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Exploitation of biological resources and the harvest of population species are commonly practiced in fisheries, 
forestry and wild life management. Estimation of maximum harvesting effort has a great impact on the 
economics of fisheries and other bio-resources. The present paper deals with the problem of a bioeconomic 
fishery model under environmental variability. A technique for finding the maximum harvesting effort in 
fluctuating environment has been developed in a two-species competitive system, which shows that under 
realistic environmental variability the maximum harvesting effort is less than what is estimated in the 
deterministic model. This method also enables us to find out the safe regions in the parametric space for which 
the chance of extinction of the species is minimized. A real life fishery problem has been considered to obtain 
the inaccessible parameters of the system in a systematic way. Such studies may help resource managers to get 
an idea for controlling the system. 

[Sarkar R R and Chattopadhayay J 2003 A technique for estimating maximum harvesting effort in a stochastic fishery model; J. Biosci. 28 
497–506] 

1. Introduction 

A quantitative and qualitative understanding of the inter-
action of different species is crucial for the management 
of fisheries. Harvesting has generally a strong impact on 
the population dynamics of a harvested species. The  
severity of this impact depends on the nature of the imp-
lemented harvesting strategy which, in turn, may range 
from the rapid depletion to the complete preservation of a 
population. The study of population dynamics with har-
vesting is a subject of mathematical bioeconomics, and is 
related to the optimal management of renewable resour-
ces (Clark 1990). The exploitation of biological resources 
and the harvest of population species are commonly prac-
ticed in fisheries, forestry, and wild life management. 
Problems related to the exploitation of multispecies sys-
tems are not only interesting but also difficult as there are 
theoretical as well as practical difficulties in the deter-
mination of an optimal policy for the harvesting of a  
multispecies fishery. First, the difficulty lies in the con-
struction of realistic model of a multispecies system 

which leads to an analytically tractable optimal control 
problem. Secondly, it is difficult to carry out dynamic 
optimization in a problem involving more than two-state 
variables and many parameters. Thirdly, quantitatively 
valid estimates of interaction coefficients are available 
for very few multispecies communities. Moreover fish 
and wildlife populations often fluctuate unpredictably in 
numbers as uncertainty is prevalent in resource econo-
mics. For the immense interest of both theoretical and field 
ecologists, we have considered this important ecological 
problem in a more realistic sense by introducing envi-
ronmental variability. Another important aspect regarding 
this type of problem is the knowledge of system para-
meters which are not possible to measure through expe-
rimental observations or field studies. These parameters 
are known as inaccessible parameters and the prior know-
ledge of these parameters will help resource managers to 
monitor the system and chalk out suitable harvesting policy 
to prevent exploitation of the resources. For this we dis-
cuss the problem with the help of mathematical model 
adopting techniques adopted for proper treatment.  
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Finally, we represent the outcomes of our mathematical 
analysis under different biological scenarios and real life 
applications to provide an idea to the resource managers 
for controlling the system parameters which, in turn, save 
the species from extinction. 

