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THE STABILITY OF GASEOUS MASSES FOR RADIAL AND
NON-RADIAL OSCILLATIONS IN THE POST-NEWTONIAN
APPROXIMATION OF GENERAL RELATIVITY
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ABSTRACT

The stability of gaseous masses with respect to radial as well as non-radial oscillations is considered
in the framework of the post-Newtonian equations of hydrodynamics The onset of dynamical instability
at a radius R determined by a formula of the type

(where K is a constant) is confirmed in case the “ratio of the specific heats” y = (9 log /0 log p)s
(where the subscript s denotes that the derivative is with respect to constant entropy) is a constant.
An expression for K is derived which does not involve any knowledge of the equilibrium configuration
beyond the Newtonian framework ; and the values of K appropriate to the polytropes are also listed. With
respect to the onset of instability for non-radial oscillations, it is shown that the classical criterion of
Schwarzschild based on the discriminant

dp __pdp
S(r)=7>—y =
(r) dr ¥ pdr
is replaced by one based on the discriminant

B Mdp /., 1 dr/dr
@(r)_S(r)+c2d7’ r 7+I‘—1dp/pd1’)’

where TI is the internal energy (per unit volume) and T' is a ratio defined by the relation pIl = p/(T' — 1).
An alternative form for &(r), namely,

) Ers—rd(logl’)/‘”
e =S 1+G T g 5y 7dr )

where T's = 1 + (9 log 7'/9 log p)s, shows that the condition for the occurrence of convective instahility
is unaltered in the post-Newtonian approximation.

I. INTRODUCTION

The post-Newtonian equations of hydrodynamics derived elsewhere in this issue
(Chandrasekhar 1965; this paper will be referred to hereafter as ‘“Paper I”’) enable a
systematic investigation of the initial effects of general relativity on a wide variety of
problems. In many ways, the most interesting question to which one should like to find
an answer with the aid of these equations concerns the stability of gaseous masses with
respect to non-radial oscillations: because it is known (Chandrasekhar 1964a, b) that
post-Newtonian effects do induce instability with respect to radial oscillations. However,
we shall find that no new instabilities are predicted.

In treating the problem of non-radial oscillations and convective instability in the
framework of the post-Newtonian equations, we shall use the methods which have been
developed recently for treating the same problems in the framework of the Newtonian
equations (Chandrasekhar 1964c¢; Chandrasekhar and Lebovitz 1964; and Lebovitz
19654, b).
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1520 S. CHANDRASEKHAR Vol. 142

II. THE EULERIAN AND THE LAGRANGIAN FORMS OF THE EQUATIONS OF MOTION
GOVERNING SMALL OSCILLATION ABOUT EQUILIBRIUM

Consider a spherically symmetric distribution of matter in hydrostatic equilibrium.
The equations governing the equilibriurn are (Paper I, egs. [40] [41], and [68])

d 2U
E[(l +7)P =P dr + 2 P <¢ + @
where
¢=U+3m+32, @
1 d ,aU 1 d ad
i, < ) — 47Gp, and i, r? E;) = —4rGp¢. (3)

Also, in the foregoing equations, p is the density, p is the pressure, and II is the internal
energy per unit mass. It should be further noted in this connection that a basic assump-
tion which underlies the entire development of the present post-Newtonian theory is
that the energy-density e is related to p and II by the relation

€= pc2+ pIl. 4

Now let the equilibrium configuration considered be slightly perturbed; and let 8p,
8p, oU, etc., denote the resulting Ewulerian changes in the respective quantities. The

linearized form of the equation of motion governing the perturbation is (Paper I, egs.
[45], [63], [74], and [80])

0 4 0
—‘(0'7)a)+2 2pat(U’—U,;;ap.)+’cﬂ2p'a_‘t(‘vaU“Ua)
_ 0 2U 2 3p 6
=~ (1+57) sp G ooV ] (e ©
+paxu EEP
where
- 1 ?
—p[1+§<2U+n+F>], ®)
Ua()—Gfp—(i—)—v“—(—’]f)d' m
and iy’
Uﬂ;au(x) =G_/;’P(x,)vu(x’)(x#_xu,)(xa—xa,)lx—__x’?_lg; (8

also the integrations in equations (7) and (8) are effected over the volume V occupied by
the fluid.

In addition to equation (5), we have the equation of continuity (Paper I, egs. [117] and
[118])

a *
atﬁp +—~(p 12) =0, ©)
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No. 4, 1965 POST-NEWTONIAN EQUATIONS 1521
where 3
*=p(1+—c—2‘ U). (10)
Let the perturbed state be described by a Lagrangian displacement of the form
E(x) et (11)

where w is a characteristic frequency to be determined. Equation (5) then becomes

it atet o5 0 (Ve ,,a,,)+f;p(saU—Ua)]

e GRS

g iU

where 6p, 8p, 83U, and 6% now denote the Eulerian changes in the respective quantities
caused by the spatlal displacement & and U, and U, are defined as in equations (7)
and (8) but with £(x’) in place of v,(x"). And equation (9) gives

op* = — div (p*¥) . (13)

Equations (12) and (13) govern the Eulerian changes in the various quantities caused
by the displacement & We shall find, as in the corresponding treatment of the Newtonian
problem (cf. Chandrasekhar and Lebovitz 1964; see particularly the Appendix to this
paper), that it is more convenient to work with the Lagrangian changes than with the
Eulerian changes: the boundary conditions are more directly applied to the Lagrangian
variables and the treatment, moreover, does not require that p vanish on the boundary
or, indeed, that it be continuous in the interior.

