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ABSTRACT

In this paper we consider ellipsoidal figures of equilibrium (of semi-axes @1, a;, and a;) of homogeneous
masses rotating uniformly with an angular velocity £ and with internal motions having a uniform vor-
ticity ¢ (in the rotating frame) in the case that the directions of { and { do not coincide. Riemann’s
theorem, that in this case £ and { must lie in a principal plane of the ellipsoid, is shown to follow from a
consideration of the non-diagonal components of the second-order tensor-virial theorem. The conditions
for equilibrium are also derived; and the domains of occupancy of these Riemann ellipsoids in the
{as2/a1, as/ai)-plane (on the assumptions, which entail no loss of generality, that & and £ have no com-
ponents in the x;-direction and that a2 > a3) are explicitly specified.

It is shown that the equilibrium ellipsoids are of three types: ellipsoids of type I which occupy the
domain 2a; > {(a: + as) and a» > a1 > as; ellipsoids of type IT for which @ > 24, and as/a; (<1) are
limited by a locus along which /"pdx = 0;and ellipsoids of type III which occupy the domain limited by
2a; < (a2 — a3) and a locus along which O» = & = 0 and @; > @. And quite generally, it is shown that
an ellipsoid, represented by a point in the allowed domain of occupancy, is a figure of equilibrium for two
different states of motion (£, {) and (Q1, ¢7); and that the two resulting configurations are adjoints of
one another in the sense of Dedekind’s theorem.

Ellipsoids of type T may be considered as branching off from the Maclaurin sequence with an odd mode
of oscillation neutralized at the point of bifurcation by the choice of 23 and {3 (% and §; being zero).
And ellipsoids of type ITI may be similarly considered as branching off from the ellipsoids of type S (for
which the directions of { and § coincide with the xs-axis) along the curve where they are marginally
unstable.

The stability of the Riemann ellipsoids with respect to oscillations belonging to the second harmonics
is also investigated. Tt is first shown that the characteristic frequencies of oscillation of an ellipsoid and
its adjoint are the same; and further that || and |Q1] are allowed proper frequencies. The loci along
which instability sets in, in the different domains of occupancy, are determined. Of particular interest are
the facts that all ellipsoids of type II are unstable; that along the curve where the ellipsoids of type III
branch off from ellipsoids of type S, the stability passes from the latter to the former; and that among the
ellipsoids of type I there are some very highly flattened ones that are stable.

Several statements of Riemann concerning the stability of these ellipsoids are not substantiated by
the present detailed investigation. The origin of Riemann’s errors is clarified in the paper by Lebovitz
following this one.

I. INTRODUCTION

Pursuing earlier investigations of Dirichlet and Dedekind, Riemann (1860; see also
Hicks 1882 and Basset 1888) proved that the most general type of motion (linear in the
coordinales) compatible with an ellipsoidal figure of equilibrium of a homogencous mass
consists of a superposition of a uniform rotation Q and internal motions of a uniform vor-
ticity ¢ (in the rolating frame) about axes that lie in a principal plane of the ellipsoid. More
precisely, according to Riemann’s theorem there are three distinct circumstances (and
only three) under which ellipsoidal figures of equilibrium can arise. These are: (a) the
case of uniform rotation @ about the least axis of the ellipsoid; (b) the case when the
directions of @ and ¢ coincide with a principal axis of the ellipsoid; and (¢) the case
when the directions of Q and { do not coincide but lie in a principal plane of the ellipsoid.
Case (a) leads to the classical sequences of Maclaurin and Jacobi; case (4) leads to the
various Riemann sequences considered in an earlier paper (Chandrasekhar 19655, this
paper will be referred to hereafter as “Paper I”’); and case (¢) will be considered in this

paper.
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II. THE EQUATIONS DETERMINING THE EQUILIBRIUM ELLIPSOIDS: RIEMANN’S THEOREM

We shall consider quite generally the conditions under which a homogeneous ellipsoid,
with semi-axes a1, as, and @3, can be a figure of equilibrium when subject to a uniform
rotation @ and internal motions (linear in the coordinates) with a uniform vorticity
in the rotating frame.

We shall suppose that the coordinate axes are along the principal axes of the ellipsoid
and, further, that Q and , in the chosen coordinate system, have the components @,
Qs, and Q3 and {3, &9, and {3. The condition that the internal motion associated with ¢
preserve the ellipsoidal boundary requires that it be expressible in the form

= ——— x
1 alg+a2§‘3 X2+ 2+a2§2 3
Uy = — 2+a2§1”03+ 2_}_02?3951, M
as
Uy = —— X X
3 el Lol Sot1+—1T—5 2+ §'1 2-

To obtain the conditions that the ellipsoid is also in gravitational equilibrium, we shall
make use of the second-order virial theorem. According to this theorem

7 fpuzx,dx = 2T+ Q2 y; — QL r; + Wiy + 04,11+ zeilmﬂmf puix;dx, @
v

where the various symbols have their usual meanings. Under conditions of a stationary
state, equation (2) gives

~z_7 +Q2Izj - QL\QkIch —]_S&m + 2€le9mfpulxydx - - 51][[ (3)

Consider first the non-diagonal components of equation (3). The (2,3)- and the (3,2)-
components of equation (3) give, for example,

2323*9293[33“293fpu1x3dx =0 4
v
and
2@32—9392[22—!‘292/‘9%1%20136 =0, )
v

since, in the chosen coordinate system, the tensors I,; and 8;; are diagonal and, more-
over,

f puiwidx=0 i i=7. ©
‘7
Adding and subtracting equations (4) and (5), we get

4T 55 — Qo (Tog+ Is3) +2£’pz£1(92x2—93x3)dx=0
and (N
Qzﬂs(-’m“fsa) - Zjvpul(92x2+93x3)dx =0
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For the motions specified in equations (1)

astas?
VT e = — I ®)
Loz (o as®) (a2 + a32) $ofsluns
‘/‘ i Xedx = @’ evi and fuxdx--%— alz——f] (9
VP’ll 20X = PIEICRE L VP 1%3 PIEEICR et

Inserting the foregoing relations in equation (7) and substituting for I, its value in
terms of the mass of the ellipsoid and its semi-axes, we find, after some rearrangements,
the equations

2a,%a3® 2a,%a9? 2a4*as’as?
022+032+_21 329 21 22g 2 12 : 03 2 QQ:O (10)
e+ as® Qe a2+ a2 Qs (a?+as?)(a®+a2?) L Qs
and
2a:%a3? 2a.%as”
gt dr_ gy 2o Dy a
a2+ as? Qo a2+ as? O

where, in writing the equations in these forms, we have supposed that Qs and Qs are dif-
ferent from zero.
Now letting

a;? {2 as? {3
_ 2 = ——— (12)
8 a2+ as? Qg and i a4 as? Qs
we can rewrite equations (10) and (11) in the forms
2 2
Bty =y =2 9
and
2 - 2
B*7=032a ;12' a4
1
Equations (13) and (14) provide for 8 and v the equations
da®+ as® —ay? as?
2 =0 (15)
; B Tas B+ o
an
4a®+a)® —aj? as’
2 — —=0. (16)
2(112 v 012

The roots of these equations are
1

4012{4a12—a22+a32 + V[ 4a:®— (a2 a3)?[4a® — (a2 —a3)?]} an

B —_
and

1
v = 4012{4a12_l—-422_a32i VIda?— (as+as)?)[4ad — (a2 —a3)?]}. a9

Thus, if Q; and Q; are assumed to be different from zero, the ratios {»/Qe and {3/Q5 are
determined by the foregoing equations. In particular, equation (15), expressed in terms
of fz/Qg, is
(19)

?2)2 ai’+ a;® fz) (@124 as?)?
22 4aq? 2 g2yt P8 52 It L. AT, O
92 + ( e + s @2 2@12032 Qg a12032
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On the other hand, if Q; is also different from zero, then the (1,2)- and the (2,1)-compo-
nents of equation (3) would have led to the equation

ar’+ ag? Q)Jrigf_u@f -

0. (20)
2ai12a32 \ ailaz?

é—f)z + (4a5°+ai® — as?)

Equations (19) and (20) are clearly incompatible unless ¢; = @3; and the consideration
of the equations governing {3/Q; would have similarly required that ¢; = as. It there-
fore follows that mnon-trivial solutions are obiained only if no more than two of the three
pairs of components ({1,01), (§2,Q2), and ({3,Qs) are different from sero. This is Riemann’s
theorem.

If we assume that ({2,Qs) and ({3,Q;) are different from zero, while ({1,2;) is zero,
then, the (1,2)-, (2,1)-, (1,3)-, and (3,1)-components of equation (3) will be trivially
satisfied and the only non-trivial relations are those that follow from the (2,3)- and the
(3,2)-components; and these relations, as we have seen, determine the ratios {3/Qs and
¢3/Qs. On the other hand, if two of the three components of  and {, say (@,{1) and
(Qs,{2), are assumed to vanish, then all the non-diagonal components of equation (3)
will be trivially satisfied and the problem reduces to the one already considered in detail
in Paper 1.

