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ABSTRACT

The effects of general relativity, in the post-Newtonian approximation, on the Jacobian figures of
equilibrium of uniformly rotating homogeneous masses are determined. It is shown, for example, that
the post-Newtonian figure is obtained by a deformation of the Jacobi ellipsoid by a suitable Lagrangian
displacement cubic in the coordinates.

The solution of the post-Newtonian equations exhibits an indeferminacy at the point of bifurcation
My, where the Jacobian sequence branches off from the Maclaurin sequence, and a singularity at a point
J 1, where the axes of the Jacobi ellipsoid are in the ratios 1:02972:0.2575. The indeterminacy in the
solution at M arises from the fact that at this point the Maclaurin spheroid is neutral to an infinitesimal
deformation proportional to (x;, —x,, 0); and the singularity at J, arises from the fact that at this
point the Jacobi ellipsoid is unstable to the deformation induced by the effects of general relativity.

; I. INTRODUCTION

In Part II of this series of papers! (Chandrasekhar 19655, 1967; these papers will be
referred to hereafter as ‘“Papers I and II,” respectively) the deformation of the Maclau-
rin spheroids by the effects of general relativity in the post-Newtonian approximation
was determined. In this paper we shall Be concerned with the corresponding effects on
the figures of the Jacobi ellipsoids.

The consideration of uniformly rotating non-axisymmetric figures (such as the Jacobi
ellipsoids are) in the framework of the post-Newtonian equations of hydrodynamics as
they have been established (Chandrasekhar 1965a; this paper will be referred to here-
after as “PNE”) requires some care: in the coordinate system in which the equations
are written, the figures are not stationary; they are stationary only in a frame that is
rotating with the system. On these accounts, we shall find it convenient to transform
first the equations of PNE to a system of moving axes in the sense of Greenhill (1880;
see also Lamb 1932). This transformation is accomplished in § IT; and in § III we begin
the consideration of the deformed Jacobi ellipsoids.

II. THE EQUATiE)NS OF POST-NEWTONIAN HYDRODYNAMICS
IN A SYSTEM OF MOVING AXES

The equations of hydrodynamics governing an ideal fluid, in the post-Newtonian ap-
proximation, are

0 0 ) 20 oU . 4 d
aﬂt(a'va) +6_x—;;(avavﬁ) + xa[(l +—6;> 1)] —p 5;}4‘; P 2}( .U — Ua)

d
(1)
4 aUs , 1 #¥x 2 (GU 6@)_
+c2pvﬂ axa+262p6xa6t2 ez P ¢6xa+6xa =0
and
do 3 1 oU ap)
g9 . - )= 2)
at+axa(”“)+cz<‘° ot o)=Y (

1The following misprints in Paper II may be noted here: in equation (24) the first terms in the
expression for aq should be 3as* A & (instead of 3as* As); in equation (65) read (¢ = 2, 3) instead of (2 = 1, 3);
and in equation (69) the second summation is over # = 2 and 3 (and zot » = 1 and 2). Also the running
head for the article should have been ‘“Post-Newtonian Effects” (and not “Newtonian Effects”).
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where
_ 105 13)
a—p[1+c2<v+2U—|—H+p ] @
¢=v+U+iI+32, @

and x, U,, and ® are defined as solutions of the equations
Vix = — 2U, viU, =— 47Gpv,, and V2P = — 4nGpo (5)

also p denotes the density, p the pressure, pII the internal energy, v, the components
of the fluid velocity in the chosen frame, and U is the Newtonian gravitational potential
determined by the distribution of p.

By a series of transformations in which use is made of equation (2) and of the New-
tonian forms of the equations of motion in the terms which are explicitly post-Newto-
nian, it can be shown that

%(ova)-l-g%ﬁ(avavﬁ) crd—v—“-i—v“[dp—l- ( U)] (6)

Inserting this result in equation (1) and replacing ¢ and ¢ by their equivalents (3) and
(4), we find after some simplifications and rearrangements that it can be brought to
the form

d “y 6 N oU 4 oU
[1+ <v2+4U>] 12 () [ 22— (1425) S pos 5
Xa € 0%xa
(7)
3 1 X _ 4 dUc | wfdp, d 4, _
( o N’) PERGNPT +cz[dt+"dt(2”+w)]—
And in place of equation (2), we shall choose the alternative form (PNE, eq. [147])
@py 0%, 14 sy3y)=o0. ®)

dt VP ox. T ctdl

We shall now refer the equations of motion to a system of axes which is itself in mo-
tion. For the sake of simplicity, we shall restrict our transformation to the case when the
origin of the system of coordinates is at rest while the orientation of the axes is subject
to a rotation © (which can be a function of time).?

Let x and u denote the position and the velocity of a fluid element in the moving
frame. If v denotes the velocity of the same fluid element in the stationary frame but
resolved along the instantaneous directions of the moving axes, then

v=u+ QX x. 9)

More generally, if f(x, ) is any vector defined in the moving frame and f© is the same
vector resolved along the instantaneous directions of the moving frame, then

0)
%—t——-ﬂ—i—ﬂx_f (10)

2 The generalization to the case when the origin is also subject to motion presents no difficulties (cf.
Lamb, loc. ¢it.).
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No. 2, 1967 POST-NEWTONIAN EFFECTS 623

We recover eq. [9] when f is identified with the position vector; and identifying f with
the acceleration vector, we have the relation

d_v) _ dv-|—9.><0> . (11)
dt inertial frame moving frame

By resolving equation (7) along the instantaneous directions of the moving axes and
making use of the relation (11), we can write

i d v, 1 2 )2
p[1+§<v2+40)] —d”t—+eaayszﬁv7) [1--; (n+1”) ( +25 axa
4 aUﬁ d 0
+§ axa 62 <——‘+€aBVQBU7)+ dt 'Uﬁ'é_“ X_Z(I)] (12)

Jdp _
w2ttt <%v2+3v>] =

where v is related to u (the velocity of the fluid element in the moving frame) by equa-
tion (10) and

d 9 P)
@ _9 . (13)
i ai T %5,

Also U, is now governed by the equation
VU, =— 41Gp(#ho + €ap,Qp2y) . (14)

In view of equation (9), the equation of continuity (8) takes the form

dp ous 1 [ d va ) ]
| { | =0. (13)
dt P 9x, " ¢ €l Uy 3 0

a) Equations Governing the Hydrostatic Equilibrium of a Uniformly Rotating System

If the system appears stationary and there are no fluid motions in the moving frame,
then in equations (12) and (15) we may put

d

B—t=0, u=20, and v=QXx. (16)

Equation (12) then becomes
1 1
p{1+ ST x 0 + 40U famentstn + [ 1 - 5 (+2) |52

4 oUs 4
po PRy B, n. ot P WU, an

a

—o[1+hcaxo ]2+

a

1 9 ;( _3_>2 _ ]_
+62paxa[2 eaﬁvﬂaxﬁaxy X 29 _07

while equation (15) is identically satisfied.
We shall now suppose that Q is directed along the x3-axis Then (cf. Paper II, eqgs.

