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A TENSOR VIRIAL-EQUATION FOR STELLAR DYNAMICS
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Summary

A tensor virial-equation is derived for a system consisting of equal mass-points,
appropriately for stellar dynamics, by starting with the Liouville equation
governing an ensemble of such systems in the six N-dimensional phase space.

1. Introduction. The tensor form of the second-order virial equation has, in
recent years, found numerous applications to a wide variety of problems (for a
general account of these topics, see Chandrasekhar 1964). In the gravitational
context (to which we shall restrict ourselves) there are two limiting classes of systems
for which the virial equation has been explicitly written down: (1) systems con-
sisting of a number of discrete mass points (or particles) m® (o« = 1,2,...,)
under their mutual attractions and (2) systems described in terms of a density p
and an isotropic pressure p and governed by the usual hydrodynamic equations.
For a system belonging to the first class, the equation takes the form

dtz Z m(“)xi(a)xj(a) — Z m(a)ui(‘z)uj(a)
2
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where the Greek superscripts distinguish the different particles and the Latin
subscripts distinguish the different Cartesian components of the position x and
the velocity u of the particle «. And for a system belonging to the second class,
the equation takes the form

1d2
el = b
S 7 J.V pxix; dx = 2@+ 11 8y + Wy, (2)
where
@y =L | puydx 3)
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;= _Ef p¥y; dx
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are the kinetic-energy and the potential—energy tensors; also

M = fvp dx. (5)

(In equations (2)—(5) the integrations are effected over the entire volume V" occupied
by the fluid.)
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While the forms of the two equations (1) and (2) are very similar, the essential
difference between them is reflected in the separation, in equation (2), of the
contributions to the kinetic-energy tensor by the macroscopic (or mean) and the
microscopic (or molecular) motions: the former is included in ;; and the latter
is manifested by the pressure term II §;. But neither of these two equations is
suitable under the normal circumstances of stellar dynamics. For in the context
of stellar dynamics, the idealization in terms of the strict N-body problem (which
does not permit a separation between the ‘mean’ and the ‘ peculiar’ motions)
or in terms of a fully relaxed hydrodynamic system (which does permit a unique
separation of the two) are both unrealistic.

A recent discussion by Camm (1967) has suggested that it might be worthwhile
to draw attention to a form of the tensor virial-equation that is ‘ exact’ in the
context of stellar dynamics in that it follows, rigorously, without any assumptions
or approximations, from the six N-dimensional Liouville equation governing an
ensemble of systems.

2. The six N-dimensional Liouville equation and its integrated form. We consider
an ensemble of systems consisting of a (large) number N of discrete mass points
(or particles) under their mutual gravitational attractions. For the sake of simplicity,
we shall suppose that the masses of all the particles are the same so that any
statistical property of the ensemble in which we may be interested, may be assumed to
be symmetric in all the particles. And this assumption of symmetry will be made
in this paper.

In the six N-dimensional phase space of the system, we describe an ensemble
by the density function

f(N)Ef(N)(x(l)’ x(2)’ ceey x(N); u(l), u(2)’ ey u(N); t), (6)

where the superscripts (for which we shall use Greek letters) distinguish the different
particles; and in accordance with our earlier remark, f ¥ will be assumed to be
symmetric in the variables of the different particles.

The Liouville equation governing FALARH

af
ot
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and on integrating this equation over the coordinates and the velocities of all the
particles except one, say the first, we obtain

3f(1) ) f @ —xpy O FD
2) —
R 7 ALY A, +(N 1)Gm |x(2)—x(1)|3 8uk(1)dx( Ydu@ = o, (8)
where
f(Z) = f(2)(x(1)’ X(Z); u(l)’ u(Z); t)
= f .. ff(N) dx® dx@® . . . dx®) du® du®@ . . . du®), (9)
and

= f e ff(N) dx@ dx® . dx¥) qu®@ du® . . duM), (10
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The factor (N—1) in the last term in equation (8) originates in the assumed
symmetry of f ™) in the variables of the different particles: the result of integrating
the term in the summand involving the pair of particles («, B), with « fixed and B
variable, is independent of 8.