In our further considerations, we shall suppose that Qs and Qs are different from zero
while Q; and {; are zero. Then, the internal motions specified in equation (1) become

ay’ a,? a,? a2

= —— e — T i = Qyy Ly — 0B oL x
a 2

sy = g Sty = — Qyy ey, (1)

as?+ a,?

a32

Uy = = —— Xy = Q X1

3 032+012 §‘2 1 + 2B 1

and the ratios {»/Qs and {3/Q; are determined by the solutions for 8 and v expressed in
equations (17) and (18).

It remains to determine the values of Q. and Q3 that are to be associated with the
ellipsoid. The necessary additional relations follow from a consideration of the diagonal
components of equation (3). And under the present circumstances (2 = {; = 0) equa-
tion (3) gives

2%+ (922+932)In+%n+2‘/1;,0351(93%2“92%3)6526= —1I, (22)
2122—5‘932[224“2322*Zﬂgj.pulxzdx= —1I, (23)
v
and
235+ Q9?1 53 +%33+292fpu1x3dx = —II. (24)
v

On evaluating the components of the kinetic-energy tensor and the moments of the
velocities that occur in the foregoing equations, in accordance with equations (21), we
find
(112 012
[oe(1—2v+ 25 v ) 402 (1 - 2642562 [T+ Bu= -1, e
2

2
3

2
Q32 (72—27+%) I 4By = —10, (26)
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and
2
% (52—23"“%) Iy + 8y = —10, (27
1
where, by equations (15) and (16)
— bt —ay’ 2 _ as’ - e’ —ag
25+ 2a2 B; ¥ 27+012 saz (28)
. ﬂf 2___4(112—{1»22—3(l32 . 0
1 26+a326 - 2(132 187 (29)
and
4&12 - 6132 - 3(122
1—2y+2 272“ Tag (30)
Eliminating 11 between equations (26) and (27) and making use of therelations (28),
we find
2a,2 Wy — Was
2 2 —
B2+ v 2 —ag Tn . (31)

The expressions for the components of the moment of inertia and the potential-energy
tensors of homogeneous ellipsoids have been given in an earlier paper (Chandrasekhar
and Lebovitz 1962, egs. [57] and [58]); with their aid, equation (31) gives

Agdg Azag

6922 + ')’932 =4 —“a P Ez_—— == 4B23 ) (32)

where the index symbols 4, 4;;, and B;; are so normalized that 24, = 2 and Q% and {2
are measured in the unit 7#Gp (see egs. [44] and [45] below).
Next, eliminating II between equations (25) and (26), we have (on making use of

egs. [28])

0 (1-25) (1425 v )+ 02 (1 - 28425 62) = 5 (Ao = daast), 9

or, alternatively (cf. eq. [29]),
3a2—4a2 a9

0,1 2(132

2B =05t (1425 4) = =2 .8 . 58

Similarly, by eliminating IT between equations (25) and (27), we obtain

22— 4a.2+ as?
Clq 2(122

2B13 _ Qz (1 + 6 )—- _ Q32’}’ . (35)

Making use of the readily verified relation (cf. eq. [16])

1 ai? da®+ a2 —ag?
()=

2(122

and eliminating Q32 between equations (32) and (34), we obtain

das? (a2 —ay®) (4o’ + a2’ —a3?) By — a2%Byy
at—a?  4ast —a(e?+as?) +altest

9226 = 37)
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Similarly, by eliminating Q,® between equations (32) and (35), we obtain

Qgty = 4a?(ay® —ai®) (4ai’+as® —a)®) By — a3’Bys (38)
Y= .
as’ —az? das* — a?(a?+as?) + a’as’

Equations (37) and (38) together with equations (17) and (18) determined the angular
velocities and the vorticities that are to be associated with an ellipsoid with semi-axes
a1, @2, and a;.

To complete the solution, we must determine II. First, we observe that, by making
use of equations (28)—(30), we can rewrite equations (25)—(27) in the forms

(228 4 Qs%y) —%(46112—022“032)(92 g 523 7)+2A1 SIL: (39)
A/[(Z 12
(Lg, - (12 511
o= T 14]
2&2 Qd 'Y+2A Maz?" (40)
and
022 _ 0/32 511
ek 9225+2A3=m§1 @n
where M denotes the mass of the ellipsoid. From equations (40) and (41) we obtain
Q2,26 | Q3? 'Y SII
e + +2/123—m%§, (42)

where we have made use of the relation (Az — As)/(as? — a;?) = As3. Now combining
equations (32), (39), and (42), we obtain

SII 22323+ (da?—a*—az?) A+ 44 (a3)
2Mai’astas® dat — a2 (a4 as?) 4 aslas?
In the chosen normalization (2A4; = 2) the index symbols have the values
@ du oo du
di=oaan [ ey Av=eea [ TR
and (a9
"o udu
i = @10 g=Ad;— a4,
BJ ala;a;;/o (dz2+%)(012+%\xﬁ A A] F a AJ
where
A? = (a2 + u)(a® + w)(as® + u) . (45)

Inserting for the index symbols that appear in equations (37), (38), and (43), in accord-
ance with the foregoing definitions, we find

— 2
9226 4(11(52(13 3 ((12 (11 )

(at—a2)D

(46)
d
X/ [(4a®—a)u+al(4da’+as’ —ad) —alasd uAau,
— a2
o = b Co D
e (47)

udu
A%

><f0 [(4a?—a®)u+ a2 (4dal+ a2 —aq?) — a2laq?]
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and
s 1 ;
20@‘23—&33—]‘([—5‘[ (3u + 6442 L£+D)A3, (48)

where
D = 4a;* — a1¥(a2? + a3?) + az%as®. (49)

The equations in essentially these forms are due to Riemann.

III. THE DOMAIN OF OCCUPANCY IN THE (d»/a1, @3/a1)-PLANE

It is clear that any set of values (a1, a2, as) that is consistent with equations (17),
(18), (37), (38), and (43) (or, equivalently, eqs. [17], [18], and [46]- [49]) and leads to
realizable values for the various physical parameters prov1des an admissible solution.
As we shall presently see in some detail, the physical requirements that 8, v, Qs, and Q3
are real and that II > O limit the domain of occupancy of these ellipsoidal figures of
equilibrium in the (as2/a1, as/a1)-plane. In determining the nature of these limits, we
shall follow Riemann’s original discussion (see also Basset 1888). But we shall arrange
the arguments somewhat differently; and shall, moreover, specify the domain of occu-
pancy explicitly.

First, we observe that since all the equations are symmetric in the indices 2 and 3,
the domain of occupancy in the (@s/a1, as/a;)-plane must be symmetrically situated
about the 45%line, as = as. Therefore, without loss of generality, we may restrict our-
selves to the part of the plane

as > a3 . (50)
Next, we observe that the reality of 8 and v requires that
either 2ay > (az -+ a3) or 20, < |ax — a3| = a2 — a3 ; 63))
and these two cases must be considered separately.

a) Case I: 2a; > (6, -+ a3) and a, > as
Under the restrictions of this case

4a:? + (d32 — 6522) > ((12 + 0'13)2 + (a32 _ 022> > 0. (52)
In view of this inequality, it follows from equations (15) and (16) that
>0 and v>0. (33)

The reality of Qs and Q3 now requires that the quantities on the right-hand sides of
equations (46) and (47) are positive. Clearly,

D > 0,12((12 + 03)2 — aﬁ(agz + 032) + a22a32 >0, (54)
Also, making use of the inequality (52), we have
af4a;? £ (a2 — as?)] — aas® > 1(as + as) (a2 + a5)? + (a2® — as?)] — ax%as?. 59)

The right-hand side of this inequality is

Lao(as + a3)® — 2a.05? or Tasf(as + a2)® — 2a30.% (56)

and in either case it is positive. Since 44, — a5* and 4a,® — @,? are also positive, the
integrands on the right-hand sides of equations (46) and (47) are positive definite; the
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integrals are, therefore, positive. As D and 8 have already been shown to be positive,
it follows that the reality of €, requires that

a > ay. (57

Hence, we are, in this case, limited to the domain

2a; > (a2 + as) and @G> a4 > as. (58)

Under these circumstances the reality of Q3 is also assured. Moreover, since D > 0 the
quantity on the right-hand side of equation (48) is manifestly positive definite and
assures that II > 0. All ellipsoids represented in the triangle SM¢R; in Figure 1, there-
fore, are allowed figures of equilibrium; we shall call them Riemann ellipsoids of type I.

b) The Case 2a, < (ay — a3) and as > a3
In this case
4&12 _<__ [1,22 — 6132 s (59)

since 2a; is necessarily less than as + @3. From equations (15) and (16) it now follows
that

<0 and ¥>0. (60)

Also, under the circumstances of this case, the integrand appearing on the right-hand side
of equation (47) defining Qs2y is clearly negative. The integral is accordingly negative;
and since v has been shown to be positive and a2 2 a3 (by definition), the reality of Qs
requires

113‘2 —_ (112
——2>0. (61)
D =

Hence
either az < ax and D<o,

or a3 > a; and D>0; (62)
and these two cases must be considered separately.