Let the Lagrangian change in a quantity F(x) be denoted by AF(x) when the cor-
responding Eulerian change is 6F(x); the two changes are related by

AF(x) = 8F (%) + £ ;F. 14

X5

We, also, have the relation
dF\ _OAF _ 3F a4
6x¢ axi éxk axi )

(15)

Making use of these relations, we readily verify that equations (12) and (13) in the
Lagrangian variables become

w2[05a+§1{;—2p(Ua— Uu;a.;,z) +’;2'P(£aU“- Ua)]

2U _Ap @
axa (1-{— )Ap—l— pAU 9. ( + (16)
oAU 0AU |, 0AD
—F 0%e < ¢—+¢ 0xa +6xa
and
Ap* =— p* div £. an
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1522 S. CHANDRASEKHAR Vol. 142

It remains to express the Lagrangian changes in the various quantities explicitly in
terms of &.
First we observe that by combining equations (10) and (17), we have

s =(1+30) a0+ 5080 = —p (143 V) dive. as)
Therefore to O(1/¢?) 3
Ap = —p(div§+—6—2AU). (19)
The corresponding Lagrangian changes in p and II follow directly from the relations

AP='Y—§-Ap and pAH=€-Ap. (20)

The first of these relations essentially serves as a definition of the “‘ratio of the specific
heats” v and the second is an immediate consequence of the exact differential relation

dll = ? dp (21)

02

which obtains in this theory (cf. Paper I, eq. [113]; see also Fock 1964, p. 104). With Ap
given by equation (19), the relations (20) give

Ap= —~xp (divz—{-%AU) (22)
and

pAIl = —p(div{—!—%AU). (23)
Next from the definition of ¢ (eq. [2]), we have
A = AU + LATI + 24 (%); @9
and we find with the aid of the relations (19), (22), and (23) that
A¢~=AU—%,—%(37—2)(divf+-f—2AU>. (25)

And finally, the expressions for AU and A® can be written down from the knowledge
that the corresponding Eulerian changes are to be determined as solutions of the equa-
tions

V23U = —47Gdp and V2P = —47Go(po) ; (26)
thus
_ / WO 1., 3 p(x)AU(x") , ,
6U—vap(x)£a(x)axa,!x_x,|dx C2va S @
and
- ' : w9 1 L p(x)AS(x") . ,
00=G [ p(x)6(x) £u(x) 5o dx'+G [ BE T dx
+0(c™?), (28)
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No. 4, 1965 POST-NEWTONIAN EQUATIONS 1523

where it should be noted that in the second term in equation (28) it is the Lagrangian
change A¢ that occurs. With the Eulerian changes 6U and §® determined by equations
(27) and (28), the corresponding Lagrangian changes follow from the equations

AU—6U+£Jg—Z—]——6U+£rdU
.7

and (29)

odb ad
7

where £, is the component of £ in the radial direction.

With the changes (Lagrangian or Eulerian) experienced by all the quantities now
expressed in terms of the displacement, equations (12) and (16) become explicitly equa-
tions governing &.

III. THE VARIATIONAL PRINCIPLE

We have seen in § IT how equation (12) (or [16]), when supplemented by the expres-
sions for the various changes (Eulerian or Lagrangian) in terms of £, becomes explicitly
an equation for £. Solutions of the equation ([12] or [16]) must be sought which satisfy
the boundary conditions that

Ap = 0 on the boundary of the configuration at r = R (30)

and that none of the quantities has a singularity at the origin. Equation (12) (or [16])
together with the boundary conditions at r = R and at » = 0 constitute a character-
istic value problem for «?. It is shown in the Appendix that the problem is a self-adjoint
one. A variational base for determining «? is therefore obtained by multiplying either
equation by &,, contracting, and integrating over the volume of the configuration, While
the final expressions one obtains by the procedure described, from equations (12) and
(16), must be equivalent, we shall work with the latter equation in the Lagrangian vari-
ables as it has the advantages that we have stated earlier.

Multiplying, then, equation (16) by &,, contracting, and integrating over the volume,
we readily find that the terms on the left-hand side of the equation give

ot { foletax+5{36 [ foGrp(x)HEEED g g

—%G/;fvp(x)p(x’)[f(x).(x_x,)][z(x’)°(x_x’)] dxdx’' (31)

|x—x"[3

+2vafv,,<x)p(x,)!z(x> —&(x) lzdxdx']$=Qw2(say).

[x—x'|

As defined, Q is a positive definite quantity.
Carrying out the same procedure on the terms on the right-hand side of equation (16),
we obtain

/dlv.f vp(l-I— )(dlvf—l— AU)—--*—pAU]dx
+fv<div§+%AU> g2 dx—fpfa LU PRy

2 aU JAU 0AD
_'CE/;P <A¢£a :9_50:+¢$u dxa T & axa> dx,
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1524 S. CHANDRASEKHAR Vol. 142

where an integration by parts has been performed with respect to the first term and the
expressions (19) and (22) have been substituted for Ap and Ap. Next, substituting for
A¢ (in the last line of [32]) in accordance with equation (25) (but retaining, as clearly
sufficient, only the zero-order terms), regrouping the terms, and finally combining with
the earlier result (31), we obtain

2U . . d 2U
Qw2=fv»yp (1+7)(d1v§)2dx+£’dlvi Eaa —;—2—) p]dx

(I) (IT)
+ = f(3'y—2)pAUd1v§dx+ fAUga apd

(IIT) (Iv) (33)
+25 [Gr=2pdive g dx— [t 500 dx

(V) (VI)
2 GAU 8A<I>
e /;’qu!;a ax., /péa
(VII) (VIID)

As we have stated, equation (33) can be used for a variational determination of w?.

