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THE POST-NEWTONIAN EQUATIONS OF HYDRODYNAMICS
IN GENERAL RELATIVITY
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ABSTRACT

The standard Eulerian equations of hydrodynamics are generalized to take into account, consistently
with Einstein’s field equations, all effects of order 1/¢2. It is further shown that these post-Newtonian
equations allow integrals of motion which are entirely analogous to the Newtonian integrals that express
the conservation of mass, linear momentum, angular momentum, and energy. The continued validity of
these conservation laws enables a consistent definition of “‘mass,” ‘“‘momentum,” and ‘‘energy” in the
framework of the post-Newtonian theory.

Besides the equations of motion, an appropriate tensor form of the virial theorem is also derived.

I. INTRODUCTION

Recent investigations (Chandrasekhar 19644, b; see also Misner and Zapolsky 1964;
Harrison, Thorne, Wakano, and Wheeler 1965; and Tsuruta, Wright, and Cameron
1965) on the dynamical instability of gaseous masses in the framework of the general
theory of relativity have shown that the theory predicts, already in the post-Newtonian
approximation, phenomena which are qualitatively different from those that are to be
expected on the Newtonian theory: gaseous masses are predicted to become unstable for
spherically symmetric radial oscillations much before the Schwarzschild limit is reached.

An exact treatment of the radial oscillations of a gaseous mass in general relativity is
possible and has been given (Chandrasekhar 1964b). A similar exact treatment of non-
radial oscillations is not to be expected: apart from the difficulties associated with the
solution of Einstein’s field equations with no presupposed symmetry, allowance should
also have to be made for the emission of gravitational radiation. However, for the pur-
poses of ascertaining the nature of the effects predicted by general relativity in these
contexts, it may suffice to examine the relevant problems in a consistent post-Newtonian
approximation, i.e., at a level of approximation in which gravitational radiation plays
no role.

For a systematic investigation of the post-Newtonian effects of general relativity on
the behavior of hydrodynamic systems, it is clearly necessary to have at our disposal
the generalization of the standard Eulerian equations of Newtonian hydrodynamics that
will consistently allow for all effects of order 1/¢? originating in the exact field equations
of Einstein. In this paper, such a set of equations will be derived; these equations provide
for hydrodynamics what the theory of Einstein, Infeld, and Hoffmann (for an account of
this theory see Infeld and Plebanski 1960 or Landau and Lifshitz 1962) provides for the
n-body problem of classical dynamics. In the papers following this one (Chandrasekhar
1965, ¢), the equations derived in this paper are applied to determine the post-New-
tonian effects of general relativity on the equilibrium of uniformly rotating homogeneous
masses and on the stability of gaseous masses to radial as well as non-radial oscillations.
A preliminary account of these investigations has been published as a Letter (Chandra-
sekhar 1965a).

II. THE METHOD OF APPROXIMATION

In general relativity the nature of a physical system is determined by the assumption
one makes about the energy-momentum tensor 7;(z,7 = 0, 1, 2, and 3; in this paper the
convention will be adopted of letting Latin indices take the values 0, 1, 2, and 3 and the
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POST-NEWTONIAN EQUATIONS 1489

Greek indices take only the values 1, 2, and 3 referring to the spatial coordinates; also
the summation over repeated indices will be restricted to their respective ranges). In
selecting the form of T';; one is, however, limited by the requirement that it agree, in a
local Minkowskian frame, with the choice of the special theory of relativity for the same
physical system.

In this paper we shall be concerned with a system which in the Newtonian limit is
governed by the standard Eulerian equations of hydrodynamics for an inviscid fluid,
namely,

dp d
o = 1
at  duxg (pvs) =0 @

and
(24
0xa’

0 i ap
a @ —_ 2
—El(pv)-{———ﬂﬂ(pv vg) = +»p (2)

Oxa

where v,(a = 1, 2, 3) are the usual components of the velocity, p is the density, p is the
pressure, and U is the gravitational potential determined in terms of p by Poisson’s
equation

viU = —47nGp . 3)

This requirement on the behavior of the system in the Newtonian limit demands that
the energy-momentum tensor have the form

Ty = (e + plum; — pgi;, @

where e denotes the energy-density, #; the covariant four-velocity, and g;; the metric
tensor. For our present purposes it is convenient to make the further assumption that
there are two parts to the energy-density e: a part pc? associated with a material density
p and a part p IT associated with the infernal energy of the first and the second laws of
thermodynamics. If this separation of € into the two parts is permissible, we may write

e = pc(1 411/ . (5)

When e is written in this form, the density p may be taken as referring to that part of
the rest mass which does not vary during the motion.

