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ABSTRACT

The virial equations of the fourth order are derived; and the results of certain formal developments
needed for their practical usefulness are also given. The equations are then used to locate the neutral
points, along the Maclaurin and the Jacobian sequences, that belong to the fourth harmonics.

I. INTRODUCTION

In papers published in the Asirophysical Journal (Volumes 134-148) during the past
few years, the tensor virial equations of the second and the third orders have been made
the basis of a systematic development of the theory of the equilibrium and the stability
of the ellipsoidal figures which arise in various gravitational contexts. In particular, the
first variations of the virial equations governing equilibrium were used to isolate the
neutral points, belonging to the second and the third harmonics, along the different se-
quences. More recently, in connection with the construction of sequences, analogous to
those of Maclaurin and Jacobi, in the post-Newtonian framework of general relativity,
a further neutral point, along each of the two sequences and belonging to the fourth
harmonics, was isolated (Chandrasekhar 1967a, b). However, along the Maclaurin
sequence there must exist neutral points, besides the one already located, belonging to
the fourth harmonics. To find them and, as well, for the sake of completing the general
theory, we shall obtain in this paper the relevant virial equations of the fourth order
and illustrate their usefulness.

II. THE FOURTH-ORDER VIRIAL EQUATIONS IN A ROTATING FRAME OF REFERENCE

For purposes of later applications (and also for greater generality) we shall obtain
the basic equations in a frame of reference rotating uniformly with an angular velocity
Q about the x3-axis (say). The appropriate form of the equation of motion is

dui _‘_(2_‘]_5_ 0

P dt - ax,.+”ax1-

[B+ 392 (22 + x22) 1 + 2 pQeimstim @
where the various symbols have their usual meanings.

Multiplying equation (1) by x;xxx; and integrating over the volume V occupied by
the fluid, we obtain by transformations familiar in this theory,

%fpuix xexidx = 2 (Tijm + Tangr; + Targin)
v

9B
+ Q2 (I — 8isl3n1) -I-_/;p Fyo xixpx1d x @
+ ZQeima_/‘;pumx,-xkxzdx + 6.4k + 811 + 8 i,
where
Lijm = _/‘:pxixjxkxzdx R 0 = fvpxjxkdx )
and 3)
Tijsu = %_/;,pum,-xkx;dx .
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The term involving d%B/dx; can be transformed as follows. First writing

f xkoczdx———G_/"/.P(x)p(x)xjxklxl(x’,l3 )dxdx

(4)
xiens — x5 ok ) (0 —
—%fop(x)p(x’) (%400 = %3 Bk f)s( D dxax,
vYv | x—x'|
we replace
(aeseuer — /o xd) (0 — ) ®
by

3 — ) + 2 (0 — @ )wr + w2 (00 — 27)
+(wr — 2 )xx; + a1/ (o0 — 2)x; + o2 (6 — xf) ®)

+ @ — i )xjwn + ® (25 — o) + 2% (00 — )],
and obtain

a
fp B xixpx1dx = — %fp(Zxkxz%ij-f-szxf%ik*i- 2x;2,B1
v dx; v

44|
+ 21D+ 2;Ditse + 6 Dij) dx
where
’ —x:') (xJ xj,) ’ :
%@,(x)—Gfp(x) x—x'[F dx ®
is the Newtonian tensor potential as usually defined and
(xi—xi") (x,-—x~')
= 4 / _ J !
Dijin(x) Gﬁp(x)xk x—x [ dx ©®

is the tensor potential due to a distribution of “density”’ px;. In terms of the Newtonian
potentials O; and D;;, due to the distributions px; and pxx;, we can express Djj;; in the
manner (cf. Chandrasekhar and Lebovitz 1962, eq. [71])

0Dk , 0Dk

@ij;k= — X 9%; éx,- . (10)
Now define the tensors
W= — %f pBijxrxidx an
and Y :
Wijsu = — %_/;p@ij;kxzdx = — %f‘,p&j;zxkdx, . (12)

which (like the tensors ;3 and 6;;11;;) are symmetric in the indices (7,7) and (k,7),separate-
ly. In terms of these tensors, we can now write equation (2) in the form

d
T _/I;P%ixjxkxzdx =2(Tsjm+ Tiwii+ Targn) + QL2 (Lijwr — 8.3 350)
+ 3 2850 + 2Bis;15 + 2Bir; i+ Wijes 1 + Win; 155 + By ;) 13

+ 84 0 + §arlly; + 8o lljn + ZQeims/;,pumxjxkxzdx ).
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Equation (13) is the desired form of the virial equation of the fourth order. It provides
a set of thirty moment equations in addition to the nine and the eighteen provided by
the second- and the third-order equations, respectively.