IV. THE FORM OF THE VARIATIONAL PRINCIPLE FOR THE NORMAL MODES
BELONGING TO THE DIFFERENT SPHERICAL HARMONICS

We shall now analyze the Lagrangian displacement £ into normal modes belonging to
the different vector spherical harmonics and write (Chandrasekhar 1961, 1964¢; see also
Lebovitz 19656 where the substitution is rigorously justified)

£, =17 pino,

1 dx(r) 97 (3,0)

b =T0F ), dr I R
and

£, = 1 dx(r) oV » (19,<P)

Tl +1)rsind dr )

where Y(r) and x(r) are two radial functions and Y;”(¢, ¢) is a spherical harmonic.
And we may note here for future reference that for & given by equations (34)

si=re, =Y Vin(s0)  and  divE= (Y =) Fin(Be). 9

It is clearly to be expected that, when the displacement & belongs to a particular
vector spherical harmonic, the Lagrangian and the Eulerian changes in a scalar quantity
(such as p or U) will be expressible as products of a radial function and a spherical
harmonic thus:

AF(7,8,0) =AF(r) V™ (8,0) and  8F(r,8,0) = 8F(r) V™ (&0), 36
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where F stands for a typical scalar. We shall call AF(r) and 8F(r) the radial funclions
defining the respective changes. Moreover, since any function F(r) describing the un-
perturbed state is, by assumption, spherically symmetric it follows that

AF(?’,I?,(p) = 5F(f,1},§0) + Sr% (37)

By the first of the equations (35), the corresponding relation between the radial func-
tions AF(r) and 8F(r) is

AF(r)=6F(r)+£2gi. (38)
r2dr
This relation holds for any quantity defined in the equilibrium state.
In view of equations (19) and (35), we may now write
1 d 3
8o (r) = —p| (V=) +5AU (N |; @

and we have similar expressions for Ap(r) and pAIl(r). And for future reference, we may
note here that equation (25) written in terms of the defining radial functions is

A¢(r)=AU(r)—%%(37—2);1—2%(30—x)+0(6”2)- (40)

a) The Radial Function Defining U (r,8,¢)

The radial function defining 6U(r,3,¢) is known in the Newtonian approximation
(cf. Chandrasekhar and Lebovitz 1964, egs. [A.14] and [A.15]); we have

6U(r)=2—zll%_€1—[£;—§£l—r’K,(r)], (41)
where . p
Jl(r)=£ p(S)Sll:l‘I/(sS)-f- Xd(:)]ds
and R ( i (42)
Ki(ry = [ g ¥ Xd:)]ds.

For the evaluation of the terms III, IV, and VII in equation (33), the knowledge of
8U(r) provided by equation (41) is sufficient since these terms have already a factor
1/¢%. But the term VI requires to be evaluated correctly to O(1/¢?); and for this purpose

the additional term 3 (VAU (x')
9 pLx x ’
C2va % — x| dx’, (43)

in the expression for 8U given in equation (27) should be included. In evaluating this
last expression, the Newtonian value for AU derived from equation (41) is clearly suf-
ficient. By expanding | x — x’|~! in spherical harmonics, we find that

R e S SO oS EOY P
where
, R
Q,(r)=f0 p()AU(s)s*ds  and  Py(r)= [ p($)AU(s) flfl. (45)
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Therefore, to O(1/¢?)

aU(r)=2‘l”+Glgjrlf;) PIK(r) — 2[9;511) +reo |} wo

The following relations which readily follow from the definitions of the functions
Ji, K1, Qi, and P; are essential in the subsequent reductions:

d I+1 p¥
dr ,z+1 ZK)—“ =Y Jy—=lrt— 1K;+(21+1)r2
and )
l 1
& (Grn)= o,

b) The Radial Function Defining 6%(r,9,¢)

The evaluation of §® in accordance with equation (28) proceeds along very similar
lines. We find (cf. eqgs. [41], [42], [44], and [45])

s0(r) = z‘l*’fl[s;fjl) — () + 85 4 e, ], )

where

(49)
Ru(r) = f p(ss)lfl(s)[(z+1)‘l’(s) dxd(ss)]ds,
Fu(r) = [(p($)Ag(s)stds  and By 50
0

Among these newly defined functions (and J; and K; already defined) there exist the

relations
fifil —_ ¢,f%i[£ liS?l ¢,f£1§l
r T dr’ dr  ®Tdr
d d I+1
dr ;—?Ili_rlﬁo”_‘ r—t-+2 Ji—lr- 1@1(7)+(21+1)p¢¢ (51)
and I+1
,z+1 165) EET) Titir'T1O,.

Since 8® occurs in a post-Newtonian term, it will clearly suffice to use for A¢ in equa-
tions (50) its Newtonian value (40).

¢) The Explicit Form of the Variational Principle

We shall now return to equation (33) and consider the form it takes when the dis-
placement & belongs to a particular vector spherical harmonic. When the expressions
for the various quantities (such as div &, &, AU, etc.) appropriate to the chosen displace-
ment are inserted into the different 1ntegrands the integrations over the angles are im-
mediate: in all cases, the result will simply be the normalization integral of the spherical
harmonic ¥;” (8,¢), namely,

4n (I4+|m|)!.

Nim =577 (0= |m)!"

(52)
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and we shall be left with integrals over 7 in which the relevant changes are replaced by
their defining radial functions.