¢) Case II: 2a, < (@ — a3) and a3 < aq

In this case we must require (cf. eq. [62])

D = 4a1* — a:%(a2® + a5?) + %2 < 0. (63)
This restriction on D implies that
2 2\ 1/2
%Scﬂwﬂ& _ (64)
a as?t — ay?

It can be verified that the further restriction

Gz, (65)
ai ay

assures that inequality (64) is satisfied so long as (see Fig. 2)

23%31+»B. (66)
1
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Fic. 1.—The domain of occupancy of the Riemann ellipsoids in the (as/a1, ¢s/a.)-plane. The stable
part of the Maclaurin sequence is represented by the segment O5S on the line a2 = a1. At O» the Mac-
laurin spheroid becomes unstable by overstable oscillations.

The Riemann ellipsoids of type S (for which the directions of rotation and vorticity coincide with
the as-axis) are included between the self-adjoint sequences represented by SO and 0,0. Along the arc
X2®0 the Riemann ellipsoids of type S become unstable by an odd mode of oscillation belonging to
the second harmonics.

The Riemann ellipsoids, in which the directions of rotation and vorticity do not coincide but lie in
the (a9,a5)-plane, are of three types—I, I1, and III—with the domains of occupancy shown. Type I ellips-
oids adjoin the Maclaurin sequence and are bounded on one side (SR;) by a seli-adjoint sequence. Along
the locus R;Ry, which limits the domain of occupancy of the type II ellipsoids, the pressure is zero.
And along the loci Xo'0O’ and X0, limiting the domain of occupancy of the type III ellipsoids, the
directions of { and { coincide with one of the principal axes (the ¢gs-axis in the case a2 > a3 and the
az-axis in the case ay < a3). The locus X’O’ (for the case a3 > ag) is transformed into X,®0 if the
roles of a; and a2 are interchanged; and simultaneously the domain of occupancy A'X,'0’ similarly
becomes transformed into the domain 4X,®0. The dotted curve X»,™P(Q’ defines the locus of con-
figurations, among the type III ellipsoids, that are marginally overstable by a mode of oscillation belong-
ing to the second harmonics.
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ence, we must require (65) so long as 2 < as/a; < 14 +/3 and (64) for ayfay > 1+
3. With as/ay so restricted, the reality of Qs is assured.

Turning next to equation (3 7) defining 2,28 and rewriting it in the manner
as?(as® — a?) (4@12—}—@22—032 ) udu

) 4 o (67
B = Rt D f ay’+u a12+u (artuwa’
: observe that the integrand is positive, since

40:12 - (1,32 2 ( i 1 )

ket Sk — >0. 68

PR P i ) A o

ae integral on the right-hand side of equation (67) is therefore positive and since,
rther, a2 > a1 > a3, D < 0, and 8 < 0, the reality of Q, is assured. On the other hand,

2 B N
1'2/0
L0
02,
03/0, [} D-‘-O
Ry
[0
! 1 | 1 1
R, 3 4 5 6 7
a,/q,

Fic. 2.—The loci I = 0, D = 0, and @3 = a» — 2a; which are used to determine the domain of

cupancy of the type II ellipsoids.

TABLE 1
THE LOCUS ALONG WHICH An{e? + ¢ — 20,2 = 1
az/ ax as/ a1 a2/ a1 as/ a1
2 . 0 5. 0.70215
20/7. .37591 6% 0 79853
10/3. .49063 10 0.88676
4 . 0 59938 = 1.00000

nce D < 0, the positive definiteness of II is not manifest from equation (48). Indeed

1e reqmrement (cf. the alternative expression [43] for II),

2Bss + (401 — s — a32)A23 4 A4 < 0,

(69)

rovides a limit on az/ai, for an assigned ay/a; (= 2), which, it will appear, is more
ringent than either (64) or (65).
The condition (69) can be expressed more conveniently by making use of the relations

Bzg = Az - (l32A23 = Ag - (1«22/123

s,

and

Ags(as® + a5 — 2a42) > 1.

A+ As+ 45 =12;

(70)

(71)

The locus in the (as/a1, as/a1)-plane along which the inequality (71) becomes an
juality has been determined (see Table 1). And the curves, labeled RiRyr in Figures
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1 and 2, define this locus. It is apparent from Figure 2 that it is the requirement IT > 0
that limits the domain of occupancy in this case.
We shall call the ellipsoids, represented in the domain limited by the as-axis and the
inequality (71), Riemann ellipsoids of type 11.
d) Case IIT: 2a, < (ay — a3) and az 2> a3 > o

In this case a; is the least axis; and
D = 3a:* + (a3® — a1¥)(as® — a.®) > 0, (72)

as required by (62). And since D > 0, II is manifestly positive. The reality of Qs has
already been assured. It remains to insure the reality of Q.. Since {§ is negative, the
reality of Qp requires (cf. eq. [37])

(4:012 + (122 _ G32) Bzg - (122812 S O . (73)

TABLE 2

THE LoCcus DETERMINED
BY EQUATION (74)

ar/ a1 as/ a1
3.3746 1 3746
4 1739. ... 13
5 8677 . . 12
® L. . .. 10

And this inequality requires that, for a given as (= 3.3746, as we shall see presently),
as (< as) exceeds a certain lower limit. The limit is determined by the condition

(4a:® + a® — 43%)Bas — @:?B1a = 0. (74)

A few pairs of values (a2/a1, as/a;) along the locus defined by equation (74) are listed
in Table 2; and the locus (labeled X,'0’) is delineated in Figure 1.

We shall call the ellipsoids, limited by the locus (74) and the line 2a; = as — as,
Riemann ellipsoids of type I11.

It is to be particularly noted that, along the locus (74), Q2 = {3 = 0 so that Qs and {3
are the only non-vanishing components of @ and {. Accordingly, the ellipsoids along
this locus “belong”” among the ellipsoids considered in Paper I; as to precisely ‘“where”
they belong, we shall return in § VI.

To distinguish the ellipsoids considered in Paper I from the ones which we have now
designated as of types I, II, and III, we shall call them Riemann ellipsoids of type S.

IV. THE ADJOINT RIEMANN ELLIPSOIDS AND DEDEKIND’S THEOREM

For any pair of values (as/a1, @s/a1), which represents a point in the permitted domain
of occupancy of the Riemann ellipsoids of types I, II, and III, there are two states of
motion, compatible with equilibrium, corresponding to the two roots of 8 and v given
by equations (17) and (18). It is clear on general grounds that the two physically distinct
configurations which one obtains in this way must be adjoints of one another in the
sense of Dedekind’s theorem (cf. Paper I, § I). It is of interest to verify that this is the
case.
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Let 8 and Bt and vy and ! be the two roots of equations (15) and (16). Clearly,
BBt = as?/a)? and vyt = a?/as?. (73)

Also, since the right-hand sides of equations (37) and (38) depend only on the geometry
of the ellipsoid, it is clear that

028 = Q281 and  QaPy = Quit. 76)

From the foregoing relations it follows, for example, that

(9370'1)633*’7“ %1; = (Q3a1)(Qlaq)
and )
(Q3v@1)(Q3a:) = (93’“)’7 %—1;)(93*(12)
Hence

a 2
93'}’03; = ngag and Qay = Q3T’}'* —(‘;— . (78)
2

Equations (78) will continue to be valid if each quantity is replaced by its adjoint; thus

2

a
QST’Y?% =30, and QSTal = (g ;L (79)
2
In exactly the same way,
a:?
Wfa; = Qlas, Qya; = Q! BT *a‘l“ )
3
(80)

a 2
szﬁ'}"al = ang, and Q2Ta,l = 926 711_ .
3

Now the motion (u) in the frame of reference rotating with the angular velocity &

~is given by equations (21). The motion, @, in the inertial frame follows from the

equation
U@ =u+Q X x. (81)

Expressing u® in the manner required in the enunciation of Dedekind’s theorem, we
have

0 - Q;g(l - 7&12/(122)(1,2 —f— 92(1 - Bdlg/d:gz)(lg xl/al
u® = |4+ Q1 — Yo 0 0 \ws/as| . (82)
i
- Qg(l — B)(Zl 0 0 ix3/a3

And the motion u(®t in the configuration derived from gt and «1 is, similarly, given by

0 —_ Qgt(l — 7{7&12/(122)(12 + QZT<1 - 61(212/332)03 ixl/(h
Ot = |+ Q1 — Moy 0 0 xp/az| . (83)
-_ QQT(I — ﬁT)al 0 O x3/03
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And Dedekind’s theorem requires that the two matrices expressing u(® and u®f are
the transposed of one another. In other words, we must have

GBIl — e = — K1 — vai/aD)az,
Qi1 — BHa; = — Q(1 — Bay?/asPas,
(84)
(1 —ya = — G — yle?/as)a.,
and
(1 — Blar = — W1 — gta?/asas ;

and these relations are clearly valid in virtue of equations (78)—-(80). The configurations
derived from the two rools for 8 and v are, therefore, adjoinis of one another in the sense of
Dedekind’s theorem.