A detailed justification for an assumption of e of the form (5) has been given by Fock
(1964). However, Fock’s justification applies only to situations when the proportion of
antimatter that is present (under conditions, say, of thermal equilibrium) is negligible;
if this should not be the case, then the assumption that ¢ is of the form (5) will become
untenable and it must be replaced by some other equivalent assumption, such as the
conservation of the baryon number (cf. Chandrasekhar 19645, p. 422). In this paper we
shall continue 10 make the assumption (5); the modifications in the analysis, if (5) should
be replaced by some other assumption, are minor and can be made if desired.

With the choice of the form of T, the entire behavior of the system is determined,
in terms of initial conditions, by Einstein’s field equation

87G
Ri; = —'% (T'i;— 35T gis), ©
where R;; is the Ricci tensor and
T =1T% (N

is the trace of T'.

The theory of Einstein, Infeld, and Hoffmann provides a model for the solution of the
field equation by a method of successive approximation based on expansions in powers
of 1/¢2. In this paper the same method will be used to derive the post-Newtonian equa-
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1490 S. CHANDRASEKHAR Vol. 142

tions of motion for the hydrodynamic system we are presently considering. In outline,
the method is the following.
The principle of equivalence (cf. Schiff 1960) allows one to assert that, quite generally,

g00=1——62—+0(6_4), (8)

§aB = —(1+ >5aﬂ+0(6_4), and goa=0(c73?), ©

where U is the gravitational potential determined in terms of p by Poisson’s equation
(3). Indeed, it is the particular form for ge given by equation (8) that determines the
“constant of proportionality” in the field equation as —8xG/c*; and, moreover, the
identity

Ti; =0 (10

(where ;j denotes covariant differentiation with respect to x;) yields, in this ‘“zeroth”
approximation, the Eulerian equations (1) and (2) of Newtonian hydrodynamics.
With the knowledge of goo and ge.s to O(c?) provided by equations (8) and (9), the
components of the energy-momentum tensor can be deduced to an accuracy sufficient
for the field equation (6) to determine goo to O(¢~*) and the dominant term of O(¢?) in
Zoa. The resulting improved knowledge of the coefficients of the metric tensor enables the
Christoffel symbols to be evaluated, in turn, to an accuracy sufficient for the identity
(10) to yield now the desired equations of motion in the post-Newtonian approximation.

III. THE SOLUTION OF THE FIELD EQUATIONS IN THE POST-NEWTONIAN APPROXIMATION
We shall write the coefficients of the metric tensor in the form

goo =1 4 hoo, 80 = hOa, and 8o = —0ag + hag (11)
where

hoo = -%g-i—O(c“‘), hoa=0(c73%), and hag = -—2—(;[21 8as+0(c). 12

We shall raise and lower the indices of %;; by the Minkowskian metric (goo = 1, goo = 0,
and g.s = —d.s) to obtain
hoo = ho® = h% = h% = -2—6[21‘*‘0( 6_4),

h(]a:hoa: —ho = —ko"=0(6-3),

(13)
hag = — Mg = — hob = hob = ——2-11 das+0(c™),

and

The components of the contravariant four-velocity

. dxi
u7/=——-— (14)
ds'’

to the accuracy determined by the metric (as we know it at this stage) are

=142 (304 U) +0(c~)
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No. 4, 1965 POST-NEWTONIAN EQUATIONS 1491
and (15)

w=[14+5 Get )] 240,
The corresponding covariant components are

“°=1+};1‘2 (30— U) +0(c—)
and (16)

_E+O(C—3),
c

Uo

where it may be noted here that the timelike coordinate o is related to the coordinate
time ¢ by dxo = cd!.

a) The Components of the Energy-Momentum Tensor
Turning to the components of the energy-momentum tensor, we now find

T00=p62[1+21§ (v*—20+ID) [+0(c™),

Toe = —pcv, + O(c7"), amn
and
Tu.ﬁ = plalg + Baﬂp + 0(6'2) .

Remembering that
T = TF = pct+ pll — 3p, (18)
we have in particular
Tw—3Tgn=3pct+0 (2= U+ +3 2) 0. 19

In the same way, we find that the contravariant components of the energy-momentum
tensor are

o0 = [1+;1; (02420 +11) | +0(c2),

T0 =p¢ [1—!—;1-2;(v2+2U+H+%>]va+O(c—3), (20)
and

1
T = poavst phaat— E (v2+2U—|-II+—§) vevs— 2pUdaa | +0(c™).

b) The (0,0)- and the (0,a)-Components of the Ricci Tensor
The general expression for the Ricci tensor is

9%2g.j g 078k 323“)
dxrdx; Odx,0x; Jdx;0x; Odxpdx,

Rij=%g"
21)

+ gFt g™ ( Ty, sl mobt — TnitUmoks )«
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1492 S. CHANDRASEKHAR Vol. 142

In view of the definitions (11), the (0,0)-component of R;; takes the form

0 hgo azhkl atho
= 1 gkl -
ROO 28 (axkéxl 823602 axoaxl

>+gklgmn(rn,0()rm,kl— 2,01l m, o) . (22)

For our present purposes of determining goo to O(c™), Roo must be evaluated correctly
to O(c™*); and we shall verify that the present information on the metric tensor enables
us to do so.