[6]-{8))

Uy =— 2D, Us = +Q9y, and U;=0. (18)
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624 S. CHANDRASEKHAR Vol. 148

where D, is the Newtonian potential due to the ‘“fictitious” density px,. With U, given
by equations (18), it can be readily verified that

oUsg
€8, 0x, — — €, U, = Q2 (19)
Buysip Xy 0%a aursip U » E
We also have
€aBvEvu X, = — " ®2Q2 (@2 = 2.2+ x52). (20)
a

Inserting the foregoing relations in equation (17), we find after some further reductions
and rearrangements that it takes the form

1—w< P) oL - {U+ b+ Lot 4+ 2000 N

+2@—4Q2(x1@1+x2®2 —-—(QXx grad)leg

The term in x on the right-hand side of equation (21) can also be expressed in terms
of the potentials D,. The term in question is

a%x , 07X a2x ax ax
—_ - -_— —= ). (22)
1) 12+x1 axzz 2x1x2 axlaxg *2 (9.7(32 1 6x1

(@ X x-grad)?x = Q? <x22

With the aid of the relations given in Chandrasekhar and Lebovitz (19624, egs. [S]-[7]),
equation (22) can be reduced to the form

0D , 9D2 3@1 9D,

—X1%2
0xs ax2 d0x;

(QXx-grad)2x=Q2[x2 + %12 ) (xl@ri—xzf@z)] (23)

Thus, the equation of hydrostatic equilibrium of a uniformly rotating mass in the post-
Newtonian approximation takes the form

[1-5(u +B) |52 = p U+ jorat 4 L sow+ 2000+ 20
a (24)
3 d 9 9
— 2 (1D + %2D3) — 3Q? (x22 a%: + s a(f; — %1%z 8?21 ks 3312)]% '

Equation (24) is a generalization of the relation first derived by Krefetz (1966; cf. also
Paper I, eq. [12]) under the assumption of axisymmetry.

b) The Integral of Equation (24) in the Case of Convective Equilibrium
If convective equilibrium prevails, then it follows from one of Maxwell’s thermody-

namic relations that
2),
— (25)
ax., P o%a (H T

and the right-hand side of equation (24) can be written in the form

o (14) =2 (1) ]
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and the equation directly integrates to give

+2 = v 43t L (142) 41000t + 2000 + 28— 1020 Datas D)
p p )

2 901 + 2,2 9Dy _ X1%9 (6@1 -+ 6_@2)] 2 -+ constant .

6x1 ax2 3362 ox1

(27)

— _%Q‘z[xz

III. THE TERM THAT IS EXPLICITLY POST-NEWTONIAN IN THE PRESSURE
INTEGRAL FOR THE DEFORMED JACOBI ELLIPSOIDS

In the rest of this paper, we shall be concerned with configurations in which the energy
density e(= pc2+1II) is a constant. This assumption, that e is a constant, is formally
equivalent to the assumption

p = constant and I=0, (28)

and the assignment to p the meaning of ¢/c2. On this understanding, the integral (27) of
the equation of hydrostatic equilibrium takes the form

2
Lo vywartSis (2) + 100+ 200 + 20— 10 (eiDrkeaDy)

— %Qz[xgz 9Dy + x,? 9D _ X1%2 9Dy + a©2)] § + constant.

0%, 0x2 dxs dxy

(29)

The problem now is to determine the equation governing the surface of the equilibrium
figure such that the pressure given by equation (29) vanishes identically on it.

In evaluating the term that is explicitly post-Newtonian in equation (29), we may
legitimately use relations and equations that are valid in the Newtonian limit when the
equilibrium figure is a Jacobian ellipsoid. The relevant relations are (cf. Paper II, eqgs.

(15]20])
8 2
£=1era32A3(1—E—x”—2>, (30)
p p=1 a’#

3 3
U =rGp <I -> A,‘xf) <I => A,ﬂ,ﬁ) ENET
p=1 pu=1

2 2
¢=7er[(I+%a32A3)+( e —%A1> x12+< 74 —%A2> x22—-52-A3x32], (32)

. 47Gp 47Gp
an
$ 7Q2 7Q2

where the various symbols have the same meanings as in Paper II. In particular, it is
to be noted that the index symbols are so normalized that 24, = 2. Inserting the fore-
going relations in the terms that occur with a factor 1/¢? in equation (29) and making
use of the known expressions for D, and D,z (Chandrasekhar and Lebovitz 19625, egs.
[49], [68], [70]) we find that the equation takes the form

? (’ﬂ'G )2 3 3 12,23,31
2oy soe+ IO (a0t D mant Dot X
=1 u=1

al‘vx#2xv2> ’ (34)
My
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626 S. CHANDRASEKHAR Vol. 148

where
ao=3as* 45" — 3 a3 A3B; + I(2143a345)+ %012(%92 —3544)B,

+%022(%Q2—5A2)Bz,

a; = —Z—ié A2 — 102 (@242 — a2 4:1)+202(1—2a,24,) — (21 + 3a3243) A,

+ (29*—541)(a1*An— 30:°By) — 5aBia (592 — 5 42) + 3 a3 4By,
as = ——Z—z: A2+ 302 (a2 A — a2 A1) +202(1 —2a22A4s) — (21 + 3a32435) 42

+ (292 — 5 42)(a* oo — 5a2*Biy) — 5a1°Bia (JQ* — 5 41) + 5 a4® A3Bas,
as= — a2 As?— (21 + 3a32A3) A3 — $a:*Bis (L2 — 5 41)

—3a2?By (20— 542) —54;(as" Ay — 1as?By),
alg-%ﬁiqtm[ 102~ 2( A1+ Ay) + 4 (a4 as?) Ay ] — 5 a5 AsBuog
+ (22— 541)(— a:' Ane + 3 0:%Buz) + (ZQ° — 5 42)(— a2* 412+ 302’ Bin2)

(35)
—%92[ (a?+ a2?) Aro— a2 411 — a2 Ase ],

a3 A3 +Q2(4ax? Ay —2A45) + (792 5A42)(— ax* Ases+ 2 a2?Bays)

Qg3 =

F(22—541)(3a:1*Bios) — 5 As(—as* Assat3 a5’ Bage) — 302 (a2’ An—ai? 4 1),

- —13—‘4—‘+sz2<4a12A31— 244) + (302 — 541)( — ar* Aus+ bartBus)

+ (192 542)(3as?Biss) — 5 As(—as* Ass1+3as?Bss1 ) +30%(a22 doy—ai2 A1),

au—l%As 92( QP?—2A41+4a24u) + (%92—5A1)('“d14A111+ia1gB111)
1

+ (39° — 5 A2)(Fa2’Buz) — S a3’ A3Buz — 50 (a2 An—a?4dn),

_1 wtdg
a22= 12 4
as

+ (—;—92 —541)(Xa1?Beay) —2as’ A3Byys — 10%2(a2 4o — a12A12),

+Q2(1Q2—2454+4a2240) + (%92"‘5 A2)(—as! Aose+% as*Base)

aspz =3 A2+ (22— 5 A1)(§a1®Buss) + (£Q* — 5 4,) (§a2Bass)
— 54;( —034A333+%032B333)-

(@ is measured in the unit #Gp in the terms on the right-hand sides of the foregoing equa-
tions.)
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No. 2, 1967 POST-NEWTONIAN EFFECTS 627

It should be noted that in equation (34), U is the Newtonian gravitional potential
of the deformed (as yet unknown) figure which the body assumes in the post-Newtonian
approximation. Similarly, @ (in the “centrifugal term” 3Q%@?) is not necessarily the same
(to order 1/¢?) as that of the Jacobi ellipsoid which was used in the evaluation of the
terms of order 1/¢c2.