If 8= Bt and v = 41, then the configuration is self-adjoint. Such self-adjoint con-
figurations occur on the lines

20, = as + a3 and 20 = |ag — as] ; (85)

i.e., on one of the boundaries that limit the domains of occupancy of the ellipsoids of

types I and IIL.

V. THE MACLAURIN SPHEROIDS AS LIMITING FORMS OF
THE RIEMANN ELLIPSOIDS OF TYPE I

In this section we shall show how the Maclaurin spheroids may be considered as
limiting forms of the Riemann ellipsoids of type 1.

Let as/a; — 1 while a3 remains finite. From equations (17) and (18), we find that in
this limit

1
B = 4012[3(112+a32i vV (9a? —a?)(a? —as?) 1,
and (86)
1
Y 21(1’1—2[5012 —ag?t \/(9012—032)(6112 —as?) ] (a1=as).

At the same time it follows from equations (37) and (38) that
Q22ﬁ =0 and 932"/ = 4])’13 . (87)

From equation (12) we may now conclude that

o =0 and {3 = — 298;. (88)

Hence, on the line a; = ¢, the Riemann ellipsoids of type T become spheroids and are
attributed the parameters,
Q32 = 4By3/7v, $3= —2vQ, and fa=Q =0 (a2— a1), (89)

while {2/Q2 tends to a finite value.
The relations (89) give

—_— 2
(QK+%§_?)2=932(1_"Y)z=4813(—}-—71)—~ (90)
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Now, when a; — as, the equation governing v becomes
2
72_[2_!_%(1_912 }7_1_1_—_0, (o1)
ay
or
1=y (1-%
(y—1)2=3v ~ui) ©2)
In view of this last relation, we can rewrite equation (90) in the form
2 (132
(93““%?3)“:2313(1——2 . 93)
: PR

But it is known that the angular velocity of rotation Qu., associated with a Maclaurin
spheroid of axes ¢; = @ and as, is given by

(132
Qe = 2By (1 —— ) (94)
a1
We have, therefore, the relation
Qs -+ %?3 = Que 3 (95)

and this is exactly the relation which must be satisfied if what we are viewing is a
Maclaurin spheroid, rotating uniformly with an angular velocity Qy. (in an inertial
frame), from a frame of reference rotating with an angular velocity Q; different from
Oue. The Riemann ellipsoids of type I, therefore, degenerate to Maclaurin spheroids
when as — @3 (from the right); but they are viewed from a frame of reference in which
they are attributed internal motions with a vorticity 3. We can arrive at this same
conclusion, somewhat differently, by arguing along the lines of § IX of Paper I.

When a Maclaurin spheroid is viewed from a frame of reference rotating with an
angular velocity Q (# Qu.), it will be attributed internal motions having the components
(cf. Paper 1, eq. [140])

= — (e — Dz = Quir
and (96)
Uy = -+ (QMc - Q)xl = szl .

(Note that Q1 = — Q2.) We now ask: can we deform the spheroid quasi-statically,
without in any way affecting its equilibrium (as viewed from the chosen frame of refer-
ence), by a non-trivial (odd) Lagrangian displacement of the form

& = 123 s & = asXs , and E3 = agxy + a4l , 97

where ay, . .., as are constants? We shall show that such a quasi-static deformation is
possible if © is chosen to be equal to Q3 given by equations (86) and (89).

We require that, in the chosen frame of reference, the displacement (97) have the
properties requisite for a neutral mode of oscillation; and the conditions for this to be
the case can be written down from the equations derived in Paper I, § VII.

For the deformation specified in (97), the only non-vanishing virials are those that
are odd in the index 3:

V1;3 ’ Vs ’ Vas ; and V3;2 . (98)

Under these conditions, the equations governing the virials even in the index 3 (namely,
Paper I, egs. [101] and [102]) are trivially satisfied. Next, setting N = 0 (as required for
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a neutral mode) in Paper I, equations (106)—(109), and remembering that in the case
(a1 = as) we are presently considering By; = By, we find that the condition, that the
virials listed in (97) do not vanish identically, is (cf. Paper I, eq. [112])

2By — Q2 2Bys — Q@ 4 0102 — 290,
=0 (99)
2By3 2Bz + 0102
On simplification equation (99) becomes
" Q Q + 20.
= 0 ; (iOO)
2Bi3 2Bi3 + Q1Q2
and on expanding the determinant, we are left with
QQ;{ b 4:B13 =0. (101)
And inserting the value of Q; (= @ — Qy.) in equation (101), we finally obtain
Q2 — Q0ye —4B13 =0, (102)

We observe that equation (102) for  is identical with the equation determining the
characteristic frequencies of the odd modes of oscillation of the Maclaurin spheroid in
the frame of reference rotating with the angular velocity Qu. (Lebovitz 1961, eq. [169];
also Chandrasekhar 1964, p. 69, eq. [30]).

It remains to verify that the values of Q which are given by equation (102) are the
same as those that follow from equations (86) and (89). To verify this fact, set

Q2 = 4By/z (103)

in equation (102). On further substituting for Qu, its value given by equation (94), we
obtain

3 2 2 1/2
4By 8By (1_9% ] — 4By =0. (104)
2 Lz a1
On simplification, equation (104) becomes
— ) 032
s—2+3(1-%)]s+1=0; a0s)
. a1

and this equation is identical with equation (91) for v. Hence z = +; and this completes
the proof that Qs determined by equation (102) agrees with 3 appropriate for the
Riemann ellipsoid when a; — a;.

An alternative, but equivalent, way of arriving at the relation (102) is to recall that
the frequencies of the odd modes of oscillation of a Maclaurin spheroid, in a frame of
reference rotating with an angular velocity Q (different from Qu.), is given by (cf. Paper
I, n. 7, eq. [ii])

20, = 202 — Que + \/(16B13 -+ QMc2) o (106)

accordingly, these modes can be “neutralized” by the choice
Q = 3[Qye + V(16813 + QueH] ; (107)

and these values of Q are the same as those which follow from equation (102).
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The parameters that are to be associated with the Maclaurin spheroids when con-
sidered as the first members of the Riemann ellipsoids of type I are listed in Table 3.

Vi. THE ELLIPSOIDS OF TYPE IIT AS BRANCHING OFF FROM THE ELLIPSOIDS
OF TYPE S ALONG A CURVE OF BIFURCATION

As we have already remarked in § II1d, along the locus (74), which limits the domain
of the Riemann ellipsoids of type III,

Q=¢2=0. (108)

Accordingly, for these ellipsoids the only non-vanishing components of Q and { are Qs
and {3 along the ws-axis. These ellipsoids are, therefore, of the type S considered in
Paper 1. But to be in agreement with the convention adopted in that paper, namely,

TABLE 3

THE PARAMETERS T0O BE ASSOCIATED WITH THE MACLAURIN SPHEROIDS
WHEN CONSIDERED AS THE FIRST MEMBERS OF THE
RIEMANN ELLIPSOIDS OF TYPE 1

e Q3 ¢s Qt &3t
L 2 1 03280 —2 06559 1 03280 —2 06559
20 ... L 0 96509 —2 22313 1.11156 —1 93018
30 ... L. 0 93498 —2 31093 1 15547 —1.86996
40........ . 0 90713 —2 40508 1.20254 —1.81426
I [ P 0 88124 —2 50544 1.25272 —1 76249
60 ... L. 0 85682 —2 61109 1 30355 —1 71365
/¢ 0 83274 —2 71875 1.35937 —1 66548
80 ... L L. 0 80578 —2 81682 1 40841 —1.61156
82 L. 0 79932 —2 83247 1 41624 —1 59864
84 .. . .. 0.79215 —2 84542 1 42271 —1 58430
86 .. . .. 0.78398 —2 85449 1 42724 —1 56797
88, ... . 0 77438 —2.85787 1 42894 —1.54875
90 ....... 0 76261 —2.85266 1.42633 —1 52321
92 ... L. 0 74742 —2 83373 1 41687 —1 49483
94 0 72636 —2.79117 1 39558 —1 45273
96 .. 0 69381 —2 70205 1 35102 —1 38762
098 . .. 0 63158 —2 49282 1 24641 —1 26316

that a; is the longest axis, we must interchange the roles of the indices 1 and 2 since, by
our present convention, a; is the longest axis for the ellipsoids of type III. With the
indices 1 and 2 interchanged, the loci limiting the domain of the ellipsoids become (see