The terms involving the second derivatives of the A’s, in equation (22), evaluated
consistently with our present knowledge of the g;;’s, give

d ([, 0ha ke ) . %Moo
%0 3 0%y O%Xa 5 (8ap+ hap) dx.0xs @3
We now introduce the gauge condition
Ohst  Ohy
i - " =
2 axo 0% 0 @8

—a condition whose satisfaction by the solution to be obtained will have to be verified

subsequently.
With the chosen gauge, the terms (23) become
*h
— §V2hoo — G has Eaaojcﬁ . (5)

In the second of the two foregoing terms, we can (consistently, in the present approxi-
mation) insert for A and /s their known values. We thus obtain

2U 02U
“b 0x.0%8

— 3V2ho — = — 1V — % UviU. (26)

Considering next the terms in the Christoffel symbols in equation (22), we find by direct
evaluation that, in the chosen gauge,

gklgmnrn,OOPm,kl = 0( C_G) (27
and
— g7 g T lmor =5 (28)
Combining the results (26), (27), and (28), we obtain
2 2 /U
Ry = — %V2h00 —"F UviU +—(;71 (Bx—a) . 29
Making use of the identity
2
V2U2=2UV2U+2<6U>, (3
0%
we can rewrite the expression for Ry in the form
2
Ru=v (= 355 ) =5 URU, oy

or, alternatively, in view of Poisson’s equation governing U,
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No. 4, 1965 POST-NEWTONTAN EQUATIONS 1493
U? 167G
Ry =V ( — 3 hoo+ ?) + _“60‘7‘-;4 pU. 82)

Turning next to the evaluation of the (0,a)-component R;;, we observe that, for our
present purposes of determlmng the dominant term of O(c~ 3) in gos, it will sufﬁce to
consider only the terms in the second derivatives of the 4’s in equation (21) since the
non-linear terms in the Christoffel symbols are at least of O(c*). Thus, we may write

02 hoa 0%l 0%l %hy

o= 1okl — — . (33)
Roa= 3¢ 6xk6xl+6x06xa %002, axkax)

On evaluating the terms on the right-hand side of equation (33), consistently in the
present approximation, we find

0 (hf_BhP\_y

Ryo= — 5Vihoa+ 35 —— —=—)—z (34
Vhoet 3 G0 Goxe " 9ms) T F Bmedma )
The gauge condition (24) simplifies this expression to the form
3%hg? 3% hdf
= — 192 h.+ 1 —1 . 35
RO 2V h[] + 4 8x08xa 2 6x06xp )

We can substitute the known expression for 4.2 in the two last terms on the right-hand
side of equation (35); and we obtain

-1 19 6UN_3 9 (2U ]
Ry V2 h0a+ p at 6xa< 5 3as \ o2 das )|, (36)
or, after simplification,
1 90U
Roe= =3Vt 305 g1, on

¢) The Solution of the Field Equations

With the expressions for T — $7goo and Rgo given in equations (19) and (31), the
(0,0)-component of the field equation gives

2
V2<—%hoo+%>+16£GPU= s SWG vi= U+1H+3P> o

This equation can be rewritten in the form

U b U? 887G
V2<—%hoo—ﬁ+7)“‘—*‘r— oo, (39)

where
¢=v2+U+%H+gf. (40
We shall find that this quantity ¢ plays an important role in the subsequent develop-

ments of the theory.
Defining a “‘potential” ® by means of the equation

V0 = —4nGpo, (41)
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1494 S. CHANDRASEKHAR Vol. 142

we can write down, at once, the solution of equation (39); we have

o= 23+ (202~ 49) +0(c). 2

Considering next the (0,a)-component of the field equation, we have by equations
(17) and (37)
1 U 87G 87G

TV et Y e, T et [T e P -

Defining the further potentials x and U, by means of the equations

V‘ZX = —2U (44)
and
viU, = —4nGov, , (45)
we can write the solution of equation (43) in the form
1 0%x
(4Ua——até‘;; (46)

It may be noted here that x as defined by equation (44) is the same as the “superpo-
tential” that has been introduced in the theory of Newtonian gravitation in another
connection (Chandrasekhar and Lebovitz 1962).

d) The Verification of the Gauge Condition

It remains to verify that the solution for %o, obtained in § ITIc is consistent with the
gauge condition (24) introduced at an earlier stage. Inserting, then, the values of /%¢* and
he* given by equations (13) and (46) in equation (24), we obtain

g Okt Okt 30U < -1 —
2 8%y  Oxa o 01 + c3 I%a Us (')taxa
139U 9"_1&_; 9 o )
( + ox, 2 atvx (47)
4 U 8Ua)
615 Xa )
On the other hand, from the equations satisfied by U and U,,
aU aUa. _ 47TG ap
_V I axa)— 3 [ tom (pva)] e

by the Newtonian equation of continuity (which is applicable for evaluating this post-
Newtonian term). Since U and U, are required to be continuously differentiable and
further vanish at infinity, it follows from equation (48) that

——+——=0; (49)

and this completes the verification of the gauge condition.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1965ApJ...142.1488C

2
&
=i
1.
[N

L IITA

i
15{]
L0y
£9,

!