The Virial Relations

With the expression for p/p given by equation (34), the equations of hydrostatic
equilibrium (for the case that is being considered) are

d 2(xG
6_xpl + Qxy+— (W p) x1( a1+ aew? + anws® + 2anxi?), (36)
2
(fxp + Q%x +%1r_cG_2P> P %2 Cap+ anpas® + ags? + 2 ugas?) (37)
2
and
Go)?
9 _ a_IZ..I_%Sr—p) P s (as+ asx® + asswe? + 2assas?). (38)

dx; P dx;3 c?

Multiplying equations (36)—(38) by 1, s, and x5, respectively, and integrating over the
volume of the configuration, we obtain

—fpdx
2 4
“513311+92[11+_(81rdld2dap)(7l'GP) <15 arT 0110052 a2 0130051 as+ 3051 au)

(39)
d12022 +

a’as’ 2at )
105 105

1 2
=§IB22+Q2I22+;2‘(Sralagaap)('rer)2 (11—2 as+ ast oo

2,2 2 12 2 a2
"%3334' (81010203P)(7FGP)2 3+11130a51 0«31+a1?00; ﬁl23'{"—3a:5i a33>

where B;; and I;; denote the potential energy and the moment of inertia tensors.
From equations (39) we obtain the eliminant relations

=%33—%11¢(7FGP)2 %33—5&22¢(WGP)2 5&22—5&11¢(7TGP)2

T 1 1
I c? I, c? Iy — 1o c?

Q2 Ey = Ey= Eyp, 40)

where

2
E5 = —(astaz — a:i?a1 + Fas2as’azs — L ar’as’are + S astass — Sartan),
a2 T 7 7 7
= 2 2 2 1,.2,.2 1,.2,.2 6 .4 6 .4
Ey = (as?as — a2?as +Las?a:2as — Ladas?ars + S astass — Sastasn), (41)
as2 7 7 7 7

Ey =

and

2
———(as%as — a:2ar + L astas’as — Las%alas +8astass — Sastan ),
a2 — as? 7 7 7 7

(@12 — as?)Eys = a1’Es — a9®Eys . (42)

IV. THE NATURE OF THE POST-NEWTONIAN DEFORMATION

We shall suppose that the post-Newtonian figure is obtained by a deformation of the
classical Jacobi ellipsoid by the application of a suitable Lagrangian displacement at
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each point of its interior and boundary. Since the density has to remain constant, be-
fore and after the deformation, the displacement must, in all events, be divergence free.
For the sake of convenience and also for emphasizing ‘that we are consideri ing an effect
of order 1/¢%, we shall denote the required Lagrangian displacement by

”G” o r(x). (43)

In virtue of this displacement, the bounding surface,

3

2
SJ=E§"—2—1=O, (44)
u=1 “H
of the Jacobi ellipsoid becomes
S=S— ”GP o, ZiJ 0; (45)
W
or explicitly
3 9 9 38
S = Z%_I_Zﬂ'igal E(Izlx::O (46)
(3 u=1 (]

The fact that the post-Newtonian term, already present, in the expression for p/p is
quadratic in «,? restricts us to displacements which are linearly dependent on the fol-
lowing eight:

E(l) = (xl)OJ— x3) ’ 5(2) = (0,902,— x3) ’ (47

1 1
EW=—(Jus’, = x12x2,0),5(4)———(0 307, —22"0), O = (— 21,0, 32°), (4®)
1 1

1 1 1
5(6)=E—2( 0,122, — 21%%3) ,5(7)=E—2( —x2%21,0,22%23) E“’“—"F(xg?xl,—xg,?xg,()). (49)
1 1 1

While the foregoing displacements are linearly independent as vectors, they are not
linearly independent modulo the ellipsoid3 Sy. Thus

E(ﬁ)+ E(7)+_ 1{(8)——0(mod SJ), (50)

for a linear superposition of the displacements £®, §™  and &® in the proportion
ar?:as?:a57* does not deform the boundary S; and there is in consequence no change
in the gravitational potential. In addition to equatlon (50), we have the relations

—1 = — — _— — —
L o=+ 02 oo Lpo]mods) e
an
1 2 5 4 8 6
azg()__[__g).;_ E) — _,z;()..}. EU](modSJ) (52)

The relation (51) follows, for example, from the fact that fo the first order in €, the equa-
tions

D2 g (-2 g g 2 52

p=1 I‘

3 Precisely, a set of vectors is said to be linearly independent modulo the ellipsoid if there is no non-
trivial combination of them which has a vanishing component normal to .S,
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and
S-S

define the same surface. Thus, rearranging the second term on the right-hand side of equa-
tion (54), we have

(20 nd) 3o min 3 (i) 3 (i
a1? M 3(11 022 (132 3032 (212
L3 ________ 1 (wiep e -
a as as 1) a, a1
3 3 3 1 ] 3S;
=g 2 g, -2 gm L2 g®) 2 g (|22,
0| o5 9 = 5 B 80— 5 6 |
and the relation in question follows. The relation (52) can be similarly established. Thus,
only five of the eight displacements ¥V, . . ., ¥® are linearly independent modulo the ellips-
otd Sy. And we shall select &V, . . . 5(5’ as the displacements in terms of which to ex-

press the Lagrangian displacement .f that is to serve the purpose of deforming S, to
its post-Newtonian figure.
We shall write then

5
£= S, (s0)
i=1
where S;(z = 1,...,5) are constants to be determined. For a displacement of this

chosen form, the equation of the bounding surface is

3 2
S(x) = 2775~ —2—’5@[511 o )+52a1 (———

u=1"* (587)

1S, _’EL__xl x2)+ Xt _xzxi 1S x342_x32xﬁ>]=0'

3(12 3as a1®

V. THE RELATION BETWEEN THE ANGULAR VELOCITIES OF THE
NEWTONIAN AND THE POST-NEWTONIAN CONFIGURATIONS

Since the post-Newtonian configuration is to be obtained by the deformation of a
Jacobi ellipsoid by the application of a Lagrangian displacement, we may write
%ap = %nﬁ(]) + 0W.p and I = Ia,s(.]) + 6.5, (58)

where L.s and .4 refer to the post-Newtonian configuration and 68,5 and 8. are
the first variations in 8,4(J) and I,5(J) (of the Jacobian ellipsoid) caused by the defor-
mation. The insertion of the foregoing relations in the virial equations (40) gives

602 = Q% — Q7 “—[ (685 — 0Wyy) — Q201 ] + (WGP) Egy
=“‘[ (65 — 6Wse) — 261021 + (WGP) Ey; (59)
L . (1er)
‘——[(5%22-5%11)—9.1(5111—5122)]+ Ey,

111_122

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1967ApJ...148..621C

T I oTABIT62AC!

i
Qi
™~
£9,

!