Suppressing the common factor N;,, which will occur with every term, we shall enu-
merate the radial integrals which remain after the angle integrations have been per-
formed. The results for the first five terms on the right-hand side of equation (33) can
be written down simply by inspection. Thus

I L+ 23D Lw-0] Y, (52
[ b oot e
ITI: %EAR(37—2)pAU(r)%(¢—x)dr, (55)
IV: —C%j(;RAU(r)j—f vdr, (56)
v: L G-y Ly -0l &

The evaluation of the remaining terms VI, VII, and VIII is less straightforward. The
procedure, however, is the same as that set out in detail in an earlier paper (Chandra-
sekhar and Lebovitz 1964, pp. 1526-1527) with respect to the sixth term in the New-
tonian approximation. The essential “point” to note about the reductions is the use of
the relations (47) and (51) at the “right” places.

The sixth term in equation (33) must be evaluated now to O(1/¢%) for which purpose
the full expression for §U (r) given in equation (46) must be used. However, it is sufficient
to evaluate the terms VII and VIII in the Newtonian approximation. We find

VI fR dU[ ——%a——(tp-‘}- ) |ar— drG f (Jld—lg—’—Kl——>d

s 20+ 1
(58)
S (oAU ()8 U(r)rdr
+5 [ paU( U () rdr;
vit 2 [ tu b %—i(wx)]dr
(59)
iK, . dJ,
- i (Jl————Kl 1) ar;
. 2 R odB[ Y ¥
VIIL: S [ e a5-5 (|l/+x)]dr
87I'G dKl
(2l+1)c2 (Jl ——K,——)dr (60)

R
—%fo pAG (Yo U (r)ridr.
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Combining the foregoing results of the integrations over the angles we find, after
some substantial reductions and rearrangements, the surprisingly simple result:

os= [T (1+2)[Lw-0] L

+2f (1+ (2——¢ ar

) )

(61)

Fa i AUt [ Gy =2V (b= ar].

Since AU(r) occurs in equation (61) only in the post-Newtonian terms, it will clearly
suffice to use its Newtonian value

4
Zl’fl[flﬁﬂ) rK(r) |

where Ji(r) and K,;(r) are defined in equations (42).

The quantity Q, that occurs as a factor of ? in equation (61), is defined in equation
(31) (apart from a factor Ni,, which is presumed to have been suppressed). We shall not
consider its reduction in this paper since its precise value is not needed for our present
purposes of determining the conditions for marginal stability.

And finally, it may be noted that if the terms in 1/¢? are suppressed in equation (61),
we recover the equation which obtains in the corresponding Newtonian theory (cf.
Chandrasekhar and Lebovitz 1964, eq. [A.18]).

Y dU

AU(?’) FE’_’ (62)

V. THE POST-NEWTONIAN CONDITION FOR THE ONSET OF DYNAMICAL INSTABILITY

We shall first consider the case of radial oscillations and show how equation (61)
enables us to obtain a very simple condition for the onset of dynamical instability in the
post-Newtonian approximation. As we shall see presently, the evaluation of this condi-
tion, for the particular case v=constant, does not require any knowledge of the equi-
librium configuration that cannot be derived entirely in the Newtonian framework.

First, we observe that when we are dealing with radial oscillations

=0 and x=0. (63)
From equations (42) it now follows that
R
Jo=0 and Ko=f p(s)“b(sj)ds. (64)

Accordingly, equation (61) reduces in this case to

0= [ (1+50) (57) S o mal (1450 eler

(65)
+}§f pIAU ()1 2dr+2f (3y—2)pa0 ()% 4],
where (cf. eq. [62])
AU(r)——41rGf o ($)¥ (s )—+%%. (©6)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1965ApJ...142.1519C

- CTARI IS

No. 4, 1965 POST-NEWTONIAN EQUATIONS 1529
With the further substitutions
Y =1 and &L=m, (67)

equation (65) can be reduced to the form

m [ (2D () + -t o

R R
+%;-/0‘ p[AU(r)]Qrzd,_;_zfo (37—2)pAU(r)%(f3n)d7%,

(68)

where it might be recalled that p and p are the distributions of pressure and density in
the equilibrium configuration in ke posi-Newtonian approximation (and, therefore, in-
clude terms of order 1/¢?).

The condition for marginal stability follows from equation (68) by setting w? = 0. In
the particular case ¥ = constant! (and it will appear that only in this case), the criterion
for marginal stability can be deduced from information about the equilibrium configura-
tion obtained solely in the Newtonian approximation. The reason is that when vy =
constant, the corresponding criterion in the Newtonian approximation is vy = % and,
moreover, the proper solution for 7 is a constant. Accordingly, in the post-Newtonian
approximation, we should have

vy — %= 00" and n = constant + O(c™2) . (69)

Under these circumstances, equation (68) gives for marginal stability the condition

Grv=0 [T (1+2) Lryar

(70)
R R
=—%§f p[AU(r) 12rdr +12 pAU(r)r?dr},
0 0
where, now, = iU
AU(r)=—47rG[ prdr-i—rm—. (71)

[Note that the term (dy/dr)? in equation (68) makes no contribution in the present ap-
proximation since it is of order ¢~%.] It is now apparent that in the integral on the right-
hand side of equation (70), we may ignore the post-Newtonian corrections to p, neglect
the term 2U/¢? and set = constant. We thus obtain the condition

R R R
9(7—%)/(; pr2dr=——cl—2g/‘; p[AU(r)]2r2dr+12/(; pAU(r)ﬂdr}.('lz)

Recalling the formula

R
B= — 121rf pridr, (73)
0

for the gravitational potential energy of a configuration in hydrostatic equilibrium, we
can rewrite the condition (74) in the form

