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CONVECTION UNDER TERRESTRIAL AND
ASTROPHYSICAL CONDITIONS

S. CHANDRASEKHAR
Yerkes Observatory

Convection and turbulence are two concepts which are funda-
mental to many aspects of meteorology, geophysics, and astro-
physics. The two concepts are not synonymous: convection
implies that a pattern of motion prevails and that its prevalence
provides a mechanism for the transport of heat, energy, and mo-
mentum; turbulence implies a certain random element in the
prevalent motions. At the same time, the two concepts are not
mutually exclusive: we may envisage a random element super-
posed on a convective pattern of the average motions. Neverthe-
less, 1t 1s convenient to keep the two concepts distinct.

Now convection is often, if not always, the result of thermal
instability, and the manner in which convection results from ther-
mal instability is best illustrated by considering a layer of liquid
heated from below. Then, on account of thermal expansion, the
liquid above, being colder, is denser than the liquid below, which
is hotter: this is clearly an unstable state of affairs, and if the
density gradient is sufficiently adverse (i.e., if the arrangement
is sufficiently top-heavy), motions will ensue which will be in the
sense of restoring a stable density gradient. This 1s essentially the
manner in which convection originates, even on a large scale as
in our atmosphere. There is, however, one difference: in a com-
pressible medium like air, it is not necessary that an adverse
density gradient be established for thermal instability ; it suffices
if the density gradient exceeds the adiabatic. But a theorem of
Jeffreys enables us to apply to a compressible medium results
derived (either by observation or by theory) for an incompressible
fluid : the theorem of Jeffreysis to the effect that an adverse density
gradient in an incompressible fluid is formally equivalent to a
density gradient in excess of the adiabatic in a compressible
fluid.

The manner of the onset of convection in a fluid heated below
has been the subject of experimental and theoretical investigation
since Bénard’s pioneering experiments in 1900 and 1901. Bénard
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found that if a thin layer of liquid free at its upper surface 1s heated
uniformly at the lower surface, then the layer rapidly resolves
itself into a number of hexagonal cells if the temperature gradient
exceedsa certain critical value. The walls of these cells are vertical
and the motions in the cells are upward at the center and down-
ward at the periphery. By observations made on minute sus-
pended particles, Bénard was able to show that the horizontal
components of the motions in the cells are radially outward from
the centers of the hexagons and that the downward vertical motion
is a maximum along the edges common to the three adjacent walls.
Further, when the liquid is subjected to shear, the vertical cells
are replaced by horizontal strips. Bénard’s experiments have been
repeated in air by A. Graham and K. Chandra. In these experi-
ments the motions were made visible by the introduction of smoke
and the same phenomenon of hexagonal cells and longitudinal
strips or rolls was observed.

The most careful repetitions of Bénard’s experiments under
quantitative conditions are those of Schmidt and Milverton and
Schmidt and Saunders. These latter investigations have estab-
lished that what decides the stability of a layer of fluid heated
below is the numerical value of the nondimensional quantity :

= 9alBl .

A
where g denotes the value of gravity, a, %, and v are the coefficients
of volume expansion, thermometric conductivity, and kinematic
viscosity, respectively, d is the depth of the layer considered, and
B = —|dT/dz| is the adverse temperature gradient which is
maintained. We call R the Rayleigh number after Rayleigh, who

first 1solated this quantity as a criterion for thermal stability. Ex-

periments show that instability sets in when R exceeds a certain
determinate critical value. That higher temperature gradients can
be maintained in a liquid of higher viscosity and/or higher ther-
mal conductivity before instability sets in is physically under-
standable.

The experiments of Schmidt and Milverton establish that the
critical value of R is in the neighborhood of 1750 when the liquid
is confined between two rigid conducting boundaries ; they further
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show that as the critical value of R is surpassed the pattern of mo-
tions is cellular, as in Bénard’s experiments.