Fig. 1)
ay =0 N 2as + a3 = a4 , (109)

and (cf. eq. [74])
(4022 “+ a2 — agz)Bl;g — 412Ba = 0. (116)

Now, it is clear on general grounds that, along the locus (110), the Riemann ellipsoids
must be characterized by a neutral mode of oscillation and, further, that stability must pass
from the ellipsoids of type S to the ellipsoids of type I11; in other words, that the locus (110)
is @ curve of bifurcation.
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As we have shown in Paper I, instability by an odd mode of oscillation sets in along
the Riemann sequences for f < —2. And according to Paper I, equation (114), insta-
bility occurs when (cf. Paper I, eq. [37})

4By =00y = — 2B, 21 (111)

17} ﬂ—f/_x ’
But by Paper I, equation (38),

2a1a2( A1a1® — Asas?)
(a2 — 022)032A3+(112@22( Ay — Ag)

1
(112)
. 201&2812
as?A; —atat Ar

TABLE 4
THE PROPERTIES OF A FEW RIEMANN ELLIPSOIDS OF TYPE 1
afa.. . 1 05263] 1.250000 1.44065] 1.66667| 1 36444] 1.69351 1.52303] 1.78590
as/ar ... 0.41667] 0.50000, O 49273] 0 33333 0 09518 0.11813; O 05315 0 06233
Qs . | 40 14834) --0.39259 +0 57179 +0 71251 +0 05632] +0 15764) +0 03311} +0.08952
Qs .... | -0.73257 +0 66536, +0 59896, +0 52815 +0 40707, +0.38504 40 29600, +0 28558
$a —1 41355 —2 19983] —2 24560, —2.37502] —6 68275 —6 27092 —9.85239] —0O 19424
ICE —2 61578 —1 93805 —1 49425 —1.19714] —1 24612, —1 02536 —0 84580 —0 74657
et . .| 40 50185 40 87993| -0.89032| 40 71251, +0 63035 +0.73061] 4-0 52221} +0 57083
Qet ....] +1 30617 +0 94583 -0 69996, 4-0 52815 40 59414] 40 44893 +0.38305 +0.31825
[ S —0.41783 —0 08148 —1 44219] —2.37502] —0.59714{ —1 35309 —0 62474] —1 4418
&Gt . .| —1 46707 —1 36398 —1.27866] —1 19714] —0.85376] —0 87944] —0.64518 —0 66992

Inserting from this last equation in equation (111), we obtain for the locus of marginal
stability the equation
4(122B13 - (132/13 + a12(122A12 =0 (113)

or, alternatively,
0 = 4a9?B1s — @3243 + a,*(41 — B) = (das® + a2 — @3%) Bz — 2B ; (119

and this is the same as equation (110).

We have already verified in Paper I (n. 6 on page 916) that the point, on the self-
adjoint sequence ¥ = —1 (which limits on the side a3 > @» the domain of the Riemann
ellipsoids of type S), at which instability sets in satisfies the condition 2a; 4 a3 = a1.
This completes the demonstration that the curve along which the Riemann ellipsoids of
type S become marginally unstable is also the curve along which the Riemann ellipsoids of
type I11 branch off. And, finally, in § X1 we shall show that along the curve of bifurcation
stability passes from the ellipsoids of type S to the ellipsoids of type III.

VII. SOME NUMERICAL EXAMPLES

The properties of the Riemann ellipsoids of the three types, in their respective do-
mains of occupancy, have been determined, with the aid of the formulae of § I, for a
large number of cases. In Tables 4 and 5 we list them for a few typical cases. More
extensive tables will be published elsewhere.
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VIII. THE SECOND-ORDER VIRIAL EQUATIONS GOVERNING SMALL OSCILLATIONS
ABOUT EQUILIBRIUM: THE CHARACTERISTIC EQUATION

Suppose that an equilibrium ellipsoid determined consistently with respect to the
equations derived in § IIT is slightly perturbed. Let the ensuing motions be described
in terms of a Lagrangian displacement of the form

Ex)er, (115)

where N is a parameter whose characteristic values are to be determined. Then pro-
ceeding exactly as in Paper 1, § VI, we find that the linearized form of the virial equation
(2) gives (cf. Paper 1, eq. [84])

AV = 2MN0iVisn — 2heann Vi + Qi Vi + QuVia

(116)

+ 2€imnQirVise — QuViw) — PVig + Qi Vi — 88y = 845011,

TABLE 5
THE PROPERTIES OF A FEW RIEMANN ELLIPSOIDS OF TYPES IT AND ITI
Errmesorms oF Tyee 11 Evviesoips or Tver 111

a/m . .. 3 05590 4 31608 6 24270 5.00000 4 00000 3.75000 4 66667
asfar. . .. 0 10663 0 45115 0.21787 3.00000 2.00000 1.50000 1.40000
Q... .| +0 70172 | 41 13288 | +0 83636 | -+0 44981 | 40 40641 | 40 36030 | +0 45130
Q .. ..| +0 16788 | +0 17511 | +0 06655 | +0.43847 | +0.43856 | +0 32561 | 40 20871
TR +0 26688 | +0 18979 | 40 05016 | +1 49937 | +1 01603 | +0 36548 | +4-0.17456
&G —0 86595 | —1 69461 | —1.32826 | —2.28003 | —1 86387 |"—1 81498 | —2 10718
Qt. ....] +0.02814 | 4+0 07114 | +0 01044 | +0 44981 | +0 40641 | +0 16868 | 40 08256
Qaf ... +0 25596 | +0.37263 | +0.20745 | +0 43847 | +0 43856 | +0.45186 | +0.43172
&t +6 65457 | +3 02219 | +4.02055 | +1.49937 | 1 01603 | +0 78066 | +0 95417
Gt .. —0 56795 | —0 79638 | —0 42612 | —2 28003 | —1 86387 | —1 30787 | —1 01872

where the various symbols have their usual meanings and the assumption has been
made that the internal motion in the equilibrium configuration is given by

uj = Qjx1, a17)

where the Q;/’s are certain constants. For the case of the Riemann ellipsoids, presently
considered, the matrices @ and Q2 are of the forms (cf. eq. [21])

0  Qu Qs
O=1|0a 0 O (118)
Oz 0 O

and

Q12021 + Q130 0 0
02 = 0 Q21Q12 Q21Q13 , (119)
0 Q2012 Oa0is
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where

a®
Q12=+93a—12')’: Qu= —y,
2

(120)

2
Q13=“Q22—;3, and Q31=+926—

We shall now write down the explicit forms which the different components of equa-
tion (116) take in view of the special forms of the matrices Q and Q2 The three diagonal
components of equation (116) are

AV — 2MQ12V 12 + Q13V13) — 2MQ:Va1 — Q2Vay)
+ 2(Q19Q21 + 013031) Vit + 293(Q12Va2 — Qa1Vi + Q13Va;3) (121)
— 22:(013V33 — Qs1V11 + Q12Vie) — (R + QD) Vi — 6Wyy = 11,

AVa0 — 2M0a1Ven + 202V 1 + 2021012V 22 + 021013V 235)
+ 2Q3(012V a2 — O Vi + Q13Ves) — a2Vae + QeQsVie — 6%Wae = oI1

(122)

and
MVss — 20051 Vs — 2NV 13 + 2(03:012V 32 + 031013V 3:3)
— 2Q(013V 33 — Qa1Vig + Q12Visp) — Q22Vss + QaQ3Ve3 — 633 = 11 .

(123)

Eliminating 81T from the foregoing equations, we obtain the pair of equations

N2+ 2(012021 + QusQs1) + 222051 — 2(2* + LAV — N2+ 201500 — 2057 Ve
— 295015V 353 — 2NMQ12 + ) Vi — 2MQs — Qo) Vo — 2M013V1s + 200 V3, (124)
— (2021015 + 2Q23) Vaz — (29012 + 2223) Vi — 63811 + 6Wsee = 0,

and

A2+ 20012001 + Q150s1) — 2Q5021 — 2(Q® + )]V 1y — (N 4 2015051 — 22D Vs
4+ 293012V 22 — 2MQ13 — Q2) Vi 4+ 20 Qs + Q1) Vi — 2MN012V12 — 200 Vay (125)
— (2051012 + Q23) Vo + (203013 — 22Q3) Vs — 6811 + 6Wy3 = 0.