No. 4, 1965 POST-NEWTONIAN EQUATIONS 1495

IV. THE METRIC IN THE POST-NEWTONIAN APPROXIMATION AND
THE CHRISTOFFEL SYMBOLS

With the solutions for %o and /o, obtained in the preceding section, we can now write

20 1
goo=1 —7‘!-? (2U%—49) +0(c7%),

1 a%x _
g0a=-6—3<4Ua—%'éTa—x‘: +0(c7?), (50)

and

gus = ——(1+2—C€1) Sag+0(c—).

A comparison of this solution with Schwarzschild’s “interior solution” for a spherically
symmetric distribution of matter in hydrostatic equilibrium is made in the Appendix.
The spatial part of the metric defined by (cf. Landau and Lifshitz 1962, p. 273)

8oafo8 1)

g = faf—
e 8ed 8o0

agrees with g.,s to O(c™*). From this fact and the known result,

g = |gis] = goolvas| , (52)
it follows that
4U B
g= —<1+7>+0(6 4). (53)
Accordingly,
20 _
log\/—g=—67+0(c ‘). (54)

The contravariant components of the metric tensor can be deduced from the relations
£%gi0 = %00 + £%g0. = 1

and (55)
£%gia = %00 + g% = 0.

We find
1 _ 2U0 1 _
g00=__+0(c 5) = 1—|———2—+——4 (2U2+4(I)) +O(C 6);
goo 4 c
1 9?
g% = g +0(c") ="55(4U“‘ } 57(%6;)+0<6‘5), (s6)
and
geb = __<1 ~2—62U—> das-FO(c™4).
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1496 S. CHANDRASEKHAR Vol. 142

a) The Christoffel Symbols

We can now evaluate the Christoffel symbols with the aid of the metric coefficients
given in equations (50) and (56). Retaining in each case only the terms to which we are
entitled, we find

10U 19U
0y = — — 0 = —
TP gy Lo c? dxa’
1 0U. , aUsg *x GU]
0 pom o —- oY
e 203[ EFPLF VS R V7 S PLEELL Y
o — 10U 1719 2 _ gy — 4 3Ue 4 ‘93X]
Fo=—7 axa+c4[axa(w 20) =45 T G, 7
. 1reU, aUa_aUﬁ]
Foﬂ_c3[6t 0= 2 G axa> :
and
173U dU dU
I‘M—ﬁ (c’)x-, 6“B+6x,s Oay 0%a 5'37)'
And finally, we may note for future reference that (cf. eq. [54])
_dlg vV—g 29U, (58)
! dx; c? dx;’
in particular,
29U 20U
W=gier o M= a “"’

V. THE EQUATIONS OF HYDRODYNAMICS IN THE POST-NEWTONIAN APPROXIMATION
With the list of the Christoffel symbols given in § IV, the identity
Ti,; =0, (60)
now gives the desired hydrodynamic equations in the post-Newtonian approximation.

Thus the time-component of equation (60), namely,

1 97% 0T

c 0dt +axa

4 (T%0 4 o) T4 (2T%~+ o) T +T0%pT¥ =0, (61)

together with the expressions (20) for the contravariant components of the energy-
momentum tensor! gives

gite[1+5 orr2v A g fon 145 (v 20+ D) ]
(62)
+;139 %‘It]*=0-
Letting
0'=p[1+?12-<7)2+2U+H+-§>], (63)

1 Note that 79 is O(c?), T°¢ is O(c), T%8 is O(1), T'% + yo (=8U/c*dt) is O(c?), 2I%a + ¥4 is
O(c™), and I is O (¢73).
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No. 4, 1965 POST-NEWTONIAN EQUATIONS 1497

we can rewrite equation (62) in the simpler form
a n 1/ 0U ap\ _
)+ (p 5 —35)=0. (o)

Equation (64) replaces the equation of continuity of Newtonian hydrodynamics; as we
shall see later, the equation can indeed be cast in the exact form of an equation of conti-
nuity (see eq. [117] below).

