S^n \cap W$, where $W = \{x \in \mathbb{R}^{n+1} \mid qx = x \text{ for all } q \in Q\}$. Since Q is normal W is a G-invariant subspace of \mathbb{R}^{n+1} . By irreducibility either $W = \{0\}$ or \mathbb{R}^{n+1} . The former is impossible since F_Q would then be empty, while actually $\mu(F_Q) > 0$. On the other hand, if $W = \mathbb{R}^{n+1}$ then $F_Q = S^n$, which means Q must be the trivial subgroup; but in that case G must be amenable—a contradiction to the hypothesis. Hence there cannot exist such a finitely additive invariant measure.

(ii) The above examples generalize in a natural way to homogeneous spaces of compact Lie groups. Let \mathfrak{G} be a compact Lie group and \mathfrak{S} be a closed subgroup of \mathfrak{G} . Let $X = \mathfrak{G}/\mathfrak{S}$ and let G be a subgroup of \mathfrak{G} acting on X on the left. Then arguments as above yield the following.

COROLLARY 2.3. (a) Let μ be a G-invariant finitely additive probability measure on $(X, \mathfrak{P}(X))$. Then there exists a normal subgroup Q of G such that G/Q is amenable and $\mu(X - F_Q) = 0$.

(b) There exists a G-invariant finitely additive measure μ on $(X, \mathfrak{P}(X))$ extending the \mathfrak{G} -invariant (countably additive) probability measure on (X, \mathfrak{B}) , where \mathfrak{B} is the σ -algebra of Borel sets, if and only if G is amenable.

(iii) Similar arguments may be made for homogeneous spaces of algebraic groups: Let \mathfrak{G} be an algebraic \mathbf{R} -group (the group of \mathbf{R} -elements of an algebraic group defined over \mathbf{R}), e.g. $\operatorname{GL}(n, \mathbf{R})$. Let \mathfrak{S} be an algebraic \mathbf{R} -subgroup of \mathfrak{G} . Let $X = \mathfrak{G}/\mathfrak{S}$ and let G be a subgroup of \mathfrak{G} acting on X on the left. Then for each $x \in X$, $G_x = G \cap \mathfrak{G}_x$. $\{\mathfrak{G}_x \mid x \in X\}$ is a family of algebraic \mathbf{R} -subgroups and therefore it is of type \mathfrak{L} . Hence so is $\{G_x \mid x \in X\}$. On the other hand, for any subgroup H, F_H is the set of \mathbf{R} -elements of an algebraic variety. Therefore $\{F_H \mid H$ a subgroup of $G\}$ is of type \mathfrak{L} . It follows that Corollary 2.2(a) holds verbatim for G and X as above. In general, (X, \mathfrak{B}) , where \mathfrak{B} is the Borel σ -algebra, may not carry any *finite* G-invariant (countably additive) measure. If it does then Corollary 2.2(b) also holds verbatim for those G and X. We note that since compact Lie groups are algebraic \mathbf{R} -groups these results generalise Corollary 2.3. Similarly the following generalises Corollary 2.1.

COROLLARY 2.4. Let G be a subgroup of $\operatorname{GL}(n, \mathbf{R})$. Let X be either $\mathbf{R}^n - (0)$ or S^{n-1} or \mathbf{P}^{n-1} ((n-1)-dimensional projective space) and consider the natural G-action on X. Let μ be a G-invariant finitely additive probability measure on $(X, \mathfrak{P}(X))$. Then there exists a normal subgroup Q of G such that G/Q is amenable and $\mu(F_Q) = 1$. In particular, if G is nonamenable, and the action of G on \mathbf{R}^n is irreducible (e.g. if $G = \operatorname{SL}(n, \mathbf{Z})$) then there does not exist any G-invariant finitely additive probability (or finite) measure on $(X, \mathfrak{P}(X))$.

In the case of $X = \mathbb{R}^n - (0)$ or \mathbb{P}^{n-1} the isotropy subgroups for the (transitive) $\operatorname{GL}(n, \mathbb{R})$ -action are algebraic \mathbb{R} -subgroups and the result follows from the above remarks. For S^{n-1} it may be deduced either from the result for \mathbb{P}^{n-1} or directly from Theorem 1.1. If the action of G on \mathbb{R}^n is irreducible, then as in the proof of Corollary 2.2 we see that for any normal subgroup H of G, F_H must be either empty or X (for any X as above). Hence for such a G there cannot exist any invariant finitely additive measure on $(X, \mathfrak{P}(X))$ unless it is amenable.

In [1] we proved the analogous assertion for the actions of subgroups of $GL(n, \mathbb{Z})$ acting on \mathbb{T}^n , the *n*-dimensional torus, as the group of automorphisms. In that case, however, Theorems 1.1 and 1.4 do not apply since G_x for $x \in \mathbb{T}^n$ cannot in general be expressed as $G \cap \mathfrak{G}_x$ for some algebraic group \mathfrak{G} ; in fact $\{G_x \mid x \in \mathbb{T}^n\}$ is not of type \mathfrak{L} . The proof there uses, together with the ideas underlying the proof of Theorem 1.1, certain specific features of the torus.

S. G. DANI

REFERENCES

- 1. S. G. Dani, On invariant finitely additive measures for automorphism groups of tori, Trans. Amer. Math. Soc. (to appear).
- 2. F. P. Greenleaf, Invariant means on topological groups, Van Nostrand Reinhold, New York, 1969.
- 3. J. Mycielski, Finitely additive invariant measures. I, Colloq. Math. 42 (1979), 309-318.
- J. Rosenblatt, Uniqueness of invariant means for measure-preserving transformations, Trans. Amer. Math. Soc. 265 (1981), 623–636.
- 5. A. Tarski, Algebraische Fassung des Massproblems, Fund. Math. 31 (1938), 47-66.
- 6. S. Wagon, Invariance properties of finitely additive measures on \mathbb{R}^n , Illinois J. Math. 25 (1981), 74–86.
- 7. ____, The use of shears to construct paradoxes in R², Proc. Amer. Math. Soc. 85 (1982), 353-359.

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Current address: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India