The remaining six non-diagonal components of equation (116) are
AVaea + 2NV — 2MQ12Vae + Q1sVas) + (012021 + Q13051 Vo + 021012V 10
+ Q21013V1;s — 22V 4+ QQsVs — 682 = 0,

(126)
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MVie — 20021V — 2MQsVoe — QaVs0) + Q12001 + Q13031) Vo + Q12021 Vs
(127)
+ 02013V 13 — 2920 Vs — QsiVan) — (02 4+ QH Vi — W = 0,
NVsq — 2NV 11 — 2NMQ12Vse + Q13Vas) + (012021 + 013031) Vi + Q101 V18
(128)
+ 031012V12 — LV + QQsVa — 6813 = 0,
MV — 2001 Vi — 20 QaVas — QoVsis) + Q12021 4 015030 Vi + Q15051 Vi3
(129)

+ 05:012V1:2 — 223021 Va1 — Os1Va) — (2 + Q) Vs — 6By = 0,

AV 3e — 20021V 31 — 202 V12 + 051012V 22 + 021013V 553 + 051015V a3 + 021012V 350

(130)
— 205(012V20 — Qa1Vin + Q13V2;3) — DV 4 QaQ3Ves — 68y = 0,

and

A Va — 20051 Vo + 280V + 031012V e + 021013V 58 + 031013V 2,5 + 021012V 52

(131)
+ 223(Q13V3s — QaiVig + Q12Vis;2) — Qs Vae + QQ3V3s — W3 = 0.
The eight equations (124)—-(131) must be supplemented by the condition
I_/l?}._{_ﬁﬁ.{_v?’f =0 (132)
(112 022 as®

required by the solenoidal character of &.

On inserting the values of Qys, etc., in accordance with equations (120), we find that
the system of equations (124)-(132) can be written in matrix notation in the form
given on pages 862-863, where we have substituted for the 6%;’s their known values
(cf., for example, Paper I, eqgs. [87] and [88]).

The required characteristic equation follows from setting the determinant of the
matrix on the left-hand side of equation (133) equal to zero.

IX. THE EQUALITY OF THE CHARACTERISTIC FREQUENCIES OF AN
ELLIPSOID AND ITS ADJOINT AND OTHER THEOREMS

Eliminating Vy;; from the system of equations (133) and multiplying the different
rows and columns of the resulting secular matrix by suitable factors, we find that the
secular determinant can be brought to the form given on pages 864-865.
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In reducing the secular determinant to the form (134) use must be made of the relations

(cf. egs. [78] and [80])
QgT = s R Y and QQT = 91 5 . (136)
ao as

From the form to which the secular equation has been reduced, it is manifest that if
in each element of the secular matrix we replace the components of & and Qf, which occur,
by their respective adjoints we obtain the transposed matrix. It, therefore, follows that
the characleristic frequencies of oscillation, belonging to these “‘second harmowics,” of an
ellipsoid and ils adjoint are the same. This theorem, first established in the contexts of
the Dedekind and the Jacobian sequences (Chandrasekhar 1965a¢) and then generalized
to the Riemann sequences (Paper I), is now seen to be an entirely general property.

We shall now prove that | Q| and | Q| are characteristic frequencies provided as roots
of the characteristic equation. We shall prove this theorem by showing that the following
set of three equations, included as simple linear combinations in the system of equations
(133), are linearly dependent if A? is set equal to —| Q|2 = — (e + Q?):

Ne(Via — Vo) — 2MQ21Via — 012V a2 — Q1Vaa) — 2MQ3Vae — QoVis + Q3Viy) :
— 205(021V3:1 — Q31Va1) — Qo?Vie — QVis =0,

137)

N(Vis — Vaa) — 2M0s1 V1 — Q13Vss — O12Vse) — 202V o3 — LV — QVia)

(138)
— 2Q23(021 V31 — QaVor) — @V — QusVie = 0,
and

N(Vas — Vi) — 2MO5: Vo — QaiVisy) -+ 2M(QsV 1 + QVip)
+ 225(Q15Vs;3 — Qs1Via + Q12Vsp) + 2Q2(Q12V 22 — QuVin + Q13Vass) (139)
4+ (Q — Q) Vs + QQ3(Vis — Vi) = 0.

These equations are obtained by subtracting equations (126), (128), and (130) from
equations (127), (129), and (131), respectively. Eliminating V1;; from these equations
with the aid of the divergence condition (132), we obtain

(N2 =22 V0 — (A2 Q92 — 200031 ) Vo1 — DoV 153
= Qo ( 200+ )V + 2000V 25+ 20025V 50 (140)

-+ 27\[@12 —93+—(Q21+93 ]Vz o 2N _(Q21+95)Vs 3=
— DoV 150+ Q3 (2Q5 — ) Vo + (A2 — Q%) Vs
— (N4 Q5% + 29000 ) V50 — 220V 23 4+ 20000V 550 (141)

+o0 28 (an “+2x[Qm+Qz+——<QM—Qo>} it =
and
2INQV 152 — 2N05iV o+ 2NV 155 4 2002V 4 (N2 2Q0015 + Q02 — Q32) Vg5

— (N = 29010 — Q2+ Q32 )V 350+ 2[92(@2 —{3) + (93Q31+92921) ]Vz iz (142)

+2[ 90+ 8a) + 25200+ 8:0u) [P = 0.
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It can now be verified directly that all the three-rowed determinants of the 3 X 8 matrix
representing the foregoing system of equations vanish identically if A% is set equal to
— (22 + Q3%). The equations are therefore linearly dependent in the case considered.
The linear dependence, under the same circumstances, of the equations of the system
(133) follows a fortiori. This establishment of the linear dependence proves that |Q| is
a characteristic frequency; that | Q'] is also a characteristic frequency follows from the
theorem proved earlier that for an ellipsoid and its adjoint the characteristic equation
(134) gives the same frequencies.

Finally, we shall show that A* = 0 is a non-trivial double root of the characteristic
equation. More precisely, we shall show that for the proper solutions belonging to the
zero root the only non-vanishing virials are Vi, Va1, Vi3, and V.

By setting

A=20 and Vipg=Vea=Vss=Vos=V32=0, (143)

we satisfy trivially equations (124), (125), (130), (131), and (132). Considering (127),
(129), (137), and (138) as the remaining four equations, we find that under the circum-
stances specified (namely, [143]) equatlons (127) and (129) give

(Q12Q21 + Q13Q31) Vaa + 0uQ2Vie + Q2:Q13V1;3

(144)
—202(0a1 Vs — 051 Vo) — (2 + Q32 — 2B12) Vi =0
and
Q19021 + Q13051) V1 + 051013V 153 + 051012V 152
(143)
— 2Q5(Q21 Vs — Q31 Ve) — (R 4 Q2 — 2B13) Vs = 0,
while equations (137) and (138) provide the single equation
2001Va1 — Q51Vay) + QVie + Vi3 =0. (146)

Equations (144) and (145) can be rewritten in the forms

[012091 — (Q22 + Q32) + 2B1a] Vs + 021013V 15 — (205 + Q13) (021 Vi — Q31Va) = 0 (14D
and

(015031 — (2 4 Q5%) + 2B13] Vs + 031012V 1a — 203 — Q1) (01 Via;r — Q31 Va;1) = 0. (148)
We observe that equations (146)-(148) are linear and homogeneous in the virials
Vi, Vis, and Q21Vi31 — 0V ; (149)
and if these virials do not vanish identically, it must be true that
2B — Q— gLZ Q322 %;—z Q{28 — Qs (2 - B)
%Lz 220230y 2By — Q% — %:; Q.22 —Q, (2 __% 7) =0. 1350

Qo Qs 2
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By making use of the relations (34) and (35), the requirement (150) can be reduced to
the form

_a’(3a? —4da’+a?)B

2a5%(a:® —as?)

(112 (l12
1 e B 24 e B

ai? a1*(3as® —4a®+as?)y %

a1 - —1 =24+ y|=0

as? By 2a92(a,® —aq?) + a? ! ’
1 1 2 (151)

and by direct evaluation it can be verified that the determinant is in fact zero. Equa-
tions (124)-(132) can, therefore, be satisfied non-trivially for \* = 0 with non-vanishing
values for the virials listed in (149). Moreover, it is clear that there are two linearly
independent solutions; and since the original characteristic equation (134) is even in A2
(of degree eight), \* = 0 is a double root.

Excluding the roots —|Q|2, —|Qt|2 and zero (of multiplicity two) we have four
roots of the characteristic equation yet to determine. These remaining roots have been
determined numerically for a number of ellipsoids of types I, II, and IIT and are con-
sidered in § XTI below.