Under conditions when no internal motions are present (in the rotating frame con-
sidered) and a stationary state prevails, equation (13) gives

5 Q2B 550+ 2BWi; 15+ 2B 0+ BVijsst + Bir; 155 + Wi jsn)
+Q*(Iijm — 6i3l3jm) = — (84T + 8 uxIls; 4 641 0Ljx) .

a) The First Variations of Bijx and Bijik:

For treating small departures from equilibrium by the virial equation (13), it is
necessary that we know the first-order changes in %,;;,; and ;s that result from a
deformation caused by the different elments having suffered different displacements. If
£(x,/) denotes the corresponding Lagrangian displacement, then the resulting first
variations in ,;;x; and B,;i.;: can be readily evaluated by standard procedures. Thus,

(14)

—28Wij;m = 5_/;,P58ijxkxzdx

—fp%wgm (xkxl)dx

+Gj;,/;p(x)p(x')xkxz[Em(x)a—z—+ gm(x')aj I](xf—m Y(@i—ai) 40 s

lx—x'|3

—f [%zaém — (%x%1) + XxX1Em a%“]dx

0%,
9 (i —x') (25— %))
’ / ’ J J
t+ [ 4% o ()5 [ dxp(0men TR,
or, equivalently,
a
“2523ij;kl=fp£m a_g‘c‘;(xkxl%ij+©ij;kl)dx1 (1e)

where D;;;1: is the “B,;”” induced by the distribution pxxx; and is determined by the New-
tonian potentials Dy; and D due to the distributions pxrx; and pxsaxx; by (cf. eq. [10])

dDu + 0Dirr an

ox; dx;

Dijs = — &4
Similarly,

— 288500 = 5_/;’kagii;ldx

= fpik@ij;zdx
v

(18)

+G/I:fvp(x)p(x’)xk[£m(x)£—+Em(x’)af ,]xl (wiza ) (x;—a)) dxdx’

|x—x"[*

_f (fk@u 1+ 8Dt anbm @“’ " ®ibm 6‘13;_7, ) dx

m
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or, equivalently,

- d
- Zo%ij;k;l = [/PEm m(xk@mz +xl@ij;k) dx . 19)

b) Explicit Expressions for 68511 and §Lij;k:1 for Homogeneous Ellipsoids
For homogeneous ellipsoids, the potentials ©;; and D are explicitly known (cf.
Chandrasekhar and Lebovitz 1963e, egs. [107]-[118] and Chandrasekhar 1967a, eq. [63];
in the former reference explicit expressions for D;;;; are also given). Making use of them,
the formulae (16) and (19) can be directly evaluated and expressed in terms of the
symmetrized second-order and fourth-order virials:

Vi 1= [ ptm 5o (i) dx

and (20)

Vukl_alukl'—fpgm (xtxgxkxl)dx

We find, distinguishing the various cases,’
=208z = a(—22aBiii + 24,)Vii — $a*BiijVii — 30 BirVin
+(EfaBisii + 4Bii — 24) Vi + 30:*BiisiViisi + 30 Biinn Vi
+a2(32atBiiij — 245)Viii + (3P0’ Biaw — 24a) Vs + 30 BiiitVjine
—20B:5i= a*(— $a2Biij + Bij) Vi + af(—~a,2Bm + a*44ji+ A)Vii — $ailaBinVi
230 Bisij— Bisj) Vst a0, Bjsi— a* A sjji— Aij)Vjiii+30207 Bijir Vi
+aj2(%ai2Biijk — Biji)Viaw + aiz(gdj ik — a2 Qi — Aa) Vi
+[3a*(ei* + $0°)Busjj + 3Bis + Bij — 24Vij5,
—20ijiij = —30a”BiiiVii — 30l BijiVii — $aaBinVir
+302a7Biii;V iiii + 30207 BijiiV jiji + 10207 BijirV ki
+@a’a?Biij; + 2Bij) Vi + 3020 BiiinViine + 3020 BijinV jin:
—208jsa = —ala’BippVin + (3020 Busi + 2Bi) Viijn
+alai’BijinViiin + @@’ BijerV ik »
— 2080 = @’CiinVij + BarBijww — ax’Bujp + 2Bij) Vi
—ail?CiiinViiii — @’CiiinVisis
—208ijiie = aX(—3aBii; + Bip)Vij + (56:*Biiij — a’Buij + 2Bij)Viiij
+a*(3a:’Biiji — Bijp)Vijii + a*(3a*Bisjx — Bijw) Viur 5
=260 = ai¥(afar’ Aigp + A) Vi + 2By — 3alaa’ Asije + 200 Asr. — a2 A.:5) Viign
— a(afa? i + Ai) Vi — 0200’ i + A Vier
—268iss;; = a*(—a;*Bii; + Bij + 20202 4445)Vij + a2 (0 Bisj; — Bijj — 20202 A45) Vs
+a2(a?Biiji — Biji — 2020,* A siji) Vi + (50.20*Bisij + 2By — afaf Avij — a2 4:) Vi,