Considering next the space component of equation (60), we have

a0 a3
O S T AT T 3 T T T+ 3T =0, o9

¢ 0t

On inserting the values of the Christoffel symbols and the components of the energy-
momentum tensor, we find that equation (65) becomes

d

P 1+1<2+2U—|—II+ ) e

+1 gpvaw+paaﬂ+ [» (+ 2U+n+—f§) vevs— 2pUdas |}

_feu_1r.o _ _aUa;‘”X] 1 ]
36x 62[ 20) —4 at +26t2axu_ §[1+c2(v +20+1)
(66)
2 roU ., . (dUa 6U5> dU
+02 P'UB[ odit L dxg O0xa ]+ 2 PP gy ot
1 /U aU oU
+§ 5?75&6‘*‘5;{‘350.7 Ey 35’7 (pvsvy+ posy)
2 oU
+;§ (pvavg+ pdas) 5&;—-0-
On simplifying this equation, we are left with
d 0 v?
9 (o 2 (122
5, (78 + 5= (ovevs) .(1 - <1+ axa
4 U, aU _i U, U aUﬁ)
TP\ T % g, [at t el G om |
2
—|—62pa <2U 26+ 3 6112) 0.
After some rearrangements equation (67) can be brought to the form
20 4
2 (ov0) 50 [ (142) ] = p et 0 5 (0l = T
(68)

4 dUs 1 9% ( )
TP G T 36 P Grag. 62" ¢axa axa) =0

It will be observed that in equation (68) the superpotential x occurs differentiated twice
with respect to time. To reduce the order of this differentiation we proceed as follows.
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1498 S. CHANDRASEKHAR Vol. 142

We start with the known integral representation of x, namely (cf. Chandrasekhar and
Lebovitz 1962, eq. [19]),

x(x,t)=—vap(x',t)lx—x’ldx’, (69)

where the integration is effected over the entire volume V occupied by the fluid. Differ-
entiating equation (69) with respect to time, we have

Gf ap(x t) x—x'|dx. (70)

Since x occurs only in a post-Newtonian term, we can make use of the Newtonian equa-
tions in its reductions. Thus, making use of the equation of continuity (1), we have

ax ' 7 ’ ’
= —_— A . 7
3 Gle xlax”,[p(x,)v“(x)]dx, (1)
and an integration by parts now gives

Gfp(x)v,‘(x) P ld’ (72)

Next, diﬁerentiating equation (72) with respect to x,, we obtain

fp(X)va(x)d ,__Gfp(x)v“(x) (xll- xp’)(x’al';xal) dx,- (73)

616 Xa | x — |x —x
The first term on the right-hand side of this equation is clearly U,; and defining
. ’ — /
Uﬁ;n=Gfp(x’)va(x') (%o~ % )(x,"’ 3 ) dx’' (74)
v | x — x|

we can write

9%y
= Uag— saf . 75

00 %, v Uﬁ’ p 5

From this last equation we obtain

d3x d i)
—— e e ‘a _ — a™" K 7
3007, g; (Ve Usip) 'vn(.,x“(U Us;a), (76)
which effects the required reduction in the order of differentiation with respect to time.

An explicit integral representation of the second term on the right-hand side of equa-
tion (76) will be needed in the subsequent analysis. It can be obtained as follows:
From the integral expressions defining U, and Usg;.g, we readily obtain the formulae

oU.,
v,‘a ——Gfp(x)va(x)vu(x) = ,[3dx, (77)
and
6U a !
g, 2UB18 Gfp(x ERCIEACHD) lx ,lsdx'
+Gpr(x7)va(x)v,.(x’)l———T|3dx (78)

—3vap(x’)vu(x)vv(x’)(xu—xu')(xy—x/) T’i—fﬁ; dx';
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and combining these formulae, we have

xa,

(U= Usaa) = =G f o (") () oa (&) 705

v,.a

=G f (&) w(x) 0D+ 0ux ) 0ul0) ] T2 ! o
’ ' Y ! Xa— %a’ '
+3G f 0 (+) 10 (x) 0, (x) (= ) (@ = 0) 1 77 s
=Wa(x) (say).
Making use of equations (76) and (79), we shall now rewrite equation (68) in the form

oU |, 4
( + —”axa+ c”pdt(v“U Ue)
4 oU 1
+62 P ax““{"_“z‘ [ (Ua Ugian) s pWa(x) (80)

2
_-Eip axa axa> 0

Equation (80) together with the equation

doc , O 1 aU ap>
YT cz( Y = @D

provides the required generalizations of the Eulerian equations (1) and (2) of Newtonian
hydrodynamics.