630 S. CHANDRASEKHAR Vol 148

where it may be recalled that
= 2B127TGP . (60)

From a relation quoted in Paper II (egs. [49] and [50]) we find that

B%aa a%ﬂﬂ

G (3Baa— Bag)Vaa+ (3Bgs — Bag) Vs + (Bgy — Buy )V, (61)

where

Ve = 2 el X = 0l 4
fV p§
(a # B # v, and no summation over repeated indices in egs. [61]).

Making use of the relations (61), we find that the virial equations become

G
spp=""0 (3311—313_2312)+— (3Bss — Bis) |Vu
T

11

G 2
+[ (Ba—Ba) +25 (3B~ Bw) [u} + 172
_7Gp _ _
=T 4] (Bu—Bu) +2% (3B —Ba) [V N
2
G 2
(3B — By = 2B) +25 (38— B) [} +{ 722
62
G
e {[ 3B —Bu) = 25 (Bu—Bw) [V
G 2
~[[3(Ba=Bu) +25 (Bi—Bw) [Vu}f + 172
where V33 has been expressed in terms of V13 and V2 by means of the relation
&—}—V” +K§ (63)

(satisfied by virtue of the solenoidal character of ¥).
For the chosen form of & namely, that given by equations (47), (48), and (56), we
readily find that
Vi= Swilg;aw mGp (7414514 a14Ss — a12a5%S5)
and (64)
8mwaiazasp 7er

Voo = 105 (7a1%a22S2 4 2151 — a1%a22Ss).
Also,
4 4
Iy = la_i%ﬂ g and Ip= ”ai‘?“”’ a?. (65)
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Inserting these relations in equations (62), we finally obtain

o Gp)?( 2
60 = (_W_pl_ ;7—0‘ [ @12(3B1—Bis— 2B12) +a3? (3Bss— Biz) 1(7 a1251+ a1’Ss— as*Ss)

c? 2

2
+ Tas [ a2* (Bia—Bs2) +as? (3Bss—Biz) 1 (7a1?Sa+@22Ss— a:253) +En g

Gp)2( 2
= _(lcf ) §T7—a—,—25 [ @12 (Bra—Bs1) +as?(3Bgz—Bys) 1( 701251+ 042S5— a52Ss)

2
+7—a-§ [ @2? (3Ba—By;—2Bu1z) +as® (3Bsy—Bas) 1(7a12Se+a22S4— a1*Ss) +Eos g (66)
2

[ 3a:2(Biu—Bs) —as? (Biz—Bas) ] (7a:2S1+a2S3— a;%Ss)

=(7er)2g 2

62 7((112'—022)

—5 75—+ [ 3092 (Bys—By2) +as? (Bys—Bas) ] ( 701252+d2254 a%S3) +E1?§ ’

where it may be verified that the last equality is implied by the first two (cf. eq. [42]).
VI. THE CHANGE IN THE GRAVITATIONAL POTENTIAL
CAUSED BY THE DEFORMATION

The deformation of the Jacobi ellipsoid by the displacement (56) will change the
gravitational potential U by the amount

Gpad < )
3U=EiL‘§:&5UM, (67
i=1

where (cf. Paper II, eq. [58])
p(x) £V (x)

()= — G — . 68)
5 U Gax“f P (

For the particular displacements ¥@ listed in equations (47) and (48), the required
variations 6U® can be expressed in terms of the potentials D, and Dagy (cf. Paper 11,
eqs. [8] and [59]); thus

09D; , 003 0D , 93 0 Danr 0D
SUW = — 21 @ = 992, 09 o) = —1 :
v oz Vo, 0V 92, oy U0V dx:  ° ox
(69)
0D 320 0 D222 D133 D333
25U = —1 28 T7(5) = _1 )
@ 6x3 3 axz ! and e 8U 6961 8 axa

Evaluating §U® with the aid of the known expressions for D, (Chandrasekhar and
Lebovitz 19625, eq. [49]) and D4, (Paper 11, eq. [63]), we find that they are expressible
in the forms

oU @ ) 3 .
—_ (%) (i)ar 2 —
= o'V 4 w1, (1=1,2) (70)
7Gp ;
and
agaU(i) 12,23,31 .
—lra)—— = 940V + Eu,,‘”x 2+ E U D 2,4+ E U D a2, (1=3,4,5), ("Tn)
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where
we® = By — By we® = By — Bs;
@ = By — By + 20441 ® = B33 — Bz
) = B3y — Bis; us® = Bss — Bag + 202?49 o
3D = Byz — Biz — 2a3?A33 3P = Bz — Bas — 205?433 ;

uo® = ’1‘012(022321 - 012310 y

m® = (114(3111 - B2n) - %(112((1223211 - (1123111) + a*Bm >

uy® = ._%0,12((122B122 — 0123112) — 01°09* B, ’

3® = —30:%(a’Bigs — 01’Bus)

un(B) = —‘(114(B1111 - .Bgnl) + %alsAuu + idl2(dz232111 - al2Bllll) - 01431111 )

Uge® = %012((1»2231222 - (11231122) + a1°as" Bioao ’ (73)

u33® = 10:*(a2*Boss — a:*Bus)

#1® = —a1*(Bue — Buz) — 26:'e’Aue + §a* (6’ Buze — 0’Buw) ,
— 1

93 = 3a,%(02*Broes — a:*Bunes) + 025" Buaos

un® = —014(31113 - Buza) + %012(02231123 - 111231113) — a*Buus 5

and the expressions for the coefficients belonging to the displacements &% and &® can
be obtained from those belonging to £® by a cyclical permutation of the indices 1, 2, 3.
Combining the foregoing results, we can write

oU = (WGP) ; ZS [uo(” + Zuﬂ(’)xﬂ ]

(74)
12,23,31
19 50) PIEE SPTNEES SFRC RS SRR | 3
VII. THE DETERMINATION OF THE POST-NEWTONIAN FIGURE
Returning to equation (34), we shall now rewrite it in the form
L Ut h0 (o ) + 80 4102 (27 4 02)
(75)

12,23,31

(WGP) [ o+ Z aux,® + E At +

where 602 and 8U are given by equations (66) and (74). The first two terms on the right-
hand side of equation (75) together with a suitably chosen additive constant can be com-

awxfxﬁ] + constant ,
uv
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bined to give the expression (31) appropriate for the Jacobi ellipsoid. We may there-
fore write

L (xGp)astas (1-— x")-r(”Gp) (366 (x2+22)
(76)
12,23,31
+ ZP x2+ EP"““" 4 E Poxlx,?4 constant]
where
2 5
P,‘= (1.,,+ 251012%‘“)—}-25@'%‘;“) (y,——— 1;273))
i=1 1=3
and (77
5
Pu =+ > Sith, (w=11,22,33,12,23,31).
i=3

The additive constant in equation (76) is now of order 1/¢?; also 8w? stands for any of
the three quantities in curly brackets on the right-hand side of equations (66), i.e.,
(_'[G_p )? S w?