1 R E
=4 =gam i (AU () 1M () 12 f %AU(r)dM(r)}: (74

17t should perhaps be stated here, explicitly, that no assumption concerning v (its constancy or
otherwise) has been made during the entire development of this theory.
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1530 S. CHANDRASEKHAR Vol. 142

and this criterion for the onset of dynamical instability involves no knowledge of the
equilibrium configuration beyond the Newtonian framework. However, the reduction
of the general criterion to information obtained in the Newtonian approximation has
been possible in the case v = constant for very special reasons; it is not to be expected
that when v is variable a similar reduction will be possible (cf. Fowler 1964 where one
may obtain the impression that the reduction is quite generally possible).

a) The Evaluation of the Criterion (74) for Polytropes

The criterion (74) for the onset of dynamical instability can be obtained in an explicit
form for the polytropes. Thus expressing all the quantities (r, p, p, and U) in units
appropriate for reduction to the standard Emden variables, £ and 6, we find that equa-
tion (74) becomes

2GM (§5—mn) g £
—_4 = n 2 &2
T4 =~ RF TSIV ETITT (n+1) [ oAU () Peag
(75)
£
+12 [ omav (¢) gasl,
0
TABLE 1*
VALUES OF THE CONSTANT K
n K n K
0. 0 452381 (=19/42) || 25 0 900302
10 565382 ( 5654) 30. 1 12447 (1 1245)
15 645063 325 1 28503
20 0 751296 ( 7513) 35 1 49954

* The values in parentheses are those derived in Chandrasekhar (1964b).

where # is the polytropic index, £, is the first zero of the Lane-Emden function 6,, and
0, is the value of the derivative of 6, at £&; also, M is the mass and R is the radius of
the configuration. For the case under consideration (in the non-dimensional units used)

ao

AU<s)=-—ffo"sdsﬂ;l—f—(0+sl|01'l). 76)

Inserting this expression for AU(£) in equation (74), we find after some reductions that
the condition for marginal stability can be written in the form (cf. Chandrasekhar
19645, eq. [87])

where (77

k=3t A [0 (§)) eae+].

The values of the constant K evaluated with the aid of the foregoing formula, for dif-
ferent values of #, are listed in Table 1.

In the earlier paper (Chandrasekhar 19645, § VIIIa) the constant K was evaluated
on a specific model of the relativistic polytropes due to Tooper (1964); and it appeared
that the value of K depended explicitly on the function (¢ in the notation of that paper)
that describes the post-Newtonian correction to the non-relativistic Lane-Emden func-
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tion. The present theory clearly shows that there can be no such dependence; and the
close agreement (see Table 1) of the values of K derived in that paper (for #» = 1, 2,
and 3) with those now obtained with the aid of equation (77) confirms that this is indeed
the case!

VI. THE CONDITION FOR THE OCCURRENCE OF A NEUTRAL MODE OF OSCILLATION
FOR ! 2> 1: THE POST-NEWTONIAN FORM OF SCHWARZSCHILD’S CRITERION

We shall now obtain the condition for the occurrence of a neutral mode of non-radial
oscillation belonging to I > 1. The method we shall use will closely parallel the one
recently devised by Lebovitz (19656) in his examination of the same problem in the
Newtonian framework.

Setting w® = 0 in equation (16), we obtain

grad AP——ATP grad P — p grad AU

(78)
—;25 p(Ap grad U+ ¢ grad AU +grad A®) =0
where for brevity we have written
P=<1+gg>p. (79)
We rewrite equation (78) in the form
grad[ AP — pAU — 2 p (AT +40) | = %‘1 grad P
(80)

— AU grad p +%[pA¢ grad U — AU grad(p¢) —Ad grad p ].

Since P, p, U, and p¢ are functions of » only, the vector on the right-hand side of
equation (80) has a component only in the radial direction and none in the transverse
?- or ¢-directions. It follows from this fact that

AP—pAU—%p(¢AU+A<I>)=F(r) (31)
and \
ApdP . dp, 2 aU_ iy d(pd) ,odp|_dF(r)
p dr AUdr+cz[pA¢ dr AU dr A(I)dr]— dr '’ 2

where F(r) is some function of 7. On the other hand, we have seen in § IV that, when
the Lagrangian displacement is analyzed in vector spherical harmonics, the resulting
Lagrangian change in a scalar quantity (such as P, U, or ®) is expressed as a product of a
radial function and a spherical harmonic. Thus, the quantity on the left-hand side of
equation (81) has a spherical harmonic as a factor; it cannot, therefore, be a function of
r only except in the case / = 0. Excluding, then the case I = 0, we must have

Fr)=0 (21, (83)
and equations (81) and (82) become

AP=p[AU+c~22(¢AU+Aq>)] 84)
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and
Ap dP _dp

o dr[ U+—(¢AU+A<I>) +—- (AU~—A¢—— (85)

We observe that p in equation (84) and dp/dr in equation (85) occur with the same factor.
Eliminating this factor, we obtain

Ap dP _ AP dp U
= ar (AU——AqS— (86)

and restoring to P its meaning, we have

g et

62 p (AU - —A¢ ——)

Dividing equation (87) by (1 4+ 2U/¢?), we obtain (correctly to order 1/¢?)

