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ABSTRACT

In this paper the integral equation governing the fluctuations in brightness of the Milky Way is
solved, quite generally, for the case when the system of the stars and clouds extends to infinity in the
direction of the line of sight and the transparency factor, ¢, characterizing the clouds is governed by an
arbitrary frequency function, ¥(g)(0 < ¢ < 1). The solution is obtained in the form of a series in La-
guerre polynomials with coefficients depending only on the moments of ¥(g). It is further shown that
the solutions found in Paper IT for two particular forms of ¥(g) can be obtained as special cases of the
general solution given here.

1. Introduction.—In this paper, which isa continuation of three earlier papers! devoted
to the theory of the fluctuations in brightness of the Milky Way, we shall return to the
case considered in Paper II, namely, when the system of the stars and interstellar clouds
extends to infinity in the direction of the line of sight. In this case the integral equation
governing the distribution of brightness is (I, eq. [17], or ITI, eq. [3])

f(u)+%=f01f(%)¢(q)dq, w

where % is a measure of the observed brightness, f(%) is the probability that the bright-
ness (in the chosen units) exceeds the assigned value u, and ¢ is the transparency factor
which is assumed to occur with a frequency given by ¥(g). Regarding the solution of
equation (1), we know that the moments of the distribution,

== [Turd , (2)
b= = wrd s (w)
are given by
Mn=n!H(1—wj)_la @)
7=1
where
1
;= i dq. )2
j fo ¢y (q)dq
In Paper IT we showed how equation (1)—or, rather, the equation
dg 1 (u) dg
u) +28 d k4 &)
g(u) +- fog 7 rﬁ(q)q,

governing the corresponding frequency function of #—can be solved for the two cases in

- which all the clouds are equally transparent and when y¥(¢) = (n + 1)¢. In this paper

we shall show how equation (1) can be solved quite generally.

© tA4p.J., 112,380, 393, 1950; 114, 110, 1951. These papers will be referred to as “Papers I, II, and III,”
respectively.

% In Papers I and IT we denoted the moments of ¢ by ¢;. We are now denoting them by w;, since we
wish to retain ¢, g, etc., for denoting the running variable when integrating over ¢ (cf. egs. [12] and [13]
below).

94

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1952ApJ...115...94M

J: Do TI5C D oaMe

A,

[1e52

BRIGHTNESS OF MILKY WAY. IV 95

2. The solution of equation (1) by the method of successive iterations.—Letting

f(u) = e™F(u), ©
we can write equation (1) more conveniently in the form
dF (u) 1 U
L= —(l—a)u/ _—
el (q)d¢(q), o
where, for the sake of brevity, we have further written
do(q) =¥ (g)dg. 8)

[Ineq. (7) the integral on the right-hand side may now be regarded as a Stieltjes integral.]
Equation (7) can be formally integrated to give

1 u A
F(u) =1 d dte—(A—0t/aF (—), (9)

w) =1+ [ de(o) [ :
where the constant of integration has been chosen to satisfy the normalizing condition,
F(0)=7(0)=1. (10)

According to equation (9), we have

t 1 t/qa t
F(—>=1 d dt;e—1—a)t/aF (—1 : an
7 -i—A ¢(Q1)f0 1€ o

Substituting this expression for F(¢/q) in equation (9), we obtain

1 u
F(u) =1+f0 d¢(q1)f0 e~ /e,

(12)
1 1 u ty/a, t]_
d d dt e'(l_%)tz/qz dt 8—(1_‘11)51/qu (—) .
+/(; ¢(92)’[ ¢(91)£ 2 .[0 1 @

In this last equation, we can again substitute for F(¢:/¢:) according to equation (11), and
in the resulting equation we can again make the same substitution. In this manner, after
m such substitutions, we shall obtain

F(u) =14 ifoldqu)foldcb(qn—l)/ol. . .foldqs(ql)foudtne—h—q,,nn/qn
n=1

tz/qz

t,/a by —of Oy —
Xf " ndltn-le—(l—Qn—l)in——l/qn—lf o 1. . f dtle-(l—ql)ll/ql
0 0 0