(21)

1 The formulae (21) and (22) were also derived independently by Dr. C. E. Rosenkilde. I am grateful
to him for providing a check on their correctness.
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and
—208isisi = 2a[(—2Bu + a4:) Vi + (4Buii — a2 A4:5) Vi
+ (2Bii; — @A) Viiii + CBiiw — @A) Vil
—288iss; = 2@’ AiVii + (2Bus; — 02 4:)Viigs — 0245V 55 — alA Vil
— 208505 = —a*BiVii — aByVj; + a*BiiiViiis + 0BV s
-+ aizBijijjkk + ajZBijkV'iikk + 3(ai2Biij + a]'ZBi.’fj) Viijj y
—26%¢j;¢;k = —aizBijij + (Sai2Biij + zaszijk) Viijk + dz‘2Bz'ijjjjk -+ ai2B'ijijklck, @2
— 205w = 4 BijiVijun,
—20Bij5i50 = 20— BiiVij + BijiVijsi + 3BiiiViisi + BipnVigua)
—268Bisj = ai¥(a?As; + @’ A Ve + (202 Bii; + 201 Bisy — a2 Aii; — ala? Asa) Viije
— a®(a?44; + a*4 ijk) Vi — aX (@t A ar + a?Aijn) Virr
—26Wiisis; = a(—2Bitaildiita?A4)Vi+(52Biii+20,2Biij— ala A iii— a2 A ) Visij
+a2(3Bisj + Bijj — 24:5)Viji; + a2(3Biix + B — 240)Vijur -
(In egs. [21] and [22] the summation convention has been suspended; also 7 = j > k
represent distinct indices.)
In equations (21) and (22) the index symbols 4. .. and By, .. are so normalized
that 4; 4+ As 4+ A3 = 2; and the symbol Cyx . is related to the symbol By .. in
the manner defined in Chandrasekhar (19675), equation (67). Also, a common factor

nGp in the expressions for the potentials has been suppressed; and, consistently, Q2
will be measured in the unit #Gp.

¢) The Divergence Conditions on Viji in Case of Incompressibility

When we are dealing with an incompressible ellipsoid, as we shall in §§ IV and V, the
Lagrangian displacement considered in § ITd should be divergence-free. This requirement
leads to certain restrictions on the symmetrized virials V;;; even as there are restrictions
on the second- and the third-order virials (cf. Lebovitz 1961, eq. [83]; Chandrasekhar and
Lebovitz 1963a, § VI); and they can be similarly found. Thus, by an integration by parts
we find

Lpfo grad[xixj (:;Z—:z— 1>]dx

(23)

k=1 Ok

the surface integral (over S) vanishing on account of the equation satisfied by the ellip-
soidal boundary and the volume integral (over V) vanishing on account of the solenoidal
character of &; and we obtain, in view of the definitions (20),

3
V.= ZVijkk
ij = — . (24)

2
=1 Gk

(Note that we have suspended the summation convection over repeated indices. It will
not be adopted in the rest of this paper. Summation will be indicated if required.)
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Equation (24) provides six relations. On the other hand, since the divergence condi-
tion on the second-order virials requires

3

V
S,
=1 Ok
we have the further relation
3
1% Viiss
SRR I Y, (26)
k=1 @k iz1 303

III, THE CONDITIONS TO BE SATISFIED AT A NEUTRAL POINT

At a point of bifurcation, or more generally at any neutral point, where the configura-
tion allows a neutral mode of oscillation for some non-trivial displacement &, the cor-
responding first variations of the equilibrium conditions given by the virial equations of
the various orders must also be necessarily satisfied.