1.1 Brief review 

The problem of inter species competition was considered 
by Gause (1935) for two species obeying the law of logi-
stic growth. Clark (1990) considered harvesting of a single 
species in an ecologically competing two fish population 
model. Modifying Clark’s model Chaudhuri (1986, 1988) 
studied combined harvesting and considered the pers-
pectives of bioeconomics and dynamic optimization of  
a two-species fishery. Brauer and Soudack (1981) and 
Dai and Tang (1998) studied constant rate of harvesting 
in a predator-prey system to allow simultaneous harvest-
ing of both the species. They showed how to approximate 
the region of asymptotic stability in biological terms,  
in the initial states which lead to coexistence of the two-
species and their global dynamics by efficient computer 
simulation. McNamara et al (1995), Alvarez (1998),  
Alvarez and Shepp (1998) discussed optimal harvesting 
under stochastic fluctuations. However, they neglected 
the competition between harvesters, and assumed that the 
population is under total and exclusive control. 
 To formulate the harvesting strategy, the knowledge of 
maximum value of efforts is essential. Bhattacharya and 
Begum (1996) gave light in this direction but their study 
was based on a deterministic situation. In traditional eco-
nomic studies of rational harvesting planning, the objec-
tive of the harvestor is to find a plan that maximizes the 
present expected value of the cumulative yield. Clark 
(1990) gave some indications for finding optimal harvest-
ing in a stochastic two-species system. However, he over-
looked some of the most important consequences of fluc-
tuations in resource stocks. For example, the stock-recruit 
function, which needs to be estimated from fishery data, 
may not be known precisely. Consequently, major uncer-
tainty as to sustainable yields may prevail. Furthermore, 
in many fisheries the exact magnitude of the current 
stock is unknown at the time that quotas are specified. 
The optimal harvesting policy in a competitive system –
under environmental variability – is thus still a challeng-
ing, important and open problem in ecology. 

1.2 Basic aim of our study 

Resource studies are subject to many stochastic effects. 
The growth, mortality and reproductive rates of fish,  
insect and animal population vary in a random manner. 
Fires, disease, insects attack, environmental fluctuations 

may harm or destroy forests and fisheries, and these phe-
nomena are usually unpredictable. Random changes in 
resource stocks have two very important bioeconomic 
consequences – risk discounting and model as well as 
parameter uncertainty. The main objectives of fisheries 
management – or the evaluation of the results of manage-
ment – are usually based on the abundance of harvested 
stocks. For the fishery managers to chalk out rational 
harvesting policy, optimal fishing effort and mortality, 
total available catches (catchability coefficients), species 
interaction terms are some of the important parameters  
of the system that need to be estimated properly. In a 
more realistic situation, such as, the system with external 
environmental randomness or under intrinsic stochastic 
variability, it is practically impossible to give proper esti-
mation of all the system parameters. However, very few 
of the parameters affecting the system can be estimated 
through experimental study. Very few techniques have 
been developed to estimate the inaccessible parameters  
of the system. Thus a suitable technique is required for 
estimation of inaccessible parameters in a system under 
stochastic fluctuations. This may play an important role 
for controlling the system or to prevent the species from 
extinction. 
 Therefore, we have proposed a technique to estimate 
the inaccessible parameters of the system of a harvested 
two-species competition model with logistic growth. This 
modes which is further modified by introducing stocha-
stic fluctuations on both the populations as an example. 
In a real environment, these parametric estimations may 
offer a more valid estimate of harvesting effort hitherto 
prior described ones from purely deterministic case. We 
have also shown the efficiency of this technique in other 
real life situations. 

2. The mathematical model and a method for  
finding ecologically stable region 

Let us first consider a deterministic harvested two-species 
competition population growth model: 
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where r, s, α, β, K, L are all positive constants. Here r, s 
represent the natural growth rate and K, L environmental 
carrying capacity of the two-species x and y respectively. 
Both species follow logistic growth pattern. The inter-
action terms – αxy and – βxy indicate that the two-
species compete for the use of common resource. We 
assume that both the species are subjected to a combined 
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harvesting effort (E) and q1, q2 are the catchability coeffi-
cients of the two-species. 
 The possible steady states of (1) are P0 : (0, 0), 
P1 : (