(87)

4,2 ,40)_Ldp( V2o (a0 224 1T
> \Gr )= Ap—{- 5 PAU )+ =P AU A¢ . (88)
Making use of the relation
sp=vLap, (59)
which underlies the present development, and letting
_9p__pdp
S(f)—dr 7pdr (90)
denote the Schwarzschild discriminant, we can transform equation (88) to the form
T3 =gt gtro3p)au-(Faotone) T
) S(r)—c2 pd7‘+ AU — (= Ap+ pAg (91)

It is clearly sufficient to use the Newtonian values for Ap, A¢, and AU on the right-hand
side of equation (91). Inserting then the values

Ap = —pdiv & and pAp = pAU — 3(3y — 2) pdiv &, (92)
we obtain

55 507y = 2[3rp W a4 (22—, 10y, 49)

P Sr) =g gy dive+ pdr Par TP ay av]. 2

Before we can proceed further, it is necessary to write out the term d¢/dr (in eq.
[93]) explicitly in terms of the other variables. For this purpose, it is convenient to define
a new ratio I' by the relation

1 2

I=—=%= (94)

I'—1p’

The ratio T' as defined by equation (94) is not generally the same as the ‘“ratio of the
specific heats” v defined by equation (89) and appropriate to conditions when changes
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take place adiabatically: the thermodynamic definition of the latter ratio is
d(log p) ]
=T (95)
[a (IOg P ) 8 ’

where the subscript s denotes that the derivative in question is with respect to constant
entropy (s). For later use, we shall define here the further ratio

6(logT)]
d(log p) 1s

For a mixture of gas and radiation, the expressions for the three ratios v, I's, and T are
(cf. Chandrasekhar 1939, eqs. [131] and [141], pp. 57 and 58)

(4—38)*(v,—1)
B+12(v,—1)A=8)’

(4—-38)(v,—1)
B+3(yv,—1)(1—-8)’

vo— 1
6+3('Ya—1)(1—5)

where v, is the ratio of the specific heats of the gas as conventionally defined and 8 is
the ratio of the gas pressure to the total pressure.

After this digression on the representation of II, we return to equation (93) and first
note that

(96)2

n=1+[

y=8+

(97)

I's=1+

and

s=U+ym+3lov =L

20—1) o’ .
A differentiation of this equation now gives
d¢_ ST—4 dU_ 3T=2 pdp___p __dr o
dr 2('—1)dr 2(I'—=1) p2dr 2p(I'—1)2dr’
Substituting this expression for dqb/ dr in equation (93), we find
Ap _ 1
TS(r)—ng p d1VE
(100)
AU L (sp ), 40 e _p db
+p—g| r-2) L ar el

Now consider the neutral modes belonging to a particular vector spherical harmonic.
Then equation (100), in terms of the defining radial functions, becomes

_ 1 §3vpdU d
—[Mr(w X) += AU(r)]Sm-Gz{rz (=)

(101)

AU (r) au pdp _p 4T
+I‘ [(3P_—2) dr I‘;dr -—1dr]$'

2 The ratios v and TI'; defined here have the same meanings as the adiabatic coefficients I'; and T's
defined in Chandrasekhar (1939, eqs. [123] and [125], p. 56) for the particular case of a mixture of gas
and radiation pressure.
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It is known from Lebovitz’s discussion of this same problem in the Newtonian frame-
work that a necessary and sufficient condition for the occurrence of a neutral mode of
oscillation is that S(r) vanishes over some finite interval of r; and, further, that when
this happens, a proper solution for the displacement is obtained by choosing ¥(r) arbi-
tarily in the interval in which S(r) vanishes (and zero outside this interval) and de-
termining x by the relation

P Pl (50 X)- (102)

In ascertaining the criterion for the occurrence of a neutral mode that is implied by
equation (101), we shall continue to make the same assumptions concerning ¢ and ¥,
namely, that ¢ is chosen arbitrarily (in the first instance) and that x is determined, in
terms of ¥, by means of equation (102), or its equivalent

dx
P, = (pll/) (103)

The particular feature which distinguishes this manner of relating y and x is that 8p, in
the Newtonian limit, vanishes: for the radial function §p(r) defining the Eulerian change
in p is given by (cf. eq. [39])

_ oy ¥ de 3
30(r) = —p| 52ty —x )+ S AU () ] (109
and when the relation (102) obtains,
5p(f)=—-63—2pAU(f). (105)

Since 8p vanishes in the Newtonian limit, U must also vanish in the same limit (see
eq. [115] below). Hence when ¢ and x are related in the chosen manner,

s () =52 ro(e), 108)

and
Y (4 34U

(107)
dr c? P ar

Ap(r) =

Inserting the foregoing relations in equation (101), we find after some rearranging

‘// 1dp 34U _1ydlpsr—2
pdr ctadr Slr) = 627’2(1[ S()
(108)
+7'—P£d_ﬂ__i’_£i£]
'—1pdr (I'—1)%2dr
We now rewrite equation (108) in the form
12 liﬂ_iﬂ__s‘ﬂ)
% pdr ¢ T S(r) 109
1 pdpdUT—v 1 ar/dr
cpdr dr[ +(I‘——1)2d(10gp)/dr]% 0.
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From equation (109) it now follows that to O(c™?), a sufficient condition for the occurrence
of a neutral mode of non-radial oscillation is that

_ 1 p dU 1 dI‘/dr)
Sty =—Grga, U~ 7+I‘—1dp/pdr

over some finile interval of r: for Y(r) can be chosen arbitrarily over the interval in which
equation (110) holds (and zero outside this interval) and x(r) can be determined, in
terms of ¥, with the aid of equation (103). By using equation (94), we can rewrite the
condition (110) in the form

_Mdpf, L_ar/ir
stn=-52(0 1+ T o edr)- (a1

(110)

The classical criterion of Schwarzschild, which requires S(r) to vanish over some
finite interval of » to insure a marginal state with respect to the onset of convective in-
stability, is replaced by the requirement (111) in the post-Newtonian approximation of
Einstein’s field equations. However, it will appear (see § VIII below) that the physical
content of the two criteria is the same.