62

8§02 = (78)

It remains to apply the boundary condition to the solution (76), namely, that it must
vanish on the surface (57). And in view of equation (57), the values of p/p on S'is given

by

G 2
(P) (T p) —2as*A; [51901 +——ng2 i (51+Sz)x3
4+ &t xlzgw_?)+5 xat % xo>_|_ wgt  xs’wy’ ] 79)
3 302 (122 ¢ 3(12 303 a1

12,23,31

+ 36w’ (2,24 x5%) + EP xu? 4 EP,‘,Lx# + 2 P.xlx, +c0nstant§

or
12,23,31

z Quxix,? + constant> , (80

uy

(P) (TGP)2 (EQ# x,2 4 ZQ‘“‘x“

where
Q1 =P1+ %50)2— 2032/1351 ’

a2
Q2= Pr+ 300" — 208 5 451,

Q3 = P;+ 26112143(51 + S2) ’

(81)

2a32 A 2a2 A
Qu="Fu— g:; 2 Ss, Qo2 = Pys — 3222—3 Siy, Qs =Py — 24,5,
2a3%A 20324
Q12"P12+_23 2 Ss, Q23 = Pos + 2 4354, Q51 =Py + s 2 S5

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1967ApJ...148..621C

T I oTABIT62AC!

i
Qi
™~
£9,

!

634 S. CHANDRASEKHAR Vol. 148

Since (p/p)s is of order 1/¢2 it will clearly suffice if we can arrange for it to vanish on
the original ellipsoid Sy. And we can arrange for it in two steps: first we require that
the expression

3 3 12,23,31
2 :Qﬂx#2+ E :Q/‘l‘xﬂ4+ E : Qurxax,? (82)
p=1 pu=1 p

remains constant on Sy, then we determine the additive constant in the solution (80)
so that (p/p)s does vanish.

We readily verify that in order that the expression (82) remains constant on Sy it
is necessary and sufficient that

014Q11 + 024Q22 - (112022(212 =0, (83)

a2Q22 + @503 — aas?Q2 = 0, (84)

a3'Qss + a1'Qu — a?a?Qs1 = 0, (85)

(114Q11 - 024Q22 + 012Q1 - 022Q2 =0, (86)
and

a3*Qs3 — a1*Qu + a0 — a’01 = 0. (87)

And these equations must be considered together with equations (66).

Now it can be shown (the proof is outlined in Appendix I) that the five equations (83)-
(87) are not linearly independent if we use for 3(a:? — a2?)dw? and —3a1%6w?, which oc-
cur in equations (86) and (87) via the terms ¢:2Q1 — a22Q; and — a,2Q4, respectively, the
values (cf. egs. [66])

% (a2 —as?)dw?= %[ 3a;? (Bu —By) — as?(Bys — By3) ] ( 701251 + @255 — a32Ss)

(88)
- %[3022 (Bzz — Biz) + a3? (Bis — B33) 1(7012S2 + a2*Ss — 01253) + 3 (@4 — a2 ) Exe
and
301700 = %[ @12 (3By — Biz — 2By12) + a3? (3Bs — B3) (701251 + 0453 — a4*S5)

(89)

+%[ as? (Bia — Bsz) + as?(3Bs; — Bi3) 1(7a1%Se + a2’Ss — @4253) + 3 a1%En ;

for, with these substitutions, the coefficients of S; and S, are identically zero in equa-
tions (86) and (87) and, moreover,

(@3*Q33 + @10 — a2a12Q31) — (2*Q22 + a3%Qs3 — a22a5’Qas)
= 7(014Q11 - 024Q22 + d12Q1 - azzQz)

(90)

and

(024Q22 + (134(233 - 022032(223) - (014Q11 + 024Q22 - 012(122@12)

= 7(034(233 - 014Q11 -+ 0320_3 - 012Q1) .

Thus, none of the equations (83)-(87) involves S; or S, and only three of the five
equations are linearly independent; they, therefore, suffice to determine S3, S4, and Ss
uniquely. The coefficients .S; and S are left undetermined by these equations. However,
the requirement that equations (88) and (89) are consistent with the same value of dw?

(91)
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leads to a single relation between S; and S2; and the solution can be made determinate
only by specifying* éw?. The situation here is the same as that which was encountered in
Paper II in the treatment of the deformed Maclaurin spheroids where, of the two con-
stants S; and S. there introduced, only S» was uniquely determined while .S; was left
undetermined so long as §w? was unspecified. In Paper II, the solution was made deter-
minate by setting (arbitrarily!) S; = 0 and then determining éw? which followed from
this assumption. In the same way, in this paper we shall make the solution determinate
by setting (again, arbitrarily)

S: =38, (92)
and then determining dw? which follows from this assumption.

In Tables 1, 2, and 3, we present the results of numerical calculations based on the
formulae derived in this section. (For the explanation of the entries, appropriate to the
point of bifurcation, along the first lines of Tables 1 and 2 see § VIII below.)

From Tables 1, 2, and 3 it is manifest that the solution is singular for a Jacobi ellipsoid
for which cos™ @3/a; = 757081 and whose axes are in the ratios

1:0.29720:0.25746 . (93)
The origin of this singularity is explained in § IX below.

TABLE 1
THE VALUES OF THE COEFFICIENTS Sy, Si, AND S5

cos"lasz/az S3 S Ss cos™las/az S3 Ss Ss
54°35762 —0 0174266|+0 069706|+0 29081 68° + 0 35776/— 0 22956(+ 1 7209
56° — 004696 |+ 051285/4-0 34646| 69°8166 + 0 49483|— 0 39681|+ 2 6348
58° + 023772 |+ 028057|+4+0 42549|| 70° + 0 51285|— 0 42119|+ 2 7679
60° 4+ 064135 {+ 002302|4-0 52622| 72° + 0 82586|— 0 89671|4+ 5 3493
62° 4+ 11534 |— 028711/40 66395| 75° . +27 81 —49 84 +266 6
64° 4+ 17798 |— 069736/+0 86541|| 75°081 + o + T
66° +0 25550 |—0 12998 {4-1 18124i| 77° — 1 00141{4+ 2 6770 |— 13 507

TABLE 2
THE RELATIONS GOVERNING Si, Sg, AND dw?; AND THE VALUES
OF THE CONSTANTS IN THE CASE §1 = 5

coslas/ a2 w2/ a1? S1=2S8: 8w2(S1=3S2)/a1?
54°35762 S;+1 00000 S;= 0 20170 0 S:+0 43532 +0 10085 +0 43532
56° Si1+1 03394 S;= 0 1935 0 048866 .S.+0 39638 +0 095152 “+0 40103
58° S1+1 07680 S;= 0 18219 11060 S.+0 34922 —+0 087725 +0 35892
60° S1+1 12219 S;= 0 17006 17307 S;4-0 30281 +0 080134 -+0 31668
62° S1+1 16996 S:= 0 15834 23490 S.+0 25744 +0 072970 +0 27458
64° . S1+1 22017 S.= 0 14829 29435 S;+0 21332 +0 066792 +0 23298
66° S1+1 27289 S;= 0 14152 34944  S,-+0 17040 +0 062265 +0 19216
68° S1+1 32813 S;= 0 14088 39798 5,40 12812 +0 060513 +0 15220
6998166 S1+1 38055 .S;= 0 15088 43437 S.+0 088647 | -+0 063380 +0 11618
70° S1+1 38596 Se= 0 15284 43755 S2+0 084467 | +0 064060 +0 11250
72° S1+1 44631 S;= 0 19955 46560 S;+0 031296 | -+0 081571 +0 069275
75° S1+1 5414 S,= 5 7129 48016 S;—2 15262 +2 2479 —1 0732
75°081 . .. o + +
77° S1+1 9358 S,=—0 29077 | 0 54455 S,+0 14083 —0 099041 +0 086902