-l—foldqb(qmm fol’dda(qm)fol. : .foldd,(ql)foudtmﬂe—u—th)tm+/qm+l

tg/qz

b+ O+ _ !
><f dt, e Ot/ f dtye” T o (-qi
0 0

1

(13)

By defining the sequence of functions

K1 (u; q1) =f Ao~/ =1 [1 - g—a-aym], (14)
0 1—q
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u . !
K2<u’ ge, gl) =f d[2e"(1'—(lz)fg/‘lzK1 (-27 QI>, (15)
0 qo
and [
K, (uy Qny » -« f11) = >/0< dl,e 0" min/tm K, (‘ql;‘, dn—1, - -+ (11>
(16)
(n=2,3,...),

we can rewrite equation (13) in the form
m 1 1 1
F =1 d N d K, (u; gny - - ., R, , 47
() =14 32 [Tdo o) [ [ do (0 Kaus g 01) +R o ()

where R,.(u) stands for the last term in equation (13) involving F(#/q).
We shall now show that the infinite series,

Fay=1+X [aote) [ o [ do (g0 Kalui g 00, a9
n=1

obtained by letting m — « in equation (17), actually converges uniformly for all
0 € u < « to the required solution of equation (7). In order to establish this, we need
the following two lemmas.
Lemma 1.—The functions K,(#; ¢n, - - . , q1) defined by equations (14) and (16) satisfy
the recurrence relation,
q1

Kn(u;QM"') 91) =T_;E[K—1<u;Qny"-J qs; 92) (10)
19

- Kn—l (u) ns n—15 - - -5 43 9291)] (ﬂ= 2; 3; .. ) .
Proof —The proof is by induction. From equations (14) and (15) it follows that

K2 (%, q2, 91) = 1 g_lgl /O‘ue_(l—qz)iz/qz [1 — e_(l_ql)tz/qz'h] dlf2

u u
— ——ql* [f e—(l_qz)tz/‘hdtz — f e —(17g,q,) tz/qqudlf2] .
1—¢q 0o - 0

q‘ql K1 (u; g2) — K1 (9 g2g1) 1. (21)

(20)

Hence

K (u; qs, q1) =7

This verifies the lemma for # = 2. Now assume that the lemma is true for » — 1 and
consider the integral expression (eq. [16]) for K, in terms of K, ; and substitute for
K, s in accordance with the lemma. We obtain

K‘n(u; Qn) s ey 41) = 1 Elql [~/O‘udl(ne_(1hqn)tn/qn

(22)
In In
XgKn*Z (q—, Gn—1, -+« 43, 92>— K, <E—, 9n—1, + - -5 43, Q2Q1>2]§
and, again using equation (16) (for » — 1), we can rewrite the foregoing as
) s .
Kn(ug Qm Qn—ly LN ] 91) - 1 — Q1 [an—l(u; Q'n.) ¢ vy 92) (23)

— K1 (%5 Qoo 5 @3y 92G1) ]
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this establishes the lemma for #. The general truth of the lemma now follows by induc-
tion.

Lemma 2.—The function Ka(#;¢n, . . . ,q1) (0 S # < @ and0 < ¢; < 1,5 =1,
n) has a uniformly convergent expansion in terms of the Laguerre polynomlals Lk(u),
given by

K‘n(u, Qny « « - 91) = QnQn—-l e 1 — Z?k("; QM L ] QI)Lk(u): (29)
k=1

where
h— j
Pk(na Gny « -+ 91) = (_ 1)]( ) qﬁ-z 1n_ E Q:;n_—Zz
! , 25)
-Z g Y g,
=1 =1

are polynomials in the ¢,’s.
Proof —One definition of the Laguerre polynomials, L;(#), is in terms of the generat-
ing function exp [—ux/(1 — x)]/(1 — x). Thus,?

e uw /(7)) = (1 — %) Z 2L (u) . (26)
k=0

This expansion is uniformly convergent for 0 % < « and 0 § x < 1. Letting x =
1 — ¢: and remembering that Lo(#) = 1, we can rewrite’ equatlon (26) in the form

e~ 0w =g+ g (1= q1) D (1= g)* 'L (w). @
k=1

Using this expansion in equation (14), we obtain the following representation for
Ki(u; q):

Ki(u; 1) = 1 — E :Pk(l; q1) Ly (u), (28)
=1
where
k—~1
_ B — .
(1 q1) = Qi(l— 91)k 1= ( ) it (29)

Equations (28) and (29) verify the lemma for » = 1.