K/r (r – q1E), 0), P2: (0, L/s (s – q2E)), P* : (x*, y*), 
where x* = K[αL (s – q2E) – s(r – q1E)]/(αβKL – rs), and 
y* = L[βK (r – q1E) – r(s – q2E)]/(αβKL – rs). 
 The existence and local stability properties of the equi-
libria have been elaborately discussed by Chaudhuri 
(1986). If rs > αβKL, the dynamical behaviour of the 
system is stable. If on the other hand rs < αβKL, the system 
is unstable around the positive interior equilibrium (P*). 
 The conventional theory of harvested populations is 
based on the assumption that environmental and biologi-
cal parameters remain constant. But, environmental ran-
domness is an inherent property of the harvested system 
(May 1975); and, environmental stochasticity on the re-
production factors play an important role on the dyna-
mics of harvested population (Dimentberg 1988). It may 
be noted that the ecological effects for terrestrial and 
aquatic systems will depend on the character of the phy-
sical frequency distributions, and the general qualitative 
response of these systems could be inherently different. 
For terrestrial system, the environmental variability is 
large at both short time periods and long time periods and 
could be expected to develop internal mechanisms to the 
system which would cope with short term variability and 
minimize the effects of long term variations. Hence, 
analysis of the system with white noise gives better re-
sults. Gaussian white noise is extremely useful to model 
rapidly fluctuating phenomena. However, as can be seen 
by studying their spectra, the physical frequency distri-
bution remains almost constant through out the entire 
span of the spectra; and that these are white to a good 
approximation. However, for natural aquatic systems, 
less robust internal processes are needed to handle the 
smaller amplitude variability at short time periods com-
mensurate with the life span of the species. Hence the 
physical frequency distributions of the spectra are rapid, 
perpetual and highly irregular. Therefore, for such processes  
it is useful to describe the main random quantity as colour 
noise. Uhlenbeck and Ornstein (1954) process is the appro-
priate choice to model a coloured noise environment in 
most of the applications (see, Horsthemke and Lefever 
1983). Here we have assumed the Stratonovich interpre-
tation of the stochastic differential equations (Hoel et al 
1993), which conserves the ordinary rule of calculus and 
in this case the stochastic differential equations can be 
considered as an ensemble of ordinary differential equa-
tions. 
 Introducing the environmental stochasticity in the form 
of colour noise on the growth of both species we shall 
investigate the dynamical behaviour of the system (1). 
The behaviour of this system in a random environment is 
considered within the frame work of the following model: 
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where the perturbed terms ηi (t) (i = 1, 2) are uncorre-
lated colour noise and follow the Ornstein-Uhlenbeck 
process. 
 The mathematical expectation and correlation function 
of the process ηi (t) (i = 1, 2) are given by: 

〈η1 (t)〉 = 0, 〈η1 (t1)η1 (t2)〉 = εδ0 exp(– δ0 | t1 – t2 | ) (3) 

and 

〈η2 (t)〉 = 0, 〈η2 (t1)η2 (t2)〉 = ε′δ ′0 exp (– δ ′0 | t1 – t2 | ) 
 (4) 

where ε, ε ′,δ0, δ ′0 > 0 are respectively the intensities and 
the correlation times of the noise and 〈⋅〉 represents  
average over the ensemble of the stochastic process. The 
η1(t) and η2(t) are the solutions of the stochastic differen-
tial equation (Uhlenbeck and Ornstein 1954) and are given 
by: 
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denotes the standard zero mean Gaussian white noise 
characterized by: 

〈ξ1 (t)〉 = 0, 〈ξ1 (t1) ξ1 (t2)〉 = δ (t1 – t2) (7) 

and 

〈ξ2 (t)〉 = 0, 〈ξ2 (t1) ξ2 (t2)〉 = δ (t1 – t2) (8) 

with δ (t) the Dirac delta function which is defined as 
 
  δ (t) = 1, for t1 = t2 

    = 0, otherwise. 
 