X. THE ASYMPTOTIC PROPERTIES OF THE DISKLIKE
RIEMANN ELLIPSOIDS ON THE @9-AXIS

As a3 — 0, the ellipsoids of types I and II become disklike and their asymptotic
properties are of interest.
It can be readily verified that, in the limit

€ = ag/a1—>0, (152)

the index symbols A4; (cf. eq. [44]) have the behavior

Ay = aze, Ay = ase, and A3 =2, (153)

where a; and a, are certain constants expressible in terms of the complete elliptic integrals

/2
E(9) =f dep (1 —sin2 sin? ¢ )12
[}
and (154)
xl2
F(0) =f d¢ (1 —sin?f sin? ¢ ) /2,
i}
with the argument
8 = sec? (az/a1) . (155)
Thus,
2

Ay = VoA
sin? ¢

[E(9) —F(8)cos20]  and a2={;§2—€—{F(0)——E(6)]. as6)

The corresponding asymptotic forms of the two-index symbols are
Bll = 6136 3 B22 = 52267 B33 =
B12 = 6126 5 BZ3 = ﬁ23€ ) alld B31 = ﬂ?)le ’

ol

s
(157)
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where

gy, = Lo as)as’ _ lar—as)as

u 3(022—012), 2 3(022—012),
(158)
asle? — ay1a®
Biz= l}?——lgi, Bos = az, and Bz = ay.
ays” — ay

Similarly, from equations (17), (18), and (75), we conclude that in this same limit,

2a4? @y’
’ 7=2, BT:— ! ‘527 and 71__—2__

_day? —ay?
4012'—&22 2012‘

2@12

(159)

B

Inserting the foregoing asymptotic forms of the various constants in equations (37),
(38), and (136), we find

Qo = waeb Q; = wzel? Qot = walel’? and Qst = wslel2, (160)
where
Wo = 2&12 [2(3a2+a;)ag2—8&2&12]”2, w3=(2a2)”2,
az(4a.®— as?)
(161)
, 1 a
w21=w2,8=&—[2(3a2—}—a1)a22-—-8a2a12]1/2, and w3T=:l—1-(8a2)1/2.
2 2
The corresponding asymptotic forms of the components of the vorticity are
(o = Zzé__l/2 s {3 = 2361/2 s {21‘ = 22T61}2 s and §3’f = 23f€1/2 , (162)
where
2 40}2—(L22 2 2 a12+a22w
T= e e w = — _—
2 2(112 2 3 (122 3
(163)
2 2 2
tm — 20 4 o _wlTed
46112 — (122 2(112

The properties of the disklike ellipsoids of type I, determined with the aid of the
foregoing formulae, are included in Table 10, § XTI below.

a) The Asympiotic Form of the Characteristic Equation

Turning next to the stability of the disklike objects, we find that in the limit con-
sidered
A= xé”, (164)

where the constant of proportionality x is determined by the appropriate limiting form
of the characteristic equation (134).

On inserting the asymptotic forms of the various constants in the different elements
of the secular matrix (134), we find that, while all the elements in the first four columns
occur with a factor ¢, the remaining four columns tend to finite limits. After the removal
of the factor €* the secular determinant takes a finite form that is, moreover, manifestly
the product of the two determinants

2

‘xz - 3603“ —_ wagT

+ 2xest @? 4 wg? — (wsh)?

=0 (165)

and
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On expanding the determinant (165) and making use of the special forms of w;? and
(wsh)? (see egs. [161]), we find that equation (165) provides the two characteristic roots

3
g2 = — ,? and x2= — ;—5( 402 — ao2) wsl. (168)
2

Accordingly, the second of these two roots makes all the disklike ellipsoids of type II
(for which as > 2a,) unstable. But the determination of the stability of the analogous
ellipsoids of type I requires a consideration of the roots of equation (166) (see § XI
below).

X1. THE DOMAINS OF STABILITY WITH RESPECT TO THE OSCILLATIONS BELONGING
TO THE SECOND HARMONICS IN THE (as/@1, @3/a1)-PLANE

The characteristic equation (134) has been solved for its roots for some hundred
ellipsoids in their domains of occupancy; and by interpolation among the roots so
obtained, the loci of the marginally stable configurations in the (a2/a1, @3/a:)-plane were
determined. The results of the calculations, as they pertain to the loci of marginal stabili-
ty (rather marginal overstability, as it happens), are summarized in Tables 6 and 7; and
in Tables 8 and 9 we enumerate the characteristic frequencies of oscillation of the
ellipsoids whose properties have been listed in § VII.

TABLE 6¢

THE PROPERTIES OF THE MARGINALLY OVERSTABLE RIEMANN ELLIPSOIDS OF TYPE I*
(Along the Locus 0,X5®)

/e . 10000, 10526 1 1111} 1.1765 1 2500 1 33337 1.4286] 1.5385 1 6722
a3/t 0 30331 0 37120 0.4230] 0 4560 0 4703] 0 4676, 0 4474] 0 4053] 0 3278
Q... 0 -+0.1283) 40 2153 0 2942 4-0.3639, +0.4269, +0 4877 40 5550, +0.7107
Q ... | +0.7073 40 7176] +0 7098 40 6901} 40 6633 +0 6329 +0.5999 +0 5635 4-0 5142
2 . 0 —1 5014) —1 8984) —2 1276| —2 2794] —2 3842| —2.4626| —2 5307, —2 4011
¢z ... | —2 7417 —2 5977 —2.3978) —2 1787| —1 9637, —1 7621] —1.5752) —1 3984] —1 1673
Qat. . 0 +0 4898 +0 6812 40 8032 +0 8778 40 9150 +0.9178 40 8807 40 7107
Qst +1.3708] 41 2972 +1 1922) 41 0751 +0 9579 4-0 8458 -0 7400, 4-0 6390 +4-0.5142
£t 0 —0.3931] —0.6000, —0 7794] —0 9450, —1.1125] —1 3082 —1 5937, —2.4011
{3t . —1 4147} —1 4371) —1.4275] —1.3984] —1 3399, —1 3186] —1.2768 —1 2330, —1 1673

* The angular velocities and the vorticities are expressed in the unit (xGpytf2.

TABLE 65

THE PROPERTIES OF THE MARGINALLY OVERSTABLE RIEMANN ELLIPSOIDS OF TYPE I*
(Along the Locus D:Q)

/... ... 1 1582 1.1846 12124 1 2418 12727 1 3050 1 3707
asfar. .. .. 0 1411 0 1238 0 1057 0 0866 0 0666 0 0435 €

Q . ... .| +00618 | 40 0558 | 40 0480 | +0 0389 | +0 0286 | 40 0176 |42 1492 /2
Qoo +0 5209 | 40 4903 | +0 4554 | 40 4146 | 40 3658 | 40 3044 -1 4485 &/
$ove vn . | —41927 | —4 7796 | —5 4901 | —6.4045 | —7 6880 | —9 7572 |—2 2795 U2
s —1 8047 | —1 6695 | —1.5236 | —1 3629 | —1 1810 | —0 9654 |—4 4390 /2
Dt . .. +0 5802 | 40 5829 | 40 5737 | 40 5506 | 40 5098 | 40 4436 |+2.2795 /2
Qat . 40 8927 | 0 8229 | 40 7479 | 40 6658 | 40 5737 | 40 4661 |42 1135 /2
2% S —0 4469 | —0 4573 | —0 4598 | —0 4523 | —0.4308 | —0 3873 |—2 1492 /2
Gt .. ... 1 —10530 | —09947 | —0 9277 | —0 8488 | —0 7529 | —0 6305 |—3.0422 €2

* The angular velocities and the vorticities are expressed in the unit (zGp)V/2.
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TABLE 6¢

THE PROPERTIES OF THE MARGINALLY OVERSTABLE RIEMANN
ELLIPSOIDS OF TYPE I*
(Along the Locus QRy)

a/a. 1 2907 1 4954 1 6417 1 7679 1 8651
as/a . 0 1573 0 1563 0.1431 0 1233 0 0976
Q. .. +0 0979 +0.1427 +0 1769 +0 2211 +0 2856
Q.. ... +0.5082 -+0 4633 +0 4219 40 3784 -0 3310
[T —4 6947 —5.1812 —5 5580 —6 0132 —6.7416
$3. ... .| —1.6093 —1 3221 -1 1381 —0 9802 —0 8341
Wt ....] +0 7206 40 7908 +0 7788 +0 7280 +0 6299
1973 SN +0 7791 +0 6109 +0 5056 +0 4200 +0 3471
{at ...| —0.6376 —0.9355 —1.2612 —1.8137 —2 8546
&Gt ... —1 0498 —1.0027 —0 9496 -0 8829 —0 7942

# The angular velocities and the vorticities are expressed in the unit (xGp)!/2.

TABLE 7

THE PROPERTIES OF THE MARGINALLY OVERSTABLE RIEMANN
ELLIPSOIDS OF TYPE IIT*
(Along the Locus X,@00")

Gl o 4.0000 4 4141 4.9777 5.3909
G/t ..., 1.7210 1.6000 1.4933 1.4000
Qoo ~+0.4966 +0.5410 +0.5567 -+0.5497
1 N +0.3281 +0 2533 +0 1968 +0.1657
[ VI -+0.5283 +0.3190 ~+0.1992 +0 1430
[ S —1 9954 -2 1577 —2.2582 —2.2936
1973 SR .. ~+0.2198 +0 1440 +0 0914 +0 0676
L97% S 40 4787 +0 4641 +0.4359 +0 4113
£ S R -+1 0946 +1 2088 +1.1931 +1 1610
[ D —1.4219 —1 1826 -1 0190 —0 9242

* The angular velocities and the vorticities are expressed in the unit (xGp)!/2.