Now, assumlng that the lemma is true for #, we can establish its vahdlty for n + 1.
For, expressing K1 in terms of K, in accordance with lemma 1 and using the poly-
nomial representation given by equations (24) and (25) for K,, we have

Ko (85 Gy - 0) =75 (K, (85 G- -5 00)
— K, (5 Gy -5 Iy 3,90 =—3‘7[q,.+1qn--- 959, (1 = ¢,)
= = 7 k_l i+2 7 1, )
~>rwy (-0 i )q,mEQ"E gt Eﬂl g |
k=1 =0 i,=1

3 See, e.g., G. Szego, Orthogonal Polynomials (“American Mathematical Society Colloquium Publi-
cations,” Vol. XXIIT {1939]), p. 97.
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E—1 7; (30)
= Qo 90— ZL <u>2<—1>( )qiif

’L——l

&

| .Hq(l—qﬁ) k—
'Z% '11_‘q1 , ZL (“)Z( 1) ( )

Ci,=1

j+2

X ¢, 4’"2 e Z QQ*Z g’

=1 1,=1 i, =1

The truth of the lemma now follows by induction.

" Returning to equation (18), we can now substitute for K, its expansion as a power
series in the ¢.’s. According to equations (24) and (25), the general term in the series on
the right—hand side of equation (18) is

S a9 ta) a6 ) [ fd¢<q1>1< (#5 o -+ > 1)

j+2 ¢ 1.2 (€39

=w1—;Lk(u) ; (—, 1)?' (k]_ )ajj+2 >, 2 ann_ ...Zmil;

—1=1 iy g=1 H=1
we thus have
F(u) =14 > a}
n=1 . . 32)
i+ e
_ZZLk(u)Z(—l)J(k )w]-+22 @i, szn_...zml.
=1 iy =1 i,=1

Lettlng
j+2

i 2 — 1)7 (k )CU_H_z E/Zﬂin_‘l“nz—l 551:”_2. .. 22551'17 | (33)

in_=1 Ip—p=1 i,=1

we can rewrite equation (32) in the form

(lkLk ( u) : : (34)

The expression for the coefficient ¢ in equatlon (34) ean be simplified in the following
manner By 1ﬁvert1ng the order of the summations over #' and jin equatlon (33), we have

-1 Jj+2 42
k= 1
E —1)]( )G’H-z 1‘*‘2“%*’2“’% @,

=0 zl—l Lt,=1

) . . 35)
A j+2 ’s %o
iy ’ i,=1 7,=1
The qFantxty, in braces on the nght hand: 51de is clearly
itz j+2 ' D

Vi riupnil H (l—I-GJ —j—m + +G§ + ) H (175?):1‘ ... @9
i=1 A S
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Hence
J+2

ak—E(—n ("5 e I] =m0, o

By some rearranging of the terms, we can simplify the foregoing expression for a; still
further to the form
i+1

k
ak=—;(—1)f(§>g(1—wi)—l. (38)

The fact that we have been able to carry out, explicitly, the summation over # in the
expression for g, establishes the convergence of the series on the right-hand side of equa-
tion (18); and from lemma 2 it follows that the convergence is uniform for 0 < # < .
The series (18), therefore, represents the required solution of equation (7).