In §§ VII, VIIIL, IX, and X, we shall show how equations (80) and (81) allow ana-
logues of the classical 1ntegrals expressing the conservation of mass, linear momentum,
angular momentum, and energy. But to establish these integrals, some auxiliary lemmas
are needed; and these are stated and proved in § VI,

VI. SOME AUXILIARY LEMMAS
First we observe that U(x), U.(x), and ®(x) are expressible as integrals in the forms

UGx) =G f D) g Ulx) =G [ 2XxvexD)
| x — x'| v lx—x']
and (82)
&(x) =G p(xDe(x) 4 0
fx— x|
LEMMa 1:
fp(x)¢>( )8<1>(x) x=0. (83)
Proor: We have
Lr 6 5 dx = —G [ [ 5 (2108016 (x) P2 Eigdxdns w0

and the result stated follows from the antisymmetry of the integrand in x and x'.
CororLArY: In exactly the same way

St n(x) =55
v

(summation or no summation over the repeated index in eq. [85]).

aUn(x)

Xa

= (85)
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LeMMA 2: The tensor

fpxaqS —dx (86)

is symmetric in a and (.
Proor: We have

Lo)29(0) 22 E 4y =G [ [ 900 p (016 () ZEEZI) axa

(87)

= —%GfV/;p(x)p(x’)qS(x)dz(x’) (x“—x“_)(:,ﬁl:xﬁ ) dxdx’;

| x

and the symmetry is manifest.
CorOLLARY 1: In case ¢ = 1, the integral in question defines the potential energy
tensor

W= —1 [ pBudz=—36 [ [o(x)p(x) {2ENB2I) 4100 o

lx —x

CoOROLLARY 2: In the same way

oU
uuu-aﬂ=/vp'vu ax“ x8d x

(89)
~16 [ [o0 o) mlx) m(x) L=l 4
is symmetric in o and 8.
LeMmma 3:
fp(x><p(x)dx=fp(x)¢(x)U(x)dx. (90)
14 14
Proor: We have
fp(x)q>(x>dx—cf/ p(x)p(x ) |"’(" )I dxdx’
—G/dx'd)(x )p(x)fdx !xpixx)l (91)

= [ ()8 (xHU(x)dx';

and this is the result stated.
CoroLLARY: In exactly the same way

Udx = JUdx . (92)
/Vp x fvpv x
./Vp axal axa) ox = ©

LeEMMA 4:
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No. 4, 1965 POST-NEWTONIAN EQUATIONS 1501
Proor: We have
. ’ ’ __ﬁa_’_" %o’ 7
fpaxa = G/I:fvp(x)p(xw(x)ix_——x/lgdxdx
- ’ ’ P(x)__
= G[’dx p(x" Yo (x '»/delx—x'] (94)

oU ,.
= — [p (e (x) (")d
and the result stated follows.
LEMMA 5: The tensor

<‘I)>aﬁ—fpxﬂ<¢ ~—+——>d (95)

0 Xa
is symmetric in o and (.
Proor: We have

(BYep= —fop(x)p(x)[¢(x)+¢( N1 fﬂ—l(ﬁ—’mld dx’

(96)
(%a— xa") (%8 — x5")
_ 1 ! / I
G [ [ o ()0 ()60 +6(x)] FH= 20T dxd
and the symmetry is manifest.
Rewriting the last line of equation (96) in the manner
(%a—xa') (w8 — x6')
—_ ’ /
@w= =G [ [ o(x)p(x)g(x) T =TT dxdx
(vems)tp=zd)
L , Xo— Xa )(XB— X8
= =G [ dxo () (x) [ dx'p(x') =TT,
we can state
COROLLARY:
Pog= — ud y (98)
(P)ap _/quSfBﬂ x
where LB,s is the Newtonian tensor potential.
LeMMA 6: The tensor
ua = aU d (99)
8 /;pv pdx
is symmetric in o and (3.
Proor: We have
dxd
Uaﬁ—fop(x)p(x ) va(x) v8(x") P z i a
(100)
dxdx’
___1_ _______.
=36 [ [ (x)p (o) va(x') +0alx) 0a(2) ] 770y
and the symmetry is manifest.
COROLLARY:
uaa = zu‘m;aa . (101)

This result is an immediate consequence of equations (89) and (100).
For purposes of convenient reference we shall state as Lemmas 7 and 8 two well-
known theorems.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1965ApJ...142.1488C

2

@

=i

[

[l]

Ta;

i
K1
[Yel}
£9,

!

1502 S CHANDRASEKHAR Vol. 142

LemMA 7: If F(x,t) is any continuous bounded function of the arguments, then for inie-
grations effected over any arbitrarily specified volume in V

dlfF(x t)dx—f(—-{—[«‘ div v) dx=f[%1—;+div(Fv)]dx. (102)

If F should satisfy the “equation of continuity,”
%+div(Fv) —o0, (103)

then the integral in question naturally vanishes.
LemMA 8: If F satisfies the equation of continuity and f is some other funciion, then, for
inlegrations effected over any arbitrarily specified volume in V,

d _ ([
% [Frax= [F ax. (104)