Substituting X = log x and Y = log y in equation (2) and 
using the transformation u = X – X *, v = Y – Y *, respec-
tively, we obtain the linearized system. We have deter-
mined the spectral density functions of the stochastic 
functions in the linearized system and have obtained the 
mean square deviations (Du(t) and Dv(t)) of both the 
populations following the conventional technique which 
has been elaborately discussed in Sarkar et al (2001) and 
also given in figure 1. 
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 An important concept in stochastic population dyna-
mics is the concept of stability. Once a stochastic system 
of population is caught within the attraction domain of a 
stable equilibrium point of the corresponding determini-

stic system, it will remain there for a long time, attracted 
by the equilibrium point. Stochastic fluctuations give rise 
to the deviation from the equilibrium point. Large depar-
tures may occur, which can lead to escape from the do-

 
 
Figure 1. Schematic diagramme of the technique for finding safe parametric region (for detail mathematical analysis see, Sarkar 
et al 2001). 
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main of attraction of the equilibrium. Enhancement of 
intensities of random fluctuations increase the deviations 
of the population from mean population level (or equili-
brium level) depicting instability of the system around 
the positive equilibrium. This sort of phenomena was 
also observed by May (1973) in a different system cha-
racterized by standard Gaussian white noise. But for the 
persistence of the species and for ecological stability of 
the system, the mean square deviations of the populations 
need to be minimum around the neighbourhood of the 
positive equilibrium and this gives rise to the idea of tole-
rance intervals around the positive equilibrium. The para-
meters of the system should be controlled in such a way 
that the entire population lie within these tolerance intervals. 
 The conventional technique (see, figure 1) only leads 
to the conclusion that the harvested system influenced by 
either white noise or colour noise is unstable. But for 
controlling the system we must have some idea on the 
maximum tolerance values of the system parameters. 
Maximum harvesting effort may be a key factor to regain 
the stability of the harvested system around the positive 
equilibrium. Unfortunately, in this context spectral den-
sity and mean square deviation analysis are not the appro-
priate tools. We have established a technique for finding 
the maximum (tolerance) values of the inaccessible para-
meters of the system which may give some idea for con-
trolling the system to the system managers. The key 
technology for such a method lies in the solutions of  
stochastic differential equations, and an application of 
Tchebycheff’s inequality. 
 Therefore, we have solved the linearized stochastic 
differential equation following the approach of Hoel et al 
(1993) and obtain 
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The solution without noise takes the following form: 

u(t) = u(0) φ1(t) + u′ (0) φ2(t) 

v(t) = v (0) φ1(t)+ v′ (0) φ2(t). (10) 

In this case, the ensemble average of the populations are 
given by 

〈u (t)〉 = u (0) 〈φ1 (t)〉 + u′ (0) 〈φ2 (t)〉 

and 

〈v (t)〉 = v (0) 〈φ1 (t)〉 + v′ (0) 〈φ2 (t)〉. 

For t → ∞, 〈φ1(t)〉 → 0 and also 〈φ2(t)〉 → 0. Hence, we get 
〈u(t)〉 = 0 and 〈v(t)〉 = 0. Using the inverse transformation, 
we obtain 〈x(t)〉 = x*, 〈y(t)〉 = y* as well as the deviations of 
both the populations i.e. σx

2  = 0 and σy
2  = 0 (for b > 0). 

 We are now ready to present the technique for optimal  
harvesting by using Tchebycheff’s inequality. This method 
was developed by Sarkar et al (2001) and has been suc-
cessfully used by Chattopadhyay et al (2001). For ready 
reference, the out line of the technique is also discussed 
in figure 1. 
 We observe that when σx

2  = 0 and σy
2  = 0 are greater 

than a small neighbourhood around the positive equili-
brium for different choice of system parameters, both the 
populations deviate from the tolerance level and the sys-
tem becomes unstable around the positive equilibrium. In 
terms of system parameters, the deviations from the mean 
of two populations x and y are given by: 
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Ecological stability will persist if both the populations lie 
within the tolerance intervals. To obtain this we shall 
have to minimize the deviations from mean population 
level. Consequently we obtain two-sets of equations con-
taining the system parameters. One can easily find out 
the solutions of these sets of equations by using Gauss 
elimination method (Danilina et al 1988) or any other 
method which will give two-sets of parameter values that 
are optimum for each population. The intersection of these 
two-sets will give the safe or stable zone in the parametric 
region of the system around the positive interior equili-
brium (P*). 