We shall now consider the conditions that follow from equation (14).

Equation (14) provides a total of thirty conditions to be satisfied. These conditions
can be divided into four groups: a group of nine equations which are even in all three
indices 1, 2, and 3; and three groups of seven equations each which are even in a particu-
lar index %k and odd in the remaining two.

The nine even equations are, in turn, of two types: three equations of the form

208qisii + Wiz + Q2(1 — 643) Vs = — 361045 (t=123); @n

and six equations obtained by letting ¢ and 7 (¢ # j) represent an ordered pair of indices
in the equation

46Bj505 + 208550 + 20Wijsaz; + 0Wjjsass + 3Q(1 — 8;3)Vigyy = —30ILii. (29

(Note that eq. [28] is not symmetric in ¢ and j and that the equations obtained by inter-
changing ¢ and j are different.)

The seven equations, odd in a selected pair of indices 7 and 7 (¢ #% j) and even in the
index & (1 # 7), are of four types. The equations

268jsji + 0Wijsssi + L1 — 8a3)Visy = 0, (29)
408z + 20Wijir + 20Warsion + 0Wajsane + 3L — 835) Vijre = 0, (30)
and

46%Biizi; + 20W.j500 + 20Waisasy + 0Wajsase + 321 — 8:3) Visj = — 6011, (1)

together with the equations obtained from these by interchanging < and 7, and the further
equation

26BWk;i; + 20Bjnins + 20Wiasiw + 0Wkisis; + 0Bjwsnsi + 6Bkssssn

(32)
+392(1 e aks)Vijkk = —35Hij
(symmetric in 7 and j) provide the seven equations.

When dealing with an incompressible configuration (and sometimes even quite gen-
erally) it is convenient to eliminate the six 6II;s from equations (27)-(32). After the
elimination, we shall be left with twenty-four equations. In the case of incompressible
ellipsoids, the twenty-four equations must be supplemented by the divergence condi-
tions (24)-(26); and in the general case, six equations including the different 61II,;’s
must be considered and the 6I1;;’s must be evaluated by some additional assumption,
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such as, that the perturbed motions take place adiabatically (cf. Chandrasekhar and
Lebovitz 1963c¢, § VI).

In the case of the even equations, the six equations which remain after the elimination
of the three 611;;’s are of two types:

26%issis + 6Wai;i;0 — (40BWijij + 20Wissis + 20Wijsasy + 0Wjjias)

(33)
+02(1 — 8:3)Viis — 3221 — 6;3) Vs = 0 =7,

and
F(46j34 + 26W;j340 + 20Wijias; + 0Wj55550) + 3221 — 8;3) Visss (34)
— (40Bk3i1 + 20Wrissi + 20BWawsisn + Wrisize) — 3021 — 6k3) Ve =0 (G HEJ#Z k) .

In an Appendix, we list, for the case of homogeneous ellipsoids, the explicit expressions
for the various combinations of 6%.;;:; and 62555 that occur in equations (29)-(34).

IV. THE NEUTRAL POINTS, BELONGING TO THE FOURTH HARMONICS,
ALONG THE MACLAURIN SEQUENCE

One can readily convince oneself? that the neutral points, along the Maclaurin and the
Jacobian sequences that belong to the fourth harmonics, are derived from displacements
whose only non-vanishing fourth-order symmetrized virials are those that are even in
the index 3. Accordingly, we need to consider only the nine equations which are even
in all three indices and the seven equations which are odd in the indices 1 and 2.

In the case of the Maclaurin sequence, when a¢; = a, and the indices 1 and 2 can be
identified in all the index symbols, the various equations simplify considerably.