4 An exception occurs at the point of bifurcation where 8w? is uniguely determined and an essential
indeterminacy in the solution is left The origin of this indeterminacy is discussed in § VIII below.
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VIII. THE POST-NEWTONIAN CONFIGURATIONS AT THE
POINT OF BIFURCATION

At the point (¢ = 0.812670) along the Maclaurin sequence where the Jacobian se-
quence branches off and a; = a., equation (88), as it is written, becomes indeterminate.
However, dw? given by this equation tends to a definite limit; it is given by

Vol. 148

dw?= —3—( (132.3113 - 3(112.3111)[7(112 (S]_ + Sz) + (112S4 - 03255] +E12 [} (94)
where (cf. eq. [41])
2 2 2 2 4 4
. . azaz — @i“ax a2°023 — @1°a31 Az a2 —aran
Eyz = limit 2 —‘_2_5“4'%“32 2 2 ‘?‘ 2 2 : (95)
a—az at* — Ao a1* — QA2 a1 — as
TABLE 3
THE COEFFICIENTS P, (IN THE CASE S; = S2) AND Py
IN THE EXPRESSION FOR THE PRESSURE (EQ. [76])
cos™las/az Py P, Py Pu Pn P P2 Py Py

54935762 —1 65334| —1 63424| —4 16967 +4-0 39826| 40 39826 41 77778| + 0 79652| -1 53280| -1 53280
56° —1 43801 —1 59358 —3 84130 4-0 36023| -0 43948| +1 77789| + 0 79138| +1 63505| +1 43124
58° —1 20155 —1 53524| —3 45550{ -0 31778| -0 49479| -1 77823| + 0 77088 -1 76198| +1 30700
60° —0 99272 —1 46687| —3 08576] 40 27975 -0 55571| -1 77891| + 0 73460| +1 89126| -1 18222
62° —0 81020 —1 38830| —2 73258 40 24632| --0 62242| 4-1 77996 + 0 68249| -+2 02280 +1 05661
64° —0 65274| —1 29964| —2 39649 40 21778 -0 69500| 41 78149| + 0 61448| +2 15645| 40 92946
66° —0 51911 —1 20136| —2 07780 40 19471} 40 77360| +1 78371| + 0 53000| -2 29222| 40 79913
68°. ... —0 40836| —1 09414| —1 77668 +-0 17841} 4-0 85851] 41 78716 + 0 42642| -+2 43060| 40 66172
69°8166 —0 32751| —0 98965| —1 51780] -0 17241| 40 94205 -1 79240 + 0 30814| +2 56035 40 52221
70° —0 32045 —0 97875 —1 49238 40 17251 -+0 95088| 41 79313| 4 0 29425| +2 57385| 40 50666
72° —0 25980 —0 85527| —1 22070| 40 19058 41 05578] +1 80642| -+ 0 09287| 42 73143} 40 29473
75°. .. —1781 | —0296 | +0 363 | 43 680 | 42 593 | 43 046 | —11 05 +5 56 -9 92
75°081 + o tw +® o +o + o to + o + o
77° —0 15132 —0 74504| =0 44611] —0 00517} +1 58871| +2 38364 + 1 21229| —0 0524 | —0 31968

By making use of the explicit expressions for the a,’s
we find after some considerable reductions that

E12 = 2[— (11292311 - 292I + 401292((1121411 + ZBn) + (2] + 3(132A 3)311
+ (1'12(%‘92 - SAl) (3C111 - 2Bll - alell) - 5‘7'14(14-1 - %Bll)All

- %(11431114 b %ang 3Cus

)

and a,,’s given in equations (35)

+ —?7032[— 20045 + 49Cus + (%92 — 541) (a1*Ans + 20:°Bus — 3a5°Ciiz)

— S5a:*(3Bus — Ais)Au + S5a5243(3Cuss — Bus) + $01*Busdu + a2QPBys] (96

+ -1-7—2[92(80120111 — 4a:’Bn — 2a,*4n — 3020 — 51116A11(2B1n — An)

+ 014(%92 - 5A1) (—14—501231111 — 20’41 — -115-3111 + 34nu — icnn)

+ 2a:°Bindn + $a:2a5*45Cis + a1* QB

where the new index symbol C,jx

and, hke Bijk

(2 is measured in the unit #Gp in eq. [96]) ,

Cijk

— aBij

, is symmetrical in its indices.

bl

, we have here introduced, is related to B;j
= By

by
97)
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Under the same circumstances, equation (89) gives (without any ambiguity)

2
dw?= ‘7-0—15 [ @2 (Bii—Bis) +as? (3Bss—Bi3)1[ 70,2 (S1+S2) +a12S:i— as?Ss ) +Fs, (98)

where it may be noted that Ej; as defined in equations (41) agrees with the definition
given in Paper II (eq. [29]) in the case a1 = a,. Also, by making use of the special rela-
tion (as?4; = a,*41,) that obtains at the point of bifurcation, equation (98) can be
brought to the more familiar form (cf. Paper II, eq. [55])

2
dw?=FEy —%a:’(a*Au— 2as’ A13) [7(51+S2) +S4—% 55] . (99)
1

The remaining equations (83)-(87) are also unambiguous when ¢; = as; and they
suffice to determine the constants Ss, Ss ,and S5 uniquely. As the equations for deter-
mining these constants, it is convenient to use in the present context the set

Ou+Q2—Q12=0 (100)
02(Qu1 — Q22) — ag?(Qa1 — Qa3) = 0, (101)

and
as*Qss + 010 — afa®Qn = 0. (102)

We shall now show that for the case under consideration
2
Si= — 483 and Sp= — K7 Ss. (103)
3

We first verify that when the expressions for the Q,,’s given in equations (81) are sub-
stituted in equations (100) and (101), the terms, besides the P,,’s, cancel if the rela-
tions (103) are assumed; we shall therefore be left with

Pii+4 Pyy— P1p=0 (104)
and
a2(P1yy — Pas) — a?(Ps1 — Pys) = 0. (105)

The expressions for the P,,’s are given in equations (77); and in view of the equalities
ann = agp = z3a12  and a3 = ass (106)

which obtain in this case, the constant terms in equations (104) and (105) will cancel;
the equations thus become homogeneous in Ss, Ss, and .S;5 and the validity of the rela-
tions (103) will require that

[9001® 4 295D — 415D ] — 4L + 290 — 419]

17a,? (rom
- "“——;— (%119 + 222 — 412D ] =0
3as
and
{ar{un® — 1P| — ag{un® — U@} — 4 fa{un® — un®] — alun® — 93P}
17a4? (108
_2tor (a2 [ 411® — 4238 ] — aa?[ua1® —up® ]} = 0.