3. Application of the method under different  
ecological scenario 

In this section we will apply the above method in three 
different ecological settings to show its utility in both 
theory and practice. 
(i) We aim to establish that the conclusion drawn through 
spectral density analysis and our method is identical. As 
optimal harvesting is the main factor for controlling the 
harvested system, we shall put our emphasis on the har-
vest function involving the parameters, catchability co-
efficients (q1, q2) and the effort (E). 
(ii) We reinvestigate the deterministic two-species model 
of Bhattacharya and Begum (1996) under realistic envi-
ronmental variability. We show that if the system mana-
gers chalk out suitable harvesting strategy based on their 
estimation, there is a high probability of extinction of the 
mother species, and consequently the entire population. 
So, there is a need for valid estimation of the system  
parameters under environmental variability. 
(iii) We shall consider a study based on the experimental 
field observations carried out in Senegalese Artisanal 
Fisheries (Laloe et al 1998) and apply the technique for 
finding the inaccessible parameters in a systematic way 
without mathematical details. 
 
Problem 1: Here, we consider the two-species harves-
ted system (equation 2) with colour noise and will try to 
estimate the catchability coefficients (q1 and q2) by both 

the conventional spectral density analysis technique and 
our method (see, figure 1). The behaviour of the system 
in the plane of the catchability coefficients q1 and q2 is an 
interesting phenomenon in the study of harvesting stra-
tegy. For this problem, the result through spectral density 
analysis shows that in the q1–q2 plane if 
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then the system of interacting species in a random envi-
ronment exhibits abnormally large fluctuations around 
the positive equilibrium with increasing time and a perio-
dic background noise. Our objective is to show that the 
spectral density analysis and the method developed by us 
here give identical results in this particular situation, but 
our method give more precise values for the catchability 
coefficients. 
 Towards this we differente σx

2  [given in equation (11)] 
with respect to q1, q2, E and obtain the following set of 
equations by equating it to zero: 
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Similarly differentiating σy
2  [given in equation (11)] with 

respect to q1, q2, E and equating to zero we obtain the 
following set of equations: 
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Solving equations (12) and (13) we obtain 
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where, q1c and q2c are the maximum values marking the 
boundaries of the safe zone. It is obvious that if q1c and 
q2c do not lie in the safe zone i.e. when q1c → r +/E and 
q2c → s+/E, then the system exhibits abnormally large 
fluctuations. 
 
Ecological implication: This example clearly shows 
that conclusion drawn from the conventional technique 
and our method is the same. But for monitoring the harves-
ted populations the exact critical values of the catchabi-
lity coefficients and harvesting efforts should be known 
in advance. This new technique will be of considerable 
help to the resource managers in this aspect. 
 
Problem 2: The method for finding the maximum value 
of effort in a harvested system is still an open question 
even in deterministic framework. For this, we consider a 
logistic growth model of two-species with competitive 
interaction between them as discussed in Bhattacharya 
and Begum (1996) where they have calculated the maxi-
mum efforts. We address the question if their estimated 
values for maximum harvesting of the species are valid 
under environmental variability or noise? 
 From equation (11), we see that 
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Consequently, we obtain the maximum harvesting effort 
(Ec1) for species 1 as 
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which is positive if 

(i) αL < r, βK < s, αLq2 < sq1 < rq2 

(ii) r < αL, s < βK, rq2 < sq1 < αLq2. (a) 

Also, the maximum harvesting effort (Ec2) for species 2 
as: 
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which is positive if 

(i) r < αL, s < βK, sq1 < rq2 < βKq1 

(ii) αL < r, βK < s, βKq1 < rq2 < sq1. (b) 

It is to be noted here that the maximum harvesting effort 
without noise, calculated by Bhattacharya and Begum 
(1996) are 
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under the same conditions in (a) and (b) respectively.  
For stable equilibrium, if conditions (a) and (b) hold, the 
expressions 
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have a negative effect on Ec1 and Ec2 respectively. So in a 
real environment, the maximum harvesting effort is less 
than what was estimated by them. Hence in a realistic 
situation the condition for maximum harvesting effort in 
a two-species combined harvesting system will be, 

Ec = min (Ec1, Ec2). 
 