Before outlining the theory of the onset of convection by ther-
mal instability, we may briefly refer to the fact that there are many
observations which point to the occurrence, on a large scale and
under natural conditions, of cellular convection similar to that
observed in the laboratory. Brunt and Walker have pointed out,
for example, the similarity of various cloud forms to the patterns
observed with the aid of smoke in a confined layer of air under
experimental conditions. The most beautiful confirmation of the
occurrence of cellular convection in nature is, however, a result
of the work of Woodcock and Wyman. Plate 111 shows a peculiar

‘banded appearance of the surface of the sea which is commonly

observed in the Gulf of Panama. Woodcock and Wyman present
strong evidence for believing that these bands are caused by the
presence of a system of longitudinal roll vortices of the type ob-
served in the laboratory under shear conditions. Again in a dif-
ferent connection it has been suggested by Low that the polygonal
arrangement of stones on Erdman’s Tundra near Spitzbergen is
caused by cellular convection. More particularly, the assumption
is that during thaws the top surface of melted ice is at 4° (at which

~ temperature water has its maximum density) while the bottom

surface is still at 0° ; and the adverse density gradient which thus
prevails induces cellular convection, which in turn transports the
stones to the peripheries of the cells and arranges them in the
observed hexagonal pattern. Wasiutynski has gone much fur-
ther and has attempted to interpret markings on the moon and
Mars in terms of Bénard convection cells.

The explanation of the origin of cellular convection when the
temperature gradient exceeds a certain critical value was first
given by Lord Rayleigh in 1916. The theory has since been de-
veloped by Jeffreys and by Pellew and Southwell and is along
the following lines: An arbitrary constant temperature gradient
1s compatible with the equation of heat conduction. But whether
a stationary state compatible with the equation of heat conduction
1s stable or not, can be decided only by considering whether a small
displacement from the steady state is damped or amplified with
time. In general, small deviations from the steady state may be
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assumed to vary like ¢¢¢, and the stability (or otherwise) of the
initial state to perturbations of the character assumed will de-
pend on whether the real part of w is positive or negative. If the
real part of o is positive, the initial state is unstable; if the real
part of  is negative, the initial state is stable for the assumed
perturbation. For conservative systems, ® can be shown to be
real always ; accordingly, we pass from stability to instability as @
passes through zero. Since w is equivalent to 9/9¢, it follows that
the equations governing the state in marginal stability will not
involve the time explicitly. This is known as the principle of the
exchange of the stabilities. The system we are dealing with 1s
not conservative, however: it includes viscosity, which is a dis-
sipative mechanism; and, in general, nonconservative systems
need not satisfy the principle of the exchange of the stabilities.
And if a system does not satisfy the principle, the marginal state
is one which is not independent of time : it will be a system varying
periodically with time, and instability when it sets in will be in
the form of oscillations of increasing amplitude, i.e., by oversta-
bility in the sense of Eddington. In other words, when instability
sets in it could arise either through a stationary pattern of motions
(i.e., convection) or through overstability.

Returning to the problem of the Bénard cells, we can show that
the principle of the exchange of stabilities is valid and that the
equations governing marginal stability are the standard equations
of motion and heat conduction in which 9/9¢ has been set equal
to zero. Methods of solving these latter equations together with
the appropriate boundary conditions have been developed by
Jeffreys, Low, Christopherson, and Pellew and Southwell. The
results of these investigations are summarized in Table I:

TABLE I
R, L/d
Two free boundaries .................... 657.5 1.89
One free boundary, one rigid boundary.... 1100.7 1.56
Two rigid boundaries ................... 1707.8 1.34

The critical Rayleigh numbers for three different sets of boundary
conditions and the ratio L/d of the side of the hexagonal cells
to the depth is also given for each case.
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As we have already pointed out, the experiments of Schmidt
and Milverton on a layer of liquid confined on both sides gave a
value of about 1750 for the critical Rayleigh number ; this is in
agreement with the predicted value 1708 within the limits of ex-
perimental error.