Considering first the even equations (33) and (34) and using the formulae (A.1) and
(A.2) given in the Appendix, we find that a non-trivial satisfaction of these equations
can be accomplished in only one of two ways. Either

Vi = Vasse and Viss = Vaess, (35)

and the fourth-order virials, after the elimination of the second-order virials with the
aid of equation (24), satisfy the equations

(92 — 24, + 2016A1111)(V1111 - 3V1122) =0 ) (6)
4
(4- 501203231113 — 1.5a3*Bi13s — 6 a32Bis +3 gi’—z B133> (Vi +V1122)
2
- (6 @1?Cr1ss — 24a5*Biiss — 6 Z—i’z Bs3> Viiss

+(3.75@12d3231333 — 8.7503433333 — 1.5&12Bla3+ 2.51323333 — 2333) V3333 =0 , 37
(1501431111 - 901203231113 - 120123111 + 60323113) Vi
+(27014B1111 — 9a,%a3?Bi1s + 6a32Bus + 12By — 692) Vitae

6 2
+ 6[3 %i'z‘ B3 — 6a:2a3*Biiss + % (as® — 2a4%)Byys+ Bis — 3Bg; ]Vnas (38)

4
+ (1 -501431133 - 7-5(112613231333 + 9a:2Byszs — 3 % Bm) Visss =0 )

and

2V1111

4
a]

+
(114

4V1133 V3333
oY =0, (39)
a1*as as

2T am grateful to Dr. N. Lebovitz for discussions relating to this point.
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(where the last eq. [39] is the divergence condition [26] appropriate for this case), or
Vi = —V2222, Viss = — V2233, and Vi = Vissss = 0 ’ (40)
and the non-vanishing virials satisfy the equations
4
(2% — 2Bj; — 0:%C1113)Vin + 6 % Ci18V 1133 =0 (41)
and
a2 CusVun + (92 — 2By — 6012C1113) Vs = 0. (42)

It is manifest that equations (36)—(39) can, in turn, be satisfied non-trivially in one
of two ways: either by letting

Q% = 2A1 - 2016A1111 , (43)

and determining Vyu, Viues, Viss, and Vssss, apart from an arbitrary constant of pro-
portionality, with the aid of equations (37)-(39), or by letting

1
Viee = 5Vum (44)

and requiring that the determinant of the system of equations

4
(6 a1%a3%Byy13 — 203431133 — 8a3*Byi3+ 4 a_3 Bwa) Viu

(45)
—6 <d12C1133 — 4a3*Byss ——; Bsa) Viiss

+(3.750126132B1333 — 8.7503433333 - 1.50123133 + 2.50323333 - 2B33)V3333 = 0 ’
(24(11431111— 12a:%a52Bius + 8a32Brs — 1204*By + 4By — 292) Vin

+6 [3 a_1‘25 B3 — 6a1*as*Buss + 0_12 (a5 — 2a:*) Bus+ Bz — 3333]V1133
as as (46)
+ (1 .5a1*Buiss — 7.501%a5’Bisss + 9 @1%Biss — 3 — B113) Vaass =
and
8V | 4Vuss | Visss
3a:*  altes®  agt

=0 (47)

(which are the appropriate forms of egs. [37]-[39] when the relation [44] obtains) vanish.
The two neutral points, which follow in this fashion, occur for eccentricities of the
Maclaurin spheroid given by

61(4)=0.93275 (where Q2=2A1_016A1111), (48)
and

ex™® = 0.98531 (where the determinant of the system of eqs. [45]-[47] vanishes). (49)

The latter point at e,® agrees with the point located earlier (Chandrasekhar 1967a) by
a different method.3
An alternative form of the condition (43) is

Q% = 2(By + a:*Bi1 + &1*Bun) - (50)

3 The value 0.98526 determined earlier differs slightly from the value (49). But it is believed that the
present determination is the more accurate of the two.
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It is of interest to contrast this condition, for the occurrence of a neutral mode belonging
to the fourth harmonics, with the conditions

Q= 2311 and Q2 = Z(Bn + aIZBm) ’ (51)4
for the occurrence of neutral modes belonging to the second and the third harmonics.

In view of these results, one may perhaps conjecture that a neutral mode belonging to
the nth harmonics occurs where

@ =2(By+ a&:?Buy + ... +a>)™VBey) . (52)

Considering next equations (41) and (42), we infer that a neutral point occurs when
the determinant of this system vanishes; and this condition gives

(@2 — 2Byu)(Q% — 2By — 70:.%Cius) = 0. (53)
We must, therefore, have
Q2 = 2By , (54)
or
Q2 = 2By + 701201113 . (55)

The occurrence of the “Jacobi point” (54) in this context is a consequence of the fact
that neutral points belonging to the second harmonics are automatically included in the
present analysis for the same reason that the equilibrium conditions (14) determine the
same Maclaurin and Jacobi figures as the equations

By + QU = W + Q25 = Wi (56)

provided by the second-order virial theorem.