TABLE 8

THE SQUARES OF THE CHARACTERISTIC FREQUENCIES OF OSCILLATIONS OF
SOME TYPICAL RIEMANN ELLIPSOIDS OF TYPE I*

Q204 ... .1 0 55867 | 0 59683 | 0 68570 | 0 78661 | 0 16888 | 0 17311 | 0 08871 | 0 08956
9N e o 973 I 195795 | 1 668388 | 1 28261 | 0 78661 | O 75034 | 0 73533 | 0 42328 | 0 42713
a2 ... ... | 395684 | 290595 | 2 42382 | 1 30300 | 1 98060 | 0 76906 | 1 11840 | 1 24447
o . . . .1 310667 | 2 14020 | 1 41447 | 1 08486 | 1 13927 | O 48044 | 0 59519 | 0 49385
ai.. ... .| 141497 | 1 06182 | 0 79359 | 0.60901 | 0.31730 | 0 18666 | O 14508 | 0 06994
o ..... . .. | 675010 | 7.99131 | 8 22190 | 6 47555 | 0.62319 | 2 36704 | 0.20346 | 0 17370

* The squares of the characteristic frequencies are expressed in the unit #Gp.
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The loci of the marginally overstable configurations are delineated in Figures 1 and 3;
and the properties of these configurations are further exhibited in Figures 4 and 5.

It will be observed that, among the ellipsoids of type I, there are two disconnected
domains of stability with respect to the oscillations considered. The existence of the
stable domain, adjoining the stable Maclaurin spheroids along SO, is, of course, to be
expected. But the existence of the second domain, bounded by the segment DyR; of the
as-axis, is unexpected. The point (see Table 65),

as/a, = 1.3707 , (169)

limiting the stable disklike ellipsoids of type I was determined with the aid of equation
(166). In Table 10 we list the asymptotic forms of the characteristic frequencies of
oscillation, together with some of the other properties, of these disklike ellipsoids.

The calculations show that all ellipsoids of type II are unstable. As we have already
remarked in § X their instability along the as-axis follows directly from equations (168).

TABLE 9

THE SQUARES OF THE CHARACTERISTIC FREQUENCIES OF OSCILLATIONS OF
SOME TYPICAL RIEMANN ELLIPSOIDS OF TYPES II AND III*

Ellipsoids of Type I1 Ellipsoids of Type III
Q24052 . +0 52061 41 31413) -0 70393| +0 39458 +0 35751 +0 23651 +0 24718
Qot24-Q512 +0 06631 +0 14392 +0 04312 }-0.39458 +0 35751 40 23192| 40 19297
o2 o +0 11530; -0 21425 40 07331} +0 50590 || +0 46352 1| 40 70381 +0 55228
a? . ... | —0 10399 —0 07905| —0 09417/ +0 280394 | +0 20708:f{ | +0 15463| +0 20340
o . .. . +0 51325) +1 25723) +0 068147 +1.27177 +1 79119 1 74081 +1 18118
o .. ... +1 44145, 43 61524 +2 04314| +1.39306 +1 87486 +2 65271 +3 06709

* The squares of the characteristic frequencies are expressed in the unit #Gp.

TABLE 10

THE ASYMPTOTIC PROPERTIES AND THE SQUARES OF THE CHARACTERISTIC FREQUENCIES
OF OSCILLATION OF THE DISKLIKE ELLIPSOIDS OF TYPE I

g=sec™! (az/a1) 42° 43° 44° 45° 50° 58°
afa . . .. 1 34563 1 36733 1 39016 1.41421 1 55572 1 88708
wy . -+ 2.05429 -+ 2 13629 + 2.22576] + 2 32434] 4+ 3 05912| -+11 27045
w3 ... + 1.46610 + 1 45084 + 1 43516 + 1 41906| + 1 33207 + 1 16871
Z . — 2.24870 — 2 27560 — 2 30081 — 2 32434} — 2 41628 — 2 47347
23 . .. — 4 55156 — 4 45371 — 4 35556 — 4.25717] — 3.76491] — 2 99380
wsat. + 2 24870 + 2.27560 + 2.30081] 4+ 2 32434} + 2 41628| + 2.47347
wst. . -+ 2 17905 - 2 12215 + 2 06473] + 2 00685 + 1.71248) + 1 23864
2% S — 2.05429 — 2 13629 — 2.22576| — 2 32434] — 3 05912 —11 27045
2% S . — 3 06236 — 3 04484 — 3.02747| — 3 01027} — 2 92858 — 2.82477
ws?. . .. .. 2.14945 2 10493 2.05968 2 01372 1 77442 1 36588
(2 1)24(wat)?. 9 80493 9 68185 9 55686 9 430602 8.77100 7 65228
3dal—aD)ws/alt . 7 79644 7 19577 6.61032 6.04117 3 47451 0 50507
a? ... .. ... 19 86078 ) 19 55939 17.53812 16 45406 12.98259 9 39418
+ +
o L. L. ... . 2 OSSSSi} 0 73302 20 96929 21 43377 21 70035 19 90914
o .. o .. 2 58994 2 55633 2 52123 2 48458 2 27657 1.84879
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Among the ellipsoids of type III, there is a fringe of stable configurations (stable, that
is, with respect to the oscillations considered) bordering on the boundary X,'0’ of their
domam of occupancy. As we have shown in § VI, by interchanging the roles of the indices
1 and 2 (so that a; becomes the longest axis, as it is among the ellipsoids of type S) the
locus X2’0" is transformed to the locus X ;0 of the marginally unstable ellipsoids of type S
(see Fig. 3). One should expect under these circumstances that the stability passes from
the ellipsoids of type S to the ellipsoids of type III along their common curve of bifurca-
tion; and this is exactly what happens. However, since the ellipsoids of type S become

lar
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Fic. 4—The variation of the components of the angular velocity along the marginally overstable
ellipsoids delineated in Fig. 3. The curves distinguished by @ and Qf are appropriate for the adjoint
configurations having the same figure.

unstable with respect to an oscillation belonging to the third harmonics, prior to the
onset of instability by an odd mode of oscillation belonging to the second harmonics,
it is very lLikely that ellipsoids of type III are all unstable with respect to a third-harmonic
oscillation.

From the foregoing account it would appear that only among the ellipsoids of types I
and S do stable ones occur.

In his paper, Riemann considers the stability of his ellipsoidal figures by an energy
criterion. But most of the conclusions he derives from his criterion (with the notable
exception of those pertaining to the Maclaurin spheroid) are false. His criterion is
clearly in error; the origin of this error (which mars an otherwise most remarkable paper)
is clarified by Lebovitz (1966) in the paper following this one.
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XII. CONCLUDING REMARKS

The present paper completes the series of investigations initiated some six years ago
with a view toward completing and consolidating the classical work on the ellipsoidal
figures of equilibrium of homogeneous masses. As the investigations proceeded, several
misconceptions in the earlier work (e.g., the Roche ellipsoids become “unstable” at the
Roche limit, or that the bifurcation of the Jacobian from the Maclaurin sequence is a
‘“unique” phenomenon) became apparent; and these have been eliminated.

In many ways, the most curious aspect of the subject has been the almost total
neglect of the fundamental papers of Dirichlet, Dedekind, and Riemann (all published
in 1860). Nevertheless, the completion of Riemann’s work has been essential to a com-
prehensive view of the subject. The fruitful exploration of these classical avenues is by

a/q

Fic. 5.—The variation of the components of the vorticity along the marginally overstable ellipsoids
delineated in Fig. 3. The curves distinguished by { and {1 are appropriate for the adjoint configurations
having the same figure. '
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no means ended: the continuation of Dirichlet’s work on the non-linear finite amplitude
oscillations of ellipsoidal figures appears to hold rich promise. These further areas of
research are, however, beyond the scope of the present series.

T am grateful to Dr. M. Clement whose careful scrutiny of the analysis helped the
elimination of a number of oversights and obscurities; he also generously programmed
for machine calculations,! the characteristic equation (both in its finite and asymptotic
forms) for the determination of its roots. I am equally grateful to Dr. N. R. Lebovitz
for many clarifying discussions and particularly for his examination of Riemann’s criteri-
on for determining the stability of his figures and demonstration of the place where he
erred. I am also indebted to Miss Donna Elbert for her continued patience in assisting
with these investigations; in this particular instance it was most essential.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.
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