3 032

In Appendix IT we verify that these equations are indeed satisfied.
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Hence, the Lagrangian displacement, which deforms the Maclaurin spheroid at the
point of bifurcation into its post-Newtonian figures, has the form

£ =S+ S1E® 4 S5:E® (109)
where
= 5(3)—45(4)"%0—;2‘ £ (110)
3

The value of the constant S;, left undetermined by equations (100) and (101), follows
from the remaining equation (102). It is found that (cf. the entries along the first line
in Table 1)

S; = —0.0174266 . (111)

Returning to equations (94) and (98), we can write them, in view of the relations
(103), in the forms

. 8w? = Ep + 2a:*(asBus — 3a:*Bu) [7(S1 + S2) + §53 (112)
an

dw? = E3 — i.}'-(112((1121411 — 2(132/113) [7(51 + Sz) + %S:;] . (113)

Since these equations involve Sy and S, only in the combination (S + S3), it is clear
that they will suffice to determine dw? and (S; + S2) uniquely; but they will not de-
termine S; and S, separately. It is found that (cf. the entries along the first line in Table 2)

S1+ S, = 0.201701 (114)
and

dw? = 0.435318 a,®. (115)

Thus, at the point of bifurcation an essential indeterminacy in the solution remains and a
continuous range of equilibrium figures becomes compatible with the same value of Q2. The
origin and the meaning of this indeterminacy will become apparent once we have related
the present solution with that obtained in Paper II with the restriction to axisymmetric
figures.

As we have seen in Paper II, the axisymmetric figure which a Maclaurin spheroid as-
sumes in the post-Newtonian approximation can be obtained by deforming the spheroid
by a Lagrangian displacement which is a superposition of the displacements

n(l) = (xl,xg,—ng),

1
n®» =ﬁ [(x12+x22)x1,(x12+x22)x2, - 4(x12+x22)x3], (116)
1

and
1
n® = E;E (2221, 25209, — 223).
[These displacements were denoted by £V, ¥ and £® in Paper II; we are denoting
them here by n®, n®, and n® to distinguish them from what we have already denoted

by &®, @ and £9®.] We may also recall here that only two of these three displace-
ments are linearly independent modulo the spheroid; thus (cf. Paper 11, eq. [43])

2
a4 5 2w = (350 + (y — §5) a1 (mod Sus), arm
3

where v and § are arbitrary constants.
We shall now express n® and n® in terms of the displacements &®, ..., &® de-

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1967ApJ...148..621C

T I oTABIT62AC!

i
Qi
™~
£9,

!

No. 2, 1967 POST-NEWTONIAN EFFECTS 639

fined in this paper (egs. [48] and [49]). From the definitions of the various displacements,
it readily follows that

n® = 3E® - 5@ — D 4 45©®
and (118)
n® = —2§® — ¥®

By making use of the relations (50)-(52) we can express the displacements &®, &7,
and ¥® modulo the ellipsoid, in terms of &V, . .., £®; and we find that, in the special
case ¢; = @3 in which we are presently concerned,

n® = [ — S+ 18 4 LED](mod Sye)
and (e
2
2—12 n® = [ 4+ B — HED 4+ HEP (mod Sue),

where x is the same vector defined in equation (110). A linear combination of n® and
n® can, therefore, be expressed in the form

2
yn®+ 5 Z_:znw)
(120)
=[-FCGy—08)x+{5(167y—8)EV + (v +46) E®](mod Su.)

where v and § are arbitrary constants; or in view of the relation (117) we can also write
et (ergy) 0+ (et iy) ]
<) @=| 22 =Py srm L Yz
an®+pa® = =L gt (atT3) €0+ (a+i7) €9 | (mod Sw), azv

where a and B are (different) arbitrary constants.

By comparing equations (109) and (121), we conclude that the general solution for &,
given by equations (109), (111), and (114), includes an axisymmetric displacement of
the form

£ux = an® 4 fn® | (122)
if we identify
9 16
Ss = —Tg’ Sy = _1?,@’ and Sg;a—{——l%. (123)

Since only .S; 4 S is determined in the general solution, the coefficients a and 8 in
the axisymmetric solution (122) can be uniquely determined. Thus, letting

_%zsp ~0.0174266  and 2a+11—'z3ﬁ~_—_51+52=0.201701’(124)
we find that
> a = 0.084392 and B = 0.025172. (125)

The corresponding values of S; and S, are

Sl’ax = 0.115372 and Sz,ax = 0.086328 . (126)
We observe that the value of 8 we have determined agrees with the coefficient of the

displacement n® determined in Paper II (see the entry under S, opposite ¢ = ¢; =
0.81267 in Table 1 of Paper II).
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It is of interest to verify that the value of §w? given by equation (113) agrees with
what would be predicted by equation (55) of Paper II for the particular displacement
(122) included in the general solution. By inserting for S; and S; + S», in accordance
with the definitions (123), in equation (113), we obtain

6w2=E31—%d12(d12A11—'2(132A13)(7a+46), (127)

in agreement with equation (35) of Paper II.
The conclusion to be drawn from the foregoing analysis is that the bifurcation of the
non-axisymmetric sequence from the axisymmetric sequence occurs at a definite point where

24,2
Q2 =0.37422xGp+0.435318 @}ﬂ; (128)

and further that the unique axisymmetric post-Newtonian configuration at the point of bifur-
cation is obtained by deforming the Maclaurin spheroid at the Newtonian point of bifurca-
tion by the Lagrangian displacement

”G’”“ Eax—"G”‘“ [0.084392nM 4 0.025172n®]. (129)

The solutions compatible with the post-Newtonian equations are more general than
the axisymmetric solution (129) which arises from a particular choice of the constants Sy
and S, (namely, those given in eq. [126]). On the other hand, since Sy 4+ S2 has to be
the same for all solutions, it is clear that the general solution is expressible in the form

=&+ 'Y[‘f(l) - E(Z)] ’ (130)

where Eux 15 the uniquely determined axisymmetric solution and v is an arbitrary constant.
Expressed in the form (130), the origin of the indeterminacy inthe solution, through
the occurrence of the term

'Y[E(l) - E(z)] = 7(x1) — X, 0) (131)

is clear: it arises from the Maclaurin spheroid, at the point of bifurcation, being neutral
to an infinitesimal deformation proportional to (x;,—ws, 0) (cf. Chandrasekhar 1963,
eq. [27]). The continuous range of post-Newtonian equilibrium configurations which occur
at the point of bifurcation is a general-relativistic manifestation of the Newtonian instabil-
ity which sets in at this point if some dissipative mechanism is present.

IX. THE ORIGIN OF THE SINGULARITY AT COSla3/a; = 752081

The mathematical origin of the singularity in the solution that occurs at a determi-
nate point (cos™ as/a; = 75°081) along the Jacobian sequence is clear: at that point,
the determinant of the homogeneous system, associated with the linear equations de-
termining the constants S, S4, and S5 (say egs. [83]-[85]), vanishes. The physical origin
of the singularity, as we shall presently explain, is that at that point the Jacobi ellipsoid
is neutral for deformation by an infinitesimal displacement of the form

7rGP(11 ES f(t) (132)