The point determined by the condition (55) is, however, new and belongs, genuinely,
to the fourth harmonics. It is found that the condition is satisfied for a Maclaurin
spheroid with the eccentricity

63(4) = 0.98097 (where Q= 2B + 7(112(:1113) . (57)

This completes the discussion of the even equations.

We turn now to a consideration of the seven equations odd in the indices 1 and 2.
On inserting from equations (A.3)-(A.6) in equations (29)-(32), we find that the six
equations remaining after the elimination of é6IL;» and Vj, (the latter with the aid of
eq. [24]) can be reduced to the following four equations:

Q% — 241 + 20 41) (Vien — Visos) = 0, (58)

4
(9% — 2By — a:°Cin1s) (Vienn +Viaee) +6 % CiisV 1233 =0, (59)
a5’ Cuus(Vien + Visee) + (@* — 2By — 60:°Ciu) Vazas = 0, (60)

and
3(50:%Ci1s + 2By — @) (Vian + Vigss)

“%(92 —24;+ 2016A1111)(V1211 - V1222) (61)
a:* 2 2
"’0_32(4311 +15a,°Ci113 — 29%) Vg3 = 0,

¢ The first of these two points is, of course, the point of bifurcation where the Jacobian sequence
branches off from the Maclaurin sequence; and for the location of the second point belonging to the third
harmonics see Chandrasekhar and Lebovitz (1963b) and also Chandrasekhar (1963).
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where it may be noted that equations (59) and (60) are each repeated twice among the
original six equations.
It is clear that equations (58)—-(60) can be satisfied non-trivially in one of two ways:
either by requiring
. Vienw = —Vigae and Viess = 0 (62)
or by requiring
Vien = Vigeo and Viess # 0. (63)

In the former case, we are led to the same condition (43) that followed from equation
(36); and in the latter case, we are led to the same characteristic equation (53) for Q2
that followed from equations (41) and (42). It remains to verify that equation (61) is
satisfied under both these requirements: It is clearly satisfied under (62); that it is also

satisfied under (63) can be established as follows. When the determinant of equations
(59) and (60) vanishes (i.e., when eq. [53] holds)

Iﬁg _ a:* 3Cu1s _ 9 —2B;—6a:’Cuss

= — = — (64)
V1233 as? 02 — 2By — a1%Cus 2a5Cis
In particular,
V 3a4?
U= 2 when  Q*=2By
Viess as
(65)
a’ 2 2
= — when Q% = 2B+ 70:°Cius;

2 032

and we verify that under these circumstances equation (61) is indeed satisfied.

The neutral points ¢ ® and e;® are, therefore, repeated as solutions of the odd equa-
tions. We conclude that the corresponding neutral states are degenerate. On the other
hand, the point e;® occurs only once as the solution of the even equations; and this
indicates the non-degeneracy of the neutral state—a fact manifest from the uniqueness
of the proper solution determined for this point in the earlier paper (Chandrasekhar
1967a, see particularly § IX).

V. THE NEUTRAL POINT ALONG THE JACOBIAN SEQUENCE
BELONGING TO THE FOURTH HARMONICS

The six even equations provided by equations (33) and (34), after the elimination of
the second-order virials with the aid of equation (24), represent a set of six homogeneous
equations for the six fourth-order virials Vi1, Vaese, Visss, Vires, Vesss, and Vs, How-
ever, only five of these six equations are linearly independent when they are supple-
mented by the further condition (26) that must also hold. Therefore, including equation
(26), we have only six linear homogeneous equations between the six virials; and the
vanishing of the determinant of these equations is the condition for the occurrence of a
neutral point. It is found that the condition is met for a Jacobi ellipsoid for which

cos Y(as/a;) = 75°068 ; (66)

it is the same point that was determined earlier (Chandrasekhar 1967b) by a different
method.? The uniqueness of this neutral point indicates the non-degeneracy of this
neutral state—a fact that is in agreement with the unique proper solution that was
explicitly determined for this point in the earlier paper.

