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THE POST-NEWTONIAN EFFECTS OF GENERAL RELATIVITY ON
THE EQUILIBRIUM OF UNIFORMLY ROTATING BODIES

I. THE MACLAURIN SPHEROIDS AND THE VIRIAL THEOREM
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University of Chicago
Received June 22, 1965

ABSTRACT

The post-Newtonian effects of general relativity on the equilibrium of uniformly rotating bodies are
considered with the aid of a suitably generalized version of the classical tensor virial theorem. An exact
relation exhibiting the relativistic effects is obtained; and it shows that, if the figure of equilibrium is
approximated by a spheroid, the effect of general relativity is to attribute to the spheroid a larger angular
velocity than the Newtonian value.

I. INTRODUCTION

In the preceding paper (Chandrasekhar 1965; this paper will be referred to herein-
after as “Paper I”’) the equations of hydrodynamics in the post-Newtonian approxima-
tion of Einstein’s field equations have been derived. Under stationary conditions the
equations are (cf. Paper I, egs. [68] and [117])

i} 0 2U0 aU | 4 U,
6&;(0%7}“) +6xa[(1 T c? PJ P 6xa+ 2 PP gz,
1)

4 4 2 U  od
+'C—2 pwa—x—#( v.U — Uy) P <¢ a_gé—a+6_x_a>_ 0,
and
'_a—(P*?) ) =0 @)
ax# H )

where

- = p[l—{-%(?ﬂ—l—ZU-l—H-f-%)],

o= o[ 1+ 5+ 30) |, 0
¢ =02+ U+%n+g§,

and U, and ® are defined as solutions of the equations
viU, = —47Gpv, and V® = —47Gpo ; (4)

also p denotes the density, p the pressure, plII the internal energy, v, the components of
the velocity, and U the gravitational potential determined in terms of p.

In this paper the foregoing equations will be used to ascertain the post-Newtonian
effects of general relativity on the equilibrium of uniformly rotating bodies in the special
case the energy density e(=pc? 4 pII) is a constant throughout the configuration. (It
might be noted, parenthetically, in this connection that the assumption e = constant
is formally equivalent to the assumption p = constant and II = 0; on the latter assump-
tion p must be assigned the meaning of ¢/c?.)

1513

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1965ApJ...142.1513C

0

=
1.
[N

[l]

1A

i
15{]
L0y
£9,

!

1514 S. CHANDRASEKHAR Vol. 142

It is well known that on the Newtonian theory oblate spheroidal forms are permissible
figures of equilibrium of uniformly rotating bodies of constant density: these are the
spheroids of Maclaurin. It is also known that, in this instance, the exact figure of equi-
librium (for an assigned angular velocity of rotation ) is determined by the virial

equation
QF = Wz — Wy ’ )
Ill

where L8;; and I,; denote the potential energy and the moment of inertia tensors. The
modifications in the relation (5), introduced by general relativity in the post-Newtonian
approximation, will be the principal concern of this paper. In deriving these modifica-
tions, the methods and notations of Chandrasekhar and Lebovitz, in their investiga-
tions on the various classical sequences of ellipsoidal figures of equilibrium of homogene-
ous bodies, will be used; and familiarity with those methods and notations' will be
assumed.

II. THE POST-NEWTONIAN FORM OF THE VIRIAL THEOREM
FOR A UNIFORMLY ROTATING BODY

The general form of the virial theorem in the post-Newtonian approximation was de-
rived in Paper I (eq. [137]). However, for our present purposes, it is convenient to derive
the equation, ab initio, from equation (1). Multiplying, then, equation (1) by a3 and
integrating over the volume V occupied by the fluid, we obtain by the same transforma-
tions as were used in Paper I (see particularly § VI)

4 4
‘/;O"Ua‘vﬂdX‘l‘QBaﬁ"I—’c-‘z‘ /;pfuavadx———C-Z— ﬁpzrgU«dx |
(6

4 oU, 2 20
—;E/I‘,pxg-é—xf: v,‘dx—ﬁj;_pqﬁ%aﬂdx= —5‘43/;, (1+—05— pdx,

where

%aﬁ(x)=G/;p(x'>(x“"x“')(x““x”')dx' @

|x—x" |3

is the Newtonian tensor potential.
We shall suppose that the motions in the body are those that correspond to a uniform
rotation with an angular velocity @ about the xs-direction. Then

9= —Quy 1= +Qu,93=0, and = Qa2 + x2?) . (8

We shall further suppose that the configuration is axisymmetric about the axis of rota-
tion; in this case the equation of continuity (2) is identically satisfied.
For the motions specified in equation (8),

a=p+—c1—2p[92<x12+x22>+w+n+f] ©
and

6= (e ) + U+ 3432 a0

Also in the notation of Chandrasekhar and Lebovitz (1962¢, eq. [1])
U= — QD and Us=+QD;. (11)

1 For an abbreviated account see Chandrasekhar (1964).
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No. 4, 1965 POST-NEWTONTAN EQUATIONS 1515

Under the conditions considered, the non-diagonal components of equation (6)
vanish identically. Moreover, the assumed axisymmetry of the configuration about the
x3-axis implies that the (1, 1)- and the (2, 2)-components of equation (6) are not inde-
pendent. Therefore, it will suffice to consider only the (1, 1)- and the (3, 3)-components;
these equations

4Q2 0D 4D
92L0x22dx+%11+7ﬂp <x22U—x2§D2—x12 axl—x1x2 3 2) dx

1

=% foowudx= — [ (1+27) ix
%33—% /I;pxa a©1-I- a@:) dx—-f—; /I;p¢%33dx

p(l +-2;[21) dx.