VII. THE DERIVATION OF THE POST-NEWTONIAN CRITERION FOR CONVECTIVE
INSTABILITY FROM THE VARIATIONAL PRINCIPLE

It is instructive to derive the condition (111) from the variational principle: it will
enable us to establish at the same time that if

st < =S (r—ytiiy i

2dr
over some finite interval of r, then there exist unstable modes of non-radial oscillation for
everyl > 1.

In evaluating the variational expression for w?, we shall continue to suppose that ¢
and x are related to the manner required by equations (102) and (103). But first, we
may note some special features of the chosen form of the displacement.

i) Making use of equation (103), we find that

pr <l¢ Z’: dr(r p¥)

and (113)

z+1[(l+1)¢ di,( _"'—<,,z+1

From equation (42) it now follows that

)—{—0(0—4) (112)

Ji=rlpy and K,= rpl:b_l. (114)
ii) In view of equations (114),
oU(r) = 2?:_61 {il lK;) =0 (115)

—a fact to which we have already drawn attention in writing equation (106).
iii) We also have the relation
dK,

Ji dr

dJ, _ P2y

Kzg;—""(ﬂ‘i'l)—r?—-. (116)
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Turning now to the evaluation of the different terms on the right-hand side of equation
(61), we find that the first term gives (as may be directly verified)

p(l-I-ZU ¢Z dp 2dr f S(r )gl/ dp

2 o [ 4 ds
+c2./0' 1¢U 72 2 > dr dr r?pdr i
V dp
+f dr (1+ r pdrd

The last term on the right-hand side of equation (117) combines with the second term
on the right-hand side of equation (61) to give

E g d 2U0 pw,bQ)
0 ; a7 ( + ) dr dr. (118)

By using equation (1) governing equlhbrlum we can write, instead,

—f dr (¢> dU dq’ dr (mw)d (119)

An integration by parts, followed by reductions in which use is made of equations 3),
gives
RO LA NP, 2 R WdedU
4G [ (1+62¢) rart s [ a5 (120)

By equation (116), the first integral in (120) cancels the third term on the right-hand
side of equation (61). Thus, altogether we have

R ¥ dp 2 R
2 — L p—
@ -/0‘ S(r)rzpdrdr_}_c?/(; 1PV 722<dr> ar

_2 [ra(plU) ¥ do 2 [F,¥dddU
c2f dr rzpdrdr_}—c2 P e dr drd

(121)
1 R AU 2 _ ¥ dpdU
T pr2(dr f Cv=2p 0 3, ar &7

On some further simplifications equation (121) becomes

Qu? = —f rzgld"s( ) += [2(3 )?d”dr+2 d_Pd_P

o (5) 25 (@) 2l e

Now substituting for d¢/dr in accordance with equation (99), we obtain after some
further reductions and rearrangements (cf. eq. [109])

e [N O Y s

1 pdpdU[Tl—« 1 dr/dr
c2pdr di’[ +(I‘——1)2dp/pdf]§

(122)

(123)
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From this last equation it follows that if to O(c™*)
Id p _ 1 dr/dr )
@(7)—5(7)4- r +I‘—1dp/pdr (124)

vanishes over some finite interval of r, then o = 0 is possible for a non-trivial : it need not
vanish over the interval in which &(r) vanishes. A neutral mode of the chosen form, there-
fore, exists under the conditions stated. Moreover, by neglecting S(r)/c? as O(¢~*) and
rewriting equation (123) in the form

Y

Qw2=—‘/0‘ r_;d—@( r)dr, (125)

we can infer that if S(r) < 0 over a finite interval of r, then there exist non-trivial modes of
oscillation that belong to »* < 0 and lead to instability.

VIII. THE EQUIVALENCE OF THE NEWTONIAN AND THE POST-NEWTONIAN
CONDITIONS FOR CONVECTIVE INSTABILITY

Schwarzschild’s criterion for the onset of convective instability by modes of non-
radial oscillations is based on the discriminant

S(r) =Z—§—7£ﬂ°

(126)
pdr’

in the post-Newtonian theory, the criterion is based, instead, on the discriminant

S(r)=5(r) +11 dp (r 11 ddpr//pddrr), )

where, it may be recalled, II is the internal energy, v is the ‘“ratio of the specific heats”
as defined by equation (95), and I is defined by the relation pII = p/(I' — 1).

We shall now show that the conditions derived from the two discriminants (126) and
(127) are completely equivalent. To show this equivalence, we first observe that from
the definition of IT as the thermodynamic internal energy, it follows that

[5(_1;1_/1;;]8 = —p, (128)

where the subscript s indicates that the partial derivative is with respect to constant
entropy (s). Inserting for II in accordance with equation (94), we find that the foregoing
relation gives (cf. eq. [95])

or
T'—~y+ —1[a(logp)] =0. (129)

On the other hand, by choosing p and s as the independent thermodynamic variables,
we obtain

1 ar/dr 1 aT 9 _ ds/dr
I‘—-ld(logp)/dr_l‘—l[a(log p)]s+[6}slog(r 1)] d(log p)/dr
(130)
1 [ ( ( _ds/dr
r—1 6(logp) d(logp)/dr
By using one of Maxwell’s thermodynamic relations, we have (cf. eq. [96])
y y q
9Py _ z(QZ - 3(1°gT> _
(6s .~ P\ s"’ 3 (log p)] =TTy —=1). (0
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Equation (130) now gives
1 ar/dr 1 or oT . ds/dr
T—1d(logp)/dr T— 1[6(log p)],,+ s DD aeg pyar
By combining equations (127), (129), and (132), we now obtain
_ I pT, . dp ds/dr
@(r)—S(r)—]—c2 p(I‘g P)drd(l——ogp)/dr' (133)