Turning next to the equations that are odd in the indices 1 and 2, we find that they

8 The value cos™ (as/a1) = 75°081 found earlier differs slightly from the value (66); but the differ-
ence is not outside the limits of accuracy of the numerical evaluation.
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provide no additional information: the six equations governing Vismi, Vises, and Viass
(remaining after the elimination of 61y, and Vys) are all satisfied identically by the sub-
stitution

Viow 2 Visss ¢ Viess = 3a4% : 3a22 : a3? (67)

by virtue of the properties of the Jacobi ellipsoid, namely, that
0?2 = 2By and (112(1221412 = @24, y (68)

along the Jacobian sequence. The reason for this behavior is that the neutral mode of
oscillation that characterizes the Maclaurin spheroid at its point of bifurcation persists
through the entire Jacobian sequence.

I am greatly indebted to Miss Donna D. Elbert for her assistance with the reduction
of the formulae given in the Appendix and for the numerical location of the various
neutral points.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.

APPENDIX

The particular combinations of 6%8:jx and 62yj;x:: that occur in equations (29)-(34) can
be written down by making use of the general formulae (21) and (22). In most cases, the re-
sulting expressions can be simplified substantially if proper use is made of the various identities
that relate the different index symbols. The expressions derived in this fashion are listed below.

2085500 + 0Wuisiss — (40Wajsi; + 20Wjjsis + 20Wijsi55 + 0Wij3454)
= 1.5¢:’[5a?B;ii — (2a:® + ;%) Bii]V s
+1.5a2(a?B;i; — 3a;?B.j;)Vi; + 1.5a.2(a*Bir, — a2Bijx) Vi
+[2B;;— 4B+ 2a2B.ij— 4a2Bii+ a(a2 + 2.750;%) Biiij— 8.750Bii) Vi (A1)
+0.75a.2(5a;2B;j;; — @.*Biiji) Viiii — 0.75a:2(a2Biar — ;*Bijin) Vier
- 1-50i2[5di231¢ik - (Zaiz + ajz)Biijk] Viikre — 1.50¢2(ai23-m'k - 3(1]'2Bijjlc) Vfikk
+1.5 [2By; + 2Bj; + 2(a? + a2 Bij; + a2(2a? + 7a%)Biiji — 50 Bisijl Viiss »

— (40Busir + 26Whnsii + 20Wisasne + 0Wnsi34)

= 1.5a:*(a;® — a®) Bijt — 3a2Beiji) Vi
—1.5a*(a’Bijx — 3a*Bij;) Vi + 1.50.(a;*Bij — 3ax*Bua) Vi
+0.75a¢2(a* — ax*)(5a:2Biisje — Biiji) Vi
—0.75a:(5¢;*B.j;; — ai?Bijin)Viiii + 0.75¢:2(5a:*Birir, — a;2Bijin) Vikie (A-2)
—4.5a.Xa;? — ) CijiriViinn
+[2Bjr — 5Bi; — 3Bj; + (a* + 2a4*) Bijp, — 3aBii; — 3(a + a?) B
+4.5¢%a1’ By — 3a*(a® + 3.5a;%) BiijV iijj
—[2Bj — 5Ba — 3By 4 (a2 + 209 Bije — 3aBis — 3(a® + ) B
+4.5aa;*B,ijr — 3a:*(a® + 3.5 Biiwr)Viiv
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—_ (25%1']';]'1' + 55&51']‘;]’;]') = 3dj4(—B¢ijij + Bz‘iijiiij + Bz‘jjkvijkk)
+(2B;; + 2a2Bij; + 5a;*Bijin) Vi

(A-3)

— (46Bi;jie + 26Wj506 + 20Binsivne + 0Wajsnse)
=3a;%0.(— Bijx Vi + BuiiViiii + BijinViiis) @a-4)
+[ZBz'j + 4By + (20j2 + akz)Bijk + 30’ Br + 3ak2(2aj2 + akz)Bijkk]Vijkk ’

—_—‘3(1,'2(11'2[— (Aij - 3ai2A,-i,-) Vij + (A igi 3ai2A iijj) Vijjj + (A ijk — 3ai2A iijl:) Vijkk] (A-5)
+3(24: + alafAs; — SaitafAui) Vi,

— (20Bkrss; + 20Wissin + 26Wijnsan + 6BWrwsis; + 0Winsisn + 0L j563)
=3a2a02(AiVii — AujpV iy — AV iisi) (A.6)
+ (641 — 9a2aar®Ainn)Vijir -
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