With a,, given by equation (37), equation (34) becomes

(k j+1
. (1—m;) 1, (39)
Dl

F(u) =

or, since Lo(#) = 1, we can also write

Jj+1

F(u)——ZLk(u)Z(—l)7<k>H(1—w)‘1 40

The solution for f(#) is therefore given by

J+1

o k
fu) = e Li(w) D (= l)j(l;)ﬂ Sl “o
k=0 =0 =1

or, using expression (3) for the moments u;, we can write, alternatively,

f(u) = 6*“211];(14) Z (] T 1) 7 (k> i1 . 42)

3. Relation with a formal solution of the problem of moments.—It is of interest to
verify that the solution for f(%) obtained in § 2 is in agreement with a formal solution of
the classical problem of moments in mathematics.*

If a function f(#) (0 £ # < =) can be expanded in a series in Laguerre polynomials of
the form

fee)

f(u) = 6"‘2 apLy (u), 43)

k=0

then the coéfficients @ in the expansidn will be given by

ay = fmf(u)Lk(u) du. ' (44)

4J. A. Shohat and J. D. Tamarkin, The Problem of M oments (New York: Amerlcan Mathematical
Society, 1943), esp. § 10, p. 96.
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Since
k
Lk(u) = (45)
we have
(= 1) k) ®
. (u)uidu
; ; S
(46)
(_1) (k> i+1
Jzo ]+1)' f u! df(u)9
or )
—1)i [k
= (]+1))'( )“’“ “n

The last expression for gy is in agreement with the coefficient of Lj, in equation (42). It
should, however, be emphasized that the foregoing analysis, giving a solution of the
Stieltjes problem of moments, is purely formal; it is known that, in general, such solu-
tions converge only in some “mean’’ sense (cf. Shohat and Tamarkin, 0p. ¢it.).

4. Special forms of the solution (41).—We shall now show how the solutions found in
Paper II for two particular forms of ¥(g) can be derived as special cases of the general
solution obtained in § 2.

i) The case when all the clouds are equally transparent.—In this case

wi=q*; (48)

and in the general solution given by equation (41) we must write

j+1 Jj+1

H(l—wi)“=H(1——q")‘1. (49)

In virtue of the identity,
Icol 7\ — Ew nng Inl qf
i=1(1—q+])—n=0(——1)rq’r=11—qr7 e

established in Paper IT (eq. [18]), we can also write

j+1 ® ®

H (l_wi)—1=[]___[ (1— qi)]_ln (1— gi+ity)
=1 i=1 =1 (51)
=[TTa- q?’)]—lz (—1)
=1 n=0
Now letting (cf. ITI, egs. [49] and [51])
i - 1) TT_T
=[g(1—q,~>] wd 0= (-0 [[1%5 -
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we can express equation (51) in the form

Jj+1

H(l—m)‘l—KEQ it

Hence, in this case, the general solution reduces to

co © k k
1) = ke S 1w 0,0 (- 15 (B) ¢
k=0 n=0 i=0 J
=Ke™>,0,6 >, (1— ¢ (n).
n==0 k=0

But (cf. eq. [27])
q* 2 Ly (u) (1 — gn) b= e~ =aMw/a™
=0

Hence

fee]

fu) = Ke—uz O, e~ A—a)u/a™

n=0

This is in agreement with the solution found in Paper IT (eq. [21]).
1) The case y(q) = (n + 1)g*.—In this case

n+1

SRR
J+1 __J+1 n+1 1’L+]+2
g(l—w*’)l ( n+z+1> <n+1

SE()
r=0 4 ,
and the coefficient of L; in the solution (41) becomes
n+1 k .
>0
r=0 J=0 J r

Now from combinatorial analysis it is known® that

| 2 Co(HT)=o () 1 oo

=0 otherwise .

Hence, by combining equations (41), (59), and (60) we have

n+1 r r
S = e 3 3 (= 1>k(k)Lk<u>.

101

(53)

(54)

(55)

(56)

(57

(58)

(59)

(60)

(61)

5'W. Feller, An Introduction to Probability Theory and Its A pplications (New York: John Wiley & Sons,

1950), 1, 48, problem 10.
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But the expansion of %" in Laguerre polynomials is

u’=r!;0(—1)’“(;)Lk(u).

Hence
n+1

f(u) = e‘“z%r.-
r=0 ~ °

By differentiating this last expression, we obtain

_ df— un-l-l
A PR CE = D

And again this is in agreement with the solution found in Paper IT (eq. [33]).

(62)

(63)

(64)
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