Ecological implication: The above discussion reveals 
the fact that while monitoring a system it is necessary to 
consider the most realistic situation. If resource managers 
choose a harvesting strategy in a purely deterministic 
situation they may be in a wrong track and harvesting 
may lead to the extinction of the mother species and, ulti-
mately, of the entire population. Hence, the estimation of 
maximum harvesting effort through our method provides 
a more realistic view for monitoring the system and may 
be helpful to save the species from exploitation. 

 
Problem 3: In this problem we provide a systematic way 
of parameter estimation and gaining control on a prac-
tical problem. We consider the experimental field obser-
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vations carried out on Senegalese artisanal fishery. In 
multifleet-multispecies fisheries exploitation, fishing 
units of some fleets may be an important factor. Laloe  
et al (1998) considered Lotka-Volterra model for multi-
species harvested fishery system to represent the main 
features of the Senegalese artisanal fishery (Laloe and 
Samba 1991). They obtained some values of the parame-
ters from experimental observations and estimated other 
inaccessible parameters of the model using least squares 
criterion. They also concluded that the equilibrium rela-
tions obtained from their model are similar to the models 
of Pella and Tomlinson (1969), Laloe (1988) and Schaefer 
(1957). The question addressed here is whether these 
estimations are still valid for the same model under envi-
ronmental fluctuation? 
 We take the same two-species model considered by 
Laloe et al (1998) with environmental stochasticity in both 
the populations, and reconstruct the problem as an opti-
mization problem. Our basic aim is to find out the range 
of inaccessible parameters in terms of known parameters 
which will give the safe parametric zone. 
 The model equations with noise are: 

Exqxy
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x
11 ))((

d
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d

d
22 Eyqxy
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where the perturbed terms ηi(t) (i = 1, 2) are coloured 
noise following the Ornstein-Uhlenbeck process descri-
bed in equations (3) and (4). The constraint on the con-
ditions for the existence and local stability of the 
deterministic system around the positive equilibrium are 
obtained in § 2. 
 The parametric values obtained from Laloe et al (1998) 
are K = 10000 tons, L = 40000 tons, r = 2⋅52/day, s = 
0⋅65/day, q1 = 1⋅81/tons/day and q2 = 4⋅08/tons/day. The 
objective is to estimate the interaction parameters α, β 
and the effort E that are inaccessible to experimental vali-
dation. 
 To solve the above optimization problem we proceed 
in the following way: 
 
Step 1: Minimize σx

2  [equation (11)] considering the con-
straint inequality. This gives the following set of equa-
tions for α, β and E: 
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 Similarly, minimizing σy
2  [equation (11)], one can get: 
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 (16) 

 
Step 2: Solving equation (15) and using the given para-
metric values one can obtain the tolerance values of α, β  
and E for which the deviation of x-population from the 
mean level is minimum. This gives α1 = 0⋅003, β 1 = 
246⋅123, E1=1⋅184. These values will give the safe region 
in the parametric space for which x-population will be 
stable around the positive equilibrium under environ-
mental stochasticity. 
 
Step 3: Similarly solution of equation (16) will give the 
tolerance values of α, β , E for which the deviation of y-
population from the mean level is minimum. This yields 
α2 =14⋅842, β2 = 0⋅006, E2 = 0⋅136. These values will give 
the safe region in the parametric space for which y-popu-
lation will be stable around the positive equilibrium  
under environmental stochasticity. 
 