From equations (12) and (13), we obtain the relation,

(12)

and

(13)

402 D1 6@2)
2 2 —_— 2 — — 2 .
Q./;,oxg dx+ o fp(xz U— 25D — %1 Y X1%9 v dx

4 2
—Q‘/V‘pxa< 1——@—4- 632) dx—%ﬁp¢(%11—%3s)dx=5&33—55311,

c? 3

(14)

that, in the post-Newtonian approximation, replaces equation (5).

III. THE POST-NEWTONIAN TERMS IN THE VIRIAL EQUATION
IN THE CASE OF UNIFORM DENSITY

We shall now evaluate the post-Newtonian terms in equation (14) in the case the
density p is a constant throughout the configuration. In evaluating these terms, we may
legitimately use relations which obtain in the Newtonian limit when the equilibrium
figure is a spheroid. The relations (valid for an ellipsoid with semi-axes a1, as, and as)
that we shall need are (see Chandrasekhar and Lebovitz 19625, eqs. [47], [49], and [53])

3 3
U=1-— 2 Apx,? (where I= Ea,FA,.), (15)
u=1 p=1

3
‘S'Baa = zBaaxa2 + (Aa - E Aayx“2> aa,2 3 (16)
u=1

and
3
xa (Aa, - E Aaﬂx#2> aa2 (17)
p=1

(summation over repeated indices only when indicated, here and in the sequel) where a
common factor #Gp, in the expressions for the potentials, has been suppressed, and the
index symbols 4,, 4.3, etc. (defined in the paper quoted?), are so normalized that 24, = 2
(instead of 2/a1a2a3).

2 The symbol Bag is not defined in that paper; it is, however, simply related to the 4-symbols by
[ —i Aa] — ag?4..8 and Is, like 4 o8, symmetric in a and B (see Chandrasekhar and Lebovitz 1963, egs.
111] 114)).
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1516 S. CHANDRASEKHAR Vol. 142

In addition to the relations (15)—(17) we shall need the distribution of the pressure
in the equilibrium configuration; this is given by (with the same factor #Gp suppressed)

p= [303 ZApx %92(x12+x22)], (18)

where, moreover,
aﬁ(%ﬂz — A1) = (122(%92 — A2) = ——a32A3 . (19)

The suppression of the factor #Gp in equations (15)-(18) implies now that ©? is measured
in the unit #Gp.

Consistent with our assumption of axisymmetry, we should have set a; = @y and
Ay = A; in equations (18) and (19). However, for the purpose of retaining a certain
formal symmetry in the equations (profuse with terms) we shall continue to distinguish
the subscripts 1 and 2; their equivalence will be assumed at the end of the calculations.

Making use of the solution (17) for O, we find

22U — %9D9 — %1 (x1 6@1+ Xo 6@2) = (I —a?Ads)xs?
6x1 6x1
3 (20)
—adx2— ZBg,‘xzzx,ﬁ + 3alAnx*+ (a? + 2a9?) Apxix? + a® A1z’ x5
p=1
and 5 3
X3 (bl‘l‘ X2 92) = — 202 AswPws® — 205> Aosxo’xs?. (21)

Evaluating the integrals of these expressions over the volume of the ellipsoid, we find

3D 6@2)
2 —_ —_ 2 _—
Lp <X2 U x25©2 X1 6x1 X1X9 6x1 dx

_ 47!'(11(12(13

105 P[ T(I —a?As2)a?+ 2a1*Bis — a,2a2*Bis — 3a2*Bs, (22)

—a22as?Bes + 2a:%a2*(ag® — 012)A12]

—fpx3 (xl —I— X9 6@2) dx 81ra1azas past(a* s+ artAqs) . (23)
dxs 105

and

The remaining terms in equations (14) involve ¢ and ¢. In accordance with the
parenthetical remarks in § I, we shall set II = 0 (and assign to p the meaning of ¢/c?);
and we obtain with the present solutions for U and p/p,

3
0=p+£gp[%92(x12+x22) —32 Aux#2+21+a32A3] (24)
u=1
and
¢ =10 (2l +as?) —3 EA z2+I+32atds. (25)
n=1

Making use of equation (24), we find

8raiaza
/;,axfdx = In+=Te55 par (71 — dai ), 26)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1965ApJ...142.1513C

0

=i
1
[

[l]

1A

i
K1
[Yel}
£9,

!