CoroLLARY: In evaluating a post-Newtonian term, we may always suppose that

dtfpfdx—fp dx, (105)

since p satisfies the equation of continuity in the Newtonian approximation.
LEMMA 9: In the Newtonian framework

jpm(du 5x—a+8—x_a) dx—fﬂd’ — dx

(106)
/pd)de pr—dx
Proor: We have
fpva<¢ d%a axa)d
= =G [ [o)p(N10(x) +8 () V0elx) {2 dads’
= =16 [ [o(0)p(xN10(x) +o(x] LB Zele im0 g
=16 [ [ p(0)p (N1 (x) +6()] 5y dxds’
(107)2

, PN’/ 1
=vadxp(x)¢(x)fvdx p(x )EWT

) d o, p(x')
_G/I:dxp(x)qb(x) ;ﬁfd" |x —x'|

= [ro il ax= [ o5 (6U)ax~ [ pU %5 ix

fpd)de—pr d(? dx.

2 Even though only the argument x (or x') of the functions is explicitly noted in these and similar
equations, all functions which occur are in fact functions of ¢ as well.
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No. 4, 1965 POST-NEWTONIAN EQUATIONS

Note that by setting ¢ = 1 in equation (106), we obtain the known result,

oU d
2fvpva-a—x—adx—d—tfvpvdx.

VII. THE EQUATION OF CONTINUITY AND THE CONSERVATION OF MASS
We now return to the equation

L aU_ap\_,

do 0
_57+5;c:(0v“)+§ P EY) EY, =

1503

(108)

(109)

that replaces, in the post-Newtonian approximation, the equation of continuity of

Newtonian hydrodynamics.

We may transform the terms in equation (109) that occur explicitly with the factor

1/¢* with the aid of equations valid in the Newtonian limit. Thus,

1/ U _dp\_1717 dU _dp_ AU _dp
62('0 ot _o1) e LPdi " ai” "\” 9. axa]
_1[r (dU_  dv. _d_f’]
T lP\ar T e )T
1r d dp
=aleaw -1 -Gl

and we may rewrite equation (109) in the form
d . 1 1
|5+ (ive) J{o[ 14 2420 +m) |+ 5}

LT84 (g1, _92]_
taloq - =G0,

(110)

(111)

where we have inserted for o its value (63). The terms in dp/d! in equation (111) cancel,

and we are left with
[Ed“z'*' (div v)]gp[l +Clz~ (024 2U+n)]}

11 8 uv_1p ; ]“
+ o5 (U=30) +pdive|=0.
Now it is an exact relation? in this theory that

dll_pdp
Pat~ pdi

(112)

(113)

When evaluating a post-Newtonian term (as we are at present), we can replace equation

(113) by its Newtonian equivalent

dil

pm=—Pdlvv.

(114)

% The relation is no more than a statement of the first law of thermodynamics under the non-dissipa-

tive conditions assumed (cf. Fock 1964, pp. 104 and 420).
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1504 S. CHANDRASEKHAR Vol. 142

With the aid of this last relation, equation (112) becomes

[d%+ (divo) o[ 1+ (420 +m |} - b4 (3 —TU+m =0. wy)

By some further simplifications, equation (115) can be brought to the form

(L4 @vo) |{o [t+5 Got3m) ]}
(116)

+4 o —v+m (L4 5 divo) = 0.

The second term in equation (116) can be set equal to zero in view of the Newtonian equa-
tion of continuity and the fact that the term occurs with a factor 1/¢% Thus, an equiva-
lent form of equation (109) is

dp* 9 * —
ot Tax, (PTP) =0, n
where

=p[1+%§(%v2+3[])]. 118)

Equation (117) has exactly the form of a classical equation of continuity. We may,
therefore, conclude: in the post-Newtonian approximation, the mass defined in terms of the
density p* is conserved.

Since p* satisfies the equation of continuity, we have the following important special
case of Lemma 8.

Lemma 10: In the post-Newtonian approximation (i.e., correctly to order 1/c?)

dit/I,p*fdx=ﬂp*%dx, (119)

where f is any continuous function defined in V and the integrals in question converge.

VIII. THE CONSERVATION OF THE TOTAL LINEAR MOMENTUM

An integral analogous to the Newtonian integral, which expresses the conservation of
the total linear momentum of the system, follows from integrating the equation of mo-
tion (80) over the volume V.