3. The hydrodynamic equations. By integrating equation (8) over the velocities
of the particle 1, as well, we obtain (cf. the corresponding derivation based on the
six-dimensional ¢ collisionless’ Boltzmann equation in Chandrasekhar (1942, see

pp. 185, 180))

an(l) a
Mgy ANT =
ot +aX'k(1) [n <uk >] =0, (II)
where
D =p(xM), ¢) = ffa) du®), (12)

and {ur‘D) is the average 1-particle velocity defined by
AUy = ff(l)uk(l) du®). (13)

It should be noted that here (and in the sequel) ‘ averages ’ (indicated by angular
brackets) are averages over an ensemble.

Next, multiplying equation (8) by #;1) and integrating over the velocities of
the particle 1, we obtain (cf. once again, the corresponding derivation based on the
six-dimensional Liouville equation in Chandrasekhar (1942))

2 O]+ 0 D))

@) ;1)
—(N—=1)Gm f f ff( ) I’;i(z)_i(zl)la dx@ du® du® = o, (14)

where in reducing the last term on the right-hand side of equation (8), an integra-
tion by parts has been effected and an assumption, appropriate to ignoring the
integrated part, has been made.

In terms of the two-particle function,

n(l, Z)En(l, 2)(x(1)’ x(Z)’ t) — f J\f(z) du(l) du(z)’ (15)

we can rewrite equation (14) in the form

7] 0

xi(z)_ xi(l)

@ —
|x(z)_x(1)|3dx =0, (16)

—(N=1)Gm f nd 2(xM), x@), ¢)

where it should be noted that 12 (on our original assumption concerning
f @) is symmetric in x®) and x@),

We can now separate the ‘mean’ (U®) from the ‘ peculiar > (v1) velocities
and define a pressure-tensor P’ by means of the relations

D = D4 (gD = p O U, (17)
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and
AW Wy WS = 2Oy WS 4 g OO, W)

= PO+ nOU,0U,L), (18)
With these definitions, equations (11) and (16) take the forms
P Pl ap.k(l)
~ [nOU, W OUOLT, D] = =¥
g POV Y]+ Bay ) [» VU DU D] FIGY
xi(Z)_xi(l)
and
on@® 0
A, M, =
ot + axk(l) [ﬂ 1 U’C ] = 0. (20)

4. The tensor virial-equation. From equation (19) we may derive a ‘ virial
equation’ by multiplying it by x;1) and integrating over the coordinates of the
particle 1. The left-hand side of the equation gives, after an integration by parts,

%fn(l)Ui(l)xj(l)dx(l)_zﬁgij, (21)

where

@iy =1 f aOUOU;W dg®, (22)
And the terms on the right-hand side give

PV -
_f xj(l) W dx@) = fPij(l) dx) = Hij (S&Y), (23)
and

() — 3o, (D (1)
(N- I)Gmffn(l, 2)(x@), x@), t) [x: xiD;

M) Jx@
[x®_xM)[3 dxV) dx

@) — 0, D505 @) — ;1)
- —-}(N—I)Gmffn(l’ 2)(x D), x(2)’t)[xi I;“fz)][zf(l)laxf | gz gx@

= Why; (say), (24)

where in integrating by parts in equation (23), it has been assumed that Py;@)
vanishes on the boundary of the system; and, further, in passing from the first
to the second line in equation (24), the symmetry of 2% 2) in x1) and x® has been
used and the expression for T ; is the average of the original form and the one
obtained from it by interchanging the variables of integration x4 and x@). Com-
bining the results of these reductions, we obtain

%fn(l)Ui(l)xj(l)dX(l) = 2@+ My + Wy (25)

The tensors on the right-hand side of equation (25) are manifestly symmetric
in 7 and j. Therefore

‘_?_J‘n(l)[Ui(l)xj(l)__ Uj(l)xg(l)] dx(l) o o; (26)
t

and this equation represents the conservation of the angular momentum. And
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taking the symmetric part of the term on the left-hand side of equation (25), we
have

1 d
S nW[U; Wy 4 Uy V] dx @)
2
= ‘% f 7 Wy W) dg D = — dtIZij (say). (27)
Thus, we finally obtain
1 d2ly 8
S aR = 2@+ g+ Tl (28)

While equation (28) is similar in form to the tensor virial-equation (2) for
fluids, there are two important differences: first, the averages that have been taken
before arriving at equation (28) are averages over an ensemble and second, U ;; is
not the potential-energy tensor (4) as defined in hydrodynamics: it is now defined
in terms of the symmetric two-particle function n@ 2) (x1), x@), t) and not in
terms of the product zV(x®); ) n@(x @), ¢) of two one-particle functions.
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