No. 4, 1965 POST-NEWTONIAN EQUATIONS 1517

where Iy is the (2, 2)-component of the moment of inertia tensor evaluated in terms of
p. Similarly, we find (after some lengthy reductions) that

4

LP‘#%udx = —E{%l;ﬂ’ plai?(2By—a?Au) (10a2 414 8a2As+ a5’ A3)
—a2a:?412(8a:°41 + 1002’42 + a’4;) (27)
—a:2a52413(8a:241 + 8a?As + 3ai?A;)
+21012A1(2012A1 + 2(122Ag + (132/13)]

and

4
/;,p(b%ssdx =_7r1a_(1)(§3q§, pl —a?a? A5 (10a2 41+ 8alt A+ a?A;)

— 2?52 A 32(8a,2A1 + 100?42 + a3?A4;) (28)
+a2(2By; — a2 A33)(8a2A! + 8ads + 3a:24;)
+21a243(2a:41 + 26242 + as?45)] .
Inserting the foregoing results of the various integrations in equation (14), we find

— %33 - S'Igll 2M

@ Iy +35]2252(7er)2[a12(3311—313)(10a12A1-|—8a22A2+1132A3)
40> (Bis — Bs») (80241 + 1002?45 + a?43)
—as*(3Bss — Bis)(8a:? A1 + 8a:*4s 4 3as’45)
(29)
+21(a:? — as?)B1s(2a:? A1 + 20242 + a’45)]
40°M 2 4 2 2( .4
351 (TGP) [10.5¢] — Ta4s— 2a2 as?As— 2as? (a1* Az+ as*As3)

+2a,*B1; — 0208 Bi2 — 305*Bys — a2%a3*Baz + 20:205%(a* — a:2) A1),

where the factor #Gp (which had been suppressed) has been restored and M (=%wa1az0:p)
is the mass of the ellipsoid. In accordance with our assumption of axisymmetry, we now
set @y = a»; and remembering that, then, the value of any index symbol is unaltered if
the subscript 2 is replaced by 1 wherever it occurs, we find that equation (29) becomes

W — Wy M
- I +3SI

- 032(3333 "‘Bla)(16d12A1+ 3asds)+21(ad — 032)313(4(112A1+ asds)]

40°M
T 351y,

—4(112B11 - 4(112(1321413] .

Q? (WGP)2[201 (2By— Bla)(18012A1+aa2A3)

(30)
357 (T0p) el 14ar’ A1+ 8.5a8 A3+ (2as’ — as’) Bys

Equation (30) can be rewritten in the form

2 _%33—'%11 R,
7"GP— 7Gpln +G1E(6)’ ey
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1518 S. CHANDRASEKHAR
where G
R, = 2 (32)
is the Schwarzschild limit for the mass M and
3 m 2 2 2
E(3)=28 4“‘{201(2311—313)(1801 Ai+as?ds)
ai” as
—a?(3B33 — Biy)(16a:24; + 3a:243) + 21(a? — a2) Bis(4a:?4; + a?ds;) (33)
2Q2
- 7Gp a*[14a’ A1+ 8.5a8 43+ (20’ — as?) Bis— 4a:’Bu — 4a’ad A1)}
is a function only of the eccentricity of the spheroid.
TABLE 1*
THE FUNCTION E(e)
e (Q2/7Gp)Me E(e) e (Q%/7Gp)Me E(e)
0.. 0 0 075 0 31947 0 17187
020 0 02146 0 00933 80 36316 20258
.25 03363 01475 82 38059 21561
30 04862 02153 84 . 39761 22889
35 06647 02979 86 41378 24215
.40 08727 03967 88 42845 25498
45 . 11108 05133 90 44053 .26663
50 . 13799 06497 92 44816 .27572
.55 .16807 08081 94 44785 27959
60 .20135 09913 96 43193 27232
65 . 23783 12022 0 98 0 37802 0 23698
070 0 27734 0 14439

* The entries in the column headed (Q2/7Gp)m. refer to the Maclaurin spheroid in the Newtonian limit

In Table 1 the function E(e) is tabulated. From this table it follows that, if the figure
of the rotating body (in the post-Newtonian theory) is approximated by a spheroid,
then the effect of general relativity is to attribute to a spheroid of given eccentricity a
value )(/)f 0?/7nGp that is larger than the Newtonian value by precisely the amount
RsE(e ai.

The derivation of equation (31) does not, of course, solve the problem of the equi-
librium fully. But equation (31)—exact in the framework of the present theory—does
provide some information on the nature and the magnitude of the effect that is to be
expected. A complete solution of the problem will inevitably depend on an explicit solu-
tion of the original equation (1); and to this matter we shall address ourselves in a future

paper.

I am grateful to Dr. M. J. Clement for checking the analysis of this paper; and to
Miss Donna D. Elbert for assistance with the preparation of Table 1.
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