Now the occurrence of magnetic fields in a number of geo-
physical and astrophysical problems in which convection is pre-
sumed to play a role makes it of interest to examine the effect
of an external magnetic field on the onset of convection by thermal
“instability in a fluid which is also an electrical conductor. In a
general way it is clear that the magnetic field will have an inhibit-
ing effect which will be greater, the greater the magnetic field (H)
and the greater the electrical conductivity (6) : for when the field
is strong (or the conductivity high) the lines of force tend to be
glued to the material and this will make motions at right angles
to H increasingly difficult; and this will in turn tend to prevent
the closing in of the stream lines required for convection. More-
over, when cellular convection does set in, we should expect the
cells to be elongated in the direction of the magnetic field, the
elongation being greater, the greater the magnetic field. We should
also expect that in the limit of infinite electrical conductivity, when
the lines of force are permanently glued to the material, convection
by thermal instability will become impossible. A detailed theoreti-
cal treatment of the problem confirms these anticipations.

Restricting ourselves to the case in which the impressed mag-
netic field and gravity act in the same direction, we find that the
critical Rayleigh number for the onset of instability depends on
the strength of the magnetic field and the electrical conductivity,
o, through the nondimensional quantity,

H?c
pv
On the assumption that the principle of the exchange of stabilities
is valid, a revision of the classical Rayleigh-Jeffreys theory leads
to the results summarized in Table II.
In order to see how effective the magnetic field will be in

inhibiting the onset of convection, we shall consider the practical
case of mercury at room temperature. We have 6 = 1.1 X 10°%,

0= dz.
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pv=1.7 X 102, and Q = 6X 10~* H?d?, where H is measured
in gauss. For :

d = 1 cm. and H = 10® gauss, Q = 600,

and the critical Rayleigh numbers for the three cases considered
are:

R, = 9942 R¢/R,=15.12 case (i)
R, = 11660 R¢/R, = 6.80 case (i1)
R, = 4018 Re¢/Ro = 3.65 case (iii)

It would appear from these values that the predicted effect should
be easily detectable in the laboratory.

TABLE II
R,
Two Free Two Rigid One Free Boundary,
Q Boundaries Boundaries One Rigid Boundary
0 657.5 1708. 1101.
100 2654. 3757. 1699.
500 8579. 10110. 3586.
1000 15210. 17100. 5613.
10,000 119800. 124500. 35040.

As we have already pointed out, the foregoing results depend
on the validity of the principle of the exchange of stabilities. An
examination of this principle shows that a sufficient condition for
its validity is

1
K<—=n.
4no i
This inequality is satisfied under most terrestrial conditions. Thus
for mercury at room temperature, 1 = 7.5 X 10° cm?/sec while
K = 4.7 %X 102 cm?/sec. On the other hand, under astrophysical
conditions K > > m. This is a result of the fact that under astro-
physical conditions the thermal conductivity is extremely high
because the transport of heat by radiation is a very efficient proc-
ess. And if K > > n, then it can be shown that so long as
Q< 2747 L = O,

v
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instability will set in by cellular convection ; but for Q > O* in-
stability will set in as overstability. This result can be stated in
a different way: We know from Alfvén’s work that, in a mag-
netic field, waves can be propagated with a velocity

_H
 (4mp)?

this 1s the velocity of the so-called magneto-hydrodynamic wave;
and the condition Q=Q* for instability to set in as cellular con-
vection is equivalent to the requirement that the velocity of the
magneto-hydrodynamic wave be less than

e, = V2R
T2 4"

When V,, > V'*,, instability will set in as overstability when the
Rayleigh number reaches the value 27n*v /4v. Further, it ap-
pears that the frequency of oscillation at marginal stability is
essentially determined by the time required for the magneto-
hydrodynamic wave to travel the thickness of the atmosphere.
The fact that under astrophysical conditions thermal instability
does not lead to convection in the usual sense but to overstability
must have important bearings on a number of astrophysical phe-
nomena.

The new possibilities raised by the foregoing discussion of
thermal convection in the presence of a magnetic field suggest
that we may profitably re-examine a variety of related problems
in the stability of fluid motions by including electromagnetic ef-
fects; and in this new field of mathematical analysis we may ex-
pect rapid advances.

Vm

b
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