But the Schwarzschild discriminant S(7) is directly related to ds/dr: for, with the choice
of p and s as independent variables (cf. eq. [95])

dp_ (90 do | (99) ds_ 2o (0T ds
dr \dp sdr+ ds ,,dr—’ypdr_}—p dp/s dr’ (134
or (cf. eq. [131]) P

S(r)=pT(I‘3—-1);i—:-. (135)

Eliminating ds/dr from equation (133) with the aid of this last relation, we obtain

_ I T5—T d(log p)/dr
S(r)=S8(r) [1 + 2Ts—1 (i(log p )//di’]‘

(136)

From this proportionality of the Newtonian and the post-Newtonian discriminants, it
follows that the physical condition for the occurrence of convective instability is unaltered
by general relativity in the approximation considered.

In conclusion, I wish to record my indebtedness to Dr. N. R. Lebovitz for many help-
ful discussions and to Dr. M. J. Clement for checking the analysis of this paper.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.

Note added August 10, 1965. At the International Conference on General Relativity
and Gravitation in London, July, 1965, the author, while presenting the post-Newtonian
discriminant &(r), interpreted it, incorrectly, as implying physical conditions, for the
onset of convective instability, different from Schwarzschild’s. The correct interpreta-
tion described in § VIII was found very soon afterward; and it was also found independ-
ently by Dr. J. Bardeen (California Institute of Technology) and by Dr. R. Tooper
(Tllinois Institute of Technology).

APPENDIX

THE SELF-ADJOINT NATURE OF THE CHARACTERISTIC
VALUE PROBLEM FOR w?

We shall now show that the characteristic value problem to which the determination of w?
was reduced in § I1 is a self-adjoint one. For this purpose the Eulerian form (12) of the equation
governing & is slightly more convenient than the Lagrangian form. And in using the Eulerian
form of the equation, we shall further assume that the density p vanishes on the boundary
of the configuration; this assumption has the consequence that §p also vanishes on the original
unperturbed boundary.

Let w® denote a particular characteristic value; and let the proper solutions belonging to it
be distinguished by the same superscript. Consider equation (12) belonging to (¥ and after
multiplication by &, belonging to a different characteristic value w®, and contraction, inte-
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grate over the volume V occupied by the fluid. The terms on the left-hand side give

Lo ] [ ot 2 [ f oo () ELREDIED 4 gy

x—x']

—2—6_2_././"(")”("')5 M (x)(xa—xa") £s3) (x) (x5 — x4’ )'Ide—dx_l—s A1)

dxd
202ff”(")”("')[5“)(x)—fm(x JIE® (1) = £ () 172 i f
= [w®]2Q02)

where Q-2 is manifestly symmetric in the superscripts 1 and 2. The reductions of the terms on
the right-hand side of equation (12) are less straightforward: integrations by parts followed by
substitutions for the different Eulerian changes, simplifications, and rearrangements are in-
volved, We find

5p<1>+  po U<1)]dx
20N . 3 :
— fvy (1 +72“) p div EO div E@dx + =5 fvpATO div Edx a.2)

20\ d 0
+f (1+ U) 2”["5 DT gy z<2>dx-—fan<1>dwz<2)dx,

__f 6pM £ (2) < <1+ p]dx

2U [x E(1>][x 5(2)]
Vd?’ dr ( + )

(A.3)
2U dpx E®
1)
+f(1+ - div E0dx
2 [, AU sk
1) 1 (2).
+5 [ p S divemdn+5 prUU[z cgrad Uldx;
4 dpM (x)dp® (x')
- @ -2 sUMdx = — '
Sope® 5 sUMdx GfoV S dxdx
(A.4)
3 3
——6—2prAU<1>AU<2>dx+§prAU(2>[z<l>-grad Uldx;
and
Afe J
’
ff5p<1>(x)ap(2>( ')¢(’l‘)+¢(lx ) dxdx’ A.5)

2 2
——CE/;]p6¢(‘)AU(2)dx+—£§ fvp[z@)-grad $1dUMdx .
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On combining the foregoing results, we find after some further rearrangements and simplifica-
tions

20
1) 120(12) = Bl iv B div §@)
[wM]2Q Av(l—l— c2>pd1v‘{()d1vi dx

+f A+ et

pdr dr r?
+f(1+ dp[x f(l)d TN A E div g(l)]
2 ’ 5P(1)(X)BP(2)(X’) ’
—Gf [ 1+5060) +o ()1 TR e

(A.6)

x{()

1 d X E()
+;§/‘;pE(SU+2q§)[ AU 4228 AU(I)]d

—%f(sy—2)p[AU(I)AH@)+AU<2>AII<1>]dx
14

2 qu aU [x E(l)] X'E(Q)] 5
—— _ 1 C))
d lr ) dx CQ/pAU AU®dx .

The right-hand side of equation (A.6) is manifestly symmetric in the superscripts 1 and 2;
accordingly,
([oM]2— [o®]2}02 =0 ; A7)
and we conclude
QL) =0 [w® #w®]. @8

Equation (A.8) expresses an orthogonality property of the proper solutions belonging to
different characteristic values and establishes the self-adjoint nature of the underlying character-
istic value problem. And this self-adjoint nature of the problem is sufficient to insure that a
variational base for determining w? is obtained by multiplying the original equation (12) by &,,
contracting, and integrating over the volume (i.e., by simply suppressing the superscripts 1 and
2 in eq. [A.6]). In the text this procedure was carried out but with the Lagrangian form of the
equation,
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