Step 4: This step involves the tolerance values of α, β  
and E obtained from the above two-steps for which the 
entire system will remain stable around the positive equi-
librium and both the populations will lie inside the tole-
rance level. These are: 

αc = min {α1, α2} = 0⋅003 

βc = min {β1, β2} = 0⋅006 

Ec = min {E1, E2} = 0⋅136. (17) 

For the above set of parameter values, we observe that 
the y population lie, inside the tolerance level, depicting 
stable situation (see, figure 2). Keeping all the other acces-
sible parameters fixed, if we further increase the catcha-
bility coefficient (q1) about ten times than the previous 
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one, then the values of the inaccessible parameters will 
change and they will be no longer in the safe parametric 
zone. In this situation, we observe that both the popula-
tion will deviate from the tolerance level, depicting an 
unstable situation (see, figure 3). The safe parametric 

region (see, figure 4) for which both the populations will 
persist under environmental stochasticity can be obtained 
(using the values derived in step 2 and step 3) by calcu-
lating the intersection region M ∩ N, where 

M = {α1 = 0 – 0⋅003, β 1 = 0 – 246⋅123, E1 = 0 – 1⋅184} 

N = {α2 = 0 – 14⋅842, β 2 = 0 – 0⋅006, E2 = 0 – 0⋅136} 

and keeping all other accessible parameters fixed. 
 
Ecological implication: It is quite interesting to note 
that the values of inaccessible parameters α and β  esti-
mated by Laloe et al (1998) have been increased by about 
500% and decreased by 94% respectively by our method 
[the values of α and β  estimated by Laloe et al (1998) 
were 0⋅0005 and 0⋅0965 respectively] and hence the dif-
ferential impact of environmental fluctuation is clear. 
The above step wise discussion will be helpful to the sys-
tem managers to chalk out a suitable harvesting strategy 
and to estimate the unknown system parameters (pro-
vided some of the other system parameters are known 
through experimental study) in fishery problems in prac-
tice. 

4. Conclusion 

Exploitation of biological resources and the harvest of 
population species are commonly practiced in fisheries, 
forestry and wild life management. In this paper, a two-
species combined harvesting Lotka-Volterra competitive 
system has been considered. But as uncertainty is very 

 
Figure 2. Numerical solutions of equation (9) show that the 
maximum number of populations lie within the tolerance inter-
val for depicting a stable situation. Parameters as given in the 
text. 

(a) 
 

(b) 
 

 
Figure 3. Numerical solutions of equation (9) show that the 
maximum number of populations lie outside the tolerance inter-
val with q1 = 18⋅1/tons/day, depicting a unstable situation. 
Other parameters as given in the text. 

(a) 
 

(b) 
 

 
Figure 4. Safe parametric zone. 
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much prevalent in resource economics, random fluctua-
tions in the form of colour noise has been considered in 
the system. The main purpose of this paper is to estimate 
the maximum harvesting effort and other inaccessible para-
meters of the system parameters. We have tried to solve 
this problem in two ways – the conventional approach by 
calculating mean square deviations of the populations 
with the help of spectral density analysis, and by using  
a new technique developed by us through solution of  
stochastic differential equations as well as using Tcheby-
cheff’s inequality. In any biological system the mechanism 
of regaining stability of the system is an important consi-
deration but the spectral density analysis is not the appro-
priate tool in such a situation. For such situations, the 
parameters, specifically the inaccessible parameters of 
the system may play an important role in controlling the 
system. The method developed by us for finding inacces-
sible parameters involved in the system, enables us to 
obtain the maximum harvesting effort for which the sys-
tem remains stable around the positive equilibrium under 
stochastic fluctuations. It has also been observed that the 
maximum harvesting effort estimated from deterministic 
situation is greater than in stochastic environment, which 
is an important finding from management view point. 
Moreover to substantiate the analytical results real life 
fishery data have been used to determine the inaccessible 
parameters in a systematic manner and a parametric safe 
region has been found for controlling the ecological sta-
bility of the system. 
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