=1

where the coefficients S3, S4, and S; of the cubic displacements, ¥®, ¥® and §®, are
not all zero. (The factor #Gpa,2/c? on the right-hand side of eq. [131] is not relevant for
our present considerations; but it has been included in order that the results of §§ IV-
VIII can be used with the minimum of alterations.)
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Quite generally, the condition for the occurrence of a neutral point for a chosen defor-
mation is that the conditions for hydrostatic equilibrium are unaffected by it. In the
present context, the deformation of the Jacobi ellipsoid by the displacement (132) will
change the gravitational potential U by an amount that will be given by equation (74).
And the corresponding change in €2 will be given by equations (66) with the terms in
E,, on the right-hand sides suppressed. The analysis in § VII will continue to apply,
and we shall eventually be led to formally the same set of equations (83)—(87) with the
only difference that in the definitions of the P’s given in equations (77) the “inhomoge-
neous” terms in the o’s should be suppressed. And finally, the propositions, that Sy
and S2 do not occur in equations (86) and (87) and that only three of the five equations
(83)—(87) are linearly independent, continue to be valid in the absence of the terms in
the a’s. The condition, then, that the Jacobi ellipsoid is neutral to a non-trivial deforma-
tion, cubic in the coordinates and of the form (131), is that the determinant of the equa-
tions (83)-(85) (which are now homogeneous) vanishes; but this, as we have seen, is
precisely the condition that the solution of the post-Newtonian equations has a singu-
larity. The situation here is the same as that we encountered in Paper II at the point
e’ = 0.985226 along the Maclaurin sequence. And as in Paper IT, we may now say that
the Newtonian instability of the Jacobi ellipsoid, for a cubic deformation of the form (132)
15 excited by the post-Newtonian effects of general relativity.

X. CONCLUDING REMARKS

The determination of the figures of equilibrium of uniformly rotating homogeneous
masses in the post-Newtonian approximation has brought out two features of possible
general interest: first, the instability of Newtonian figures to the type of deformation in-
duced by general relativity makes their physical existence valid only in an asymptotic
sense; and second, the neutrality of the Newtonian figures to the type of deformation
induced by rotation makes for an indeterminacy in the relativistic solutions.

I am indebted to Miss Donna D. Elbert for her assistance with the numerical work
and to Dr. E, Krefetz for checking parts of the analysis.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.

APPENDIX I

Two principal facts concerning equations (83)—(87) that were stated in § VII without proofs
are: (1) that there are no terms in S; and S, in equations (86) and (87) if we substitute for
1(a:2 — as?)0w? and 1¢,%0w?, which occur in these equations via the terms a:2Q; — a+*Q» and
a1%Q1 (cf. egs. [81]), the expressions (88) and (89), respectively; and (2) that equations (90) and
(91) are satisfied and that in consequence only three of the five equations (83)—(87) are linearly
independent. These two facts establish the sufficiency of equations (83)—(87) to determine the
constants Si, S4, and S5 uniquely. In this Appendix, we shall indicate, very briefly, how the
truth of the two basic statements can be demonstrated

By substituting for Q, in accordance with equations (77) and (81) and for dw? in accordance
with equation (88) (in the case of eq. [86]) or (89) (in the case of eq [87]), we find that the terms
in S7 and Sy in the two equations are

2
ZSmﬁ[ 0,12%1“) - 022%2“)] - 2(112(132/1351 + 2012032A3SQ
i=1
+ S10:2[3a:2(Bin — Bi2) — a5*(Bis — Bas)] (AL-1)
— S20:%(3a2(Bay — Bua) -+ as?(Bis — Bas)]
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and

2
D Siar2l asusD — a1+ 201205 A5 (S1+ S2) + 2012042 435,
i=1
- S1012[61«12(3Bn — Bz — 2812) -+ (132(3333 — .813)] (AI.2)
- 52(112[022(312 — Bsz) + 032(3333 - B13)] .

Substituting for the #,(’s from equations (72), we find that the coefficients of S; and S, in
each of the two foregoing expressions, vanish if appropriate use is made of the elementary
identities among the one- and the two-index symbols and of the particular relation

a;:?A 3 = 01202214 12, (AL.3)

which determines the geometry of the Jacobi ellipsoid.
Considering next equations (90) and (91), we first rewrite them in the forms

6a1*Q11 — 6a2* Qa2 + 052a°Qs1 — a2a5?Qas + 7201 — Ta?Q = 0 (AL.4)
and

6a3*Q33 — 6a1*011 + 02225’ Q23 — 012092012 + Ta?Qs — Ta*Qr = 0. (AL.5)

Next, substituting for the Q’s and for dw? (from eq. [88] in eq. [AL4] and from eq. [89] in eq.
[ALS5]), as before and writing out fully the expressions for the E’s given in equation (41), we
find that the terms in the a’s cancel (in both equations) and we are left with

5
E :Si[ 6ariu D — 6a2' s + astaPun't — as?as’usd -+ 7012%(” - 7(122%2(”]

=3
+ Ss[— 4a208?4 5 + 3(114(311 - Bw) + 3012022(322 - Bn)]
(AI.6)
+ S4[+ 2a22a32A3 - 3024(B22 - B12) - a22a32<Bl3 _323)]
+ Si[+ 2a3*43 — 3a2a2(B1y — Bia) + a5'(Bys — Bag)] = 0
and

5
ESi[6034M33(“ — 6a1*un® + a’as’ug'V — 012022%12(“ + 7032’%(")" 7012%1”)]
i=3
+ S3H“ 2020?45 — 014(3311 — Bz — 2312) + 012022(312 - 332)]
(AL.7)
-+ S4H‘ 2ala?4 3 — 024(312 - Baz) - 022032(3333 - Bl3)]

+ Si[— 4a3*4 3 + a:2a2(3B11 — Biz — 2Bis) + a3*(3Bss — Bys)] = 0.

If we now substitute for the #’s their known expressions (from eqs. [72] and [73]), we find that
the coefficients of S3, Sy, and S5, in both equations, vanish though the reductions necessary to
show that they do are considerable. However, the reductions present no special difficulties if,
after expressing all the B-symbols in terms of the 4-symbols with the aid of the formula

Bijr =Ap —aldie.. , (AI.8)
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we effect the reductions systematically with a view to utilizing the following relations between
the symbols of successive orders:

TAuuad + Auijad + Auaai® = T4,

540 + 340 + Awipai? = TAw;j,

34 el + 3402 + 34 e = TA ik, (AL.9)
SAinal + Aija® + Aiai® = 544,

34 ;02 + 34507 + A = 5445, (t#j#k);

and no summation over repeated indices in eqs [AI9]).

APPENDIX 1I

In this Appendix, we shall indicate how the validity of equations (107) and (108) can be
demonstrated.

Considering first equation (107), we find by using the known expressions for the #,,’s (from
eq. [73]) that

U ® 4 U9 ® — 41,® = 84,5 41111, (AIL-1)
un® + g™ — W = 30541y, (AI-2)

and
#11® + u22(5) — u12(5) = () ; (AII.3)

and equation (107) follows.
Considering next equation (108), we similaily find

a2 ® — a1249,® — a3?us P + a5 u® = %dlsAnu

(AIL.4)
— 6.2 - 6 4.2
2a:%a324 1113 2a:°4 111 + 2a1'a?4 413 ’
altun'? — alup® — atun® + afuy = — %dlsAuu
(AII.5)
+ 3a:%a A 1113 — Jaras* A s + 0154111 — a1*e?d s ’
and
a’un® — aPu® — aun® 4 afun® = 3a’a* A1
(AII.6)

— ay%as*A us + 014032A 11 — a?as* 413 .

Inserting the foregoing relations on the left-hand side of equation (108) and reducing the re-
sulting expression with the aid of equations (AL.9) we find that it vanishes as required.
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