By Lemmas 7 and 8

f[g—t (ava)—l-—(jc— (avav“)]dx=g}[/avadx. (120)
262fp— (Ua U,u;u.,u)dx*“c_z'zi/‘p(Ua Up,a,u)dx, (121)

and L4
fp— (vl — Ua)dx—jd—fp(vaU—Ua)dx; az2)

and the last of these integrals vanishes by Lemma 3 (Cor.). The integral
[(1+—2;—2U—> p]dx (123)

4 This result is implicit in some work of Fock (1964, p 249).

v 0xa
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No. 4, 1965 POST-NEWTONIAN EQUATIONS 1505

vanishes by virtue of the condition that p = 0 on the boundary of the configuration.
And the integrals over V of

U alU, oU 6@)
Y Pl and p (¢ 6xa+6x¢ (124

all vanish by Lemmas 1 and 4. The last remaining integral of pW,(x) over V also van-
ishes; this fact is apparent from equation (79) defining the function W,.(x): for

fvp(x)wa(x)dx (125)

when expressed as a double integral over x and x” has an integrand which is manifestly
antisymmetric in x and x’. Therefore, the result of integrating the equation of motion
(80) over the volume is

d 1
B—t-/‘;[ﬂ"va_!"z—c’gp([]a'_‘Uy;au)]dx—_‘o. (126)
In other words
~/V[a'vu+-210—2p(Ua—--U,“,L,L)]dx=consta,nt. (127)

This integral of the equations of motion may be considered as expressing the conservation
of the total linear momentum of the system. And it suggests that we may define the inte-
grand of the quantity which is conserved as the linear momentum of the fluid element
per unit volume. However, it will appear (see § IX below) that a more satisfactory
definition of the linear momentum is

1 4
1ra=0’7)a+—2_6‘3p(Ua_Up,ap)""c—z'p('qu—Ua), (128)

even though the volume integral of the last term vanishes: it contributes, as we shall
see, to the total angular momentum of the system.

IX. THE CONSERVATION OF ANGULAR MOMENTUM AND THE TENSOR VIRIAL THEOREM

We shall now show that equation (80) allows an integral which may be interpreted as
expressing the conservation of the total angular momentum of the system. To this end,
we multiply equation (80) by xs and integrate over the volume V occupied by the fluid.
We shall find that the resulting equation consists of terms which are either the deriva-
tives with respect to time of certain integrals or integrals which are symmetric in a and 8.
Thus, considering in turn the various terms in equation (80), we obtain:

fvxa[a% (090) +div (o 0a0) |dx

%fﬂ"vaxﬁdx—/o"va‘yﬁdx (129)
14
d
~di ft,”"‘xﬂd x— 2% (say)  (by Lemmas 7 and 8) ;
2U
= —d (1+— d
] B,[, c? pax 150
= —dupP(say);
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1506 S. CHANDRASEKHAR Vol. 142
= —Was (by Lemma 2, Cor. 1) ; (131
/pxgv,, Fye _4 lluu-as (by Lemma 2, Cor. 2) ; (132)

2 oU
— fVPxﬂ (¢ I axa>dx =—= <<I>>aﬂ (by Lemma 5) ; (133)

% [pun sy (00 = U dx =52 [ pussll = Ue)dx
¢t Jy cdt

(134)

+ lla "“"fP'Ua'Uﬁde (by Lemmas 6 and 8) ;
1 d 1 d 1
__>/1‘7pr— (U“——U“;a“)dx——z—c—éa‘/l;pxﬂ([]a—Up;ay)dx_a‘c_zuaﬁ

oy [ o () (x) mlx) (wam wy LI TR g 29

lx—x"|3

(by Lemmas 6, 8 and eq. [74]) ;

262fpx,sWa(x)dx— —5—0_211”" aB

262 ffp(x)p(x')v“(x)(x” ) va(x)(xg—xﬁ)d 2y

7
|z —x'|? (136)
(#a—xd') (ws—x5)
o [P0 1) ) 0 () LI g
(by Lemma 2 and eq. [79]) .
By combining the foregoing results, we obtain
d 1 4
5 Jws [0at 55 0 (Uam Vi) +5 (0T = Ua) |dx = 28+ Bus
(137)

+ SapP +-}5 [4Waﬁ+ 2¢®)as— 5 (Nag+ Unnsen) — 3Qus + %Zaﬂ] ,

where the quantities newly introduced have the meanings

Q=G f [ p(x)p(x") ou(x) (ra—2) va(x) (5= 2g')+ 9(x) (e 2a')

dxdx’ (138)
[x—x'[? *

) (xa—xd' ) (xg—x6')

dxdx’ (139
|x—x"]®

zaﬁ=GfoVp<x)p<x'>vp(xxxp—x,/)m(x')(x,—x/

and
Wa3=fpvavsde. (140)
VvV

These new tensors, like those already defined, are symmetric in a and 8.
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No. 4, 1965 POST-NEWTONIAN EQUATIONS 1507

We recognize that the terms in square brackets (under the integral sign) on the left-
hand side of equation (137) constitute the linear momentum per unit volume defined in
equation (128). And since all the tensors on the right-hand side of equation (137) are
symmetric in a and B, it follows from taking the antisymmetric part of the equation
that

d
Efv(xmra—xam)dx =0. (141)

This integral of the equations of motion expresses the conservation of the total angular
momentum of the system with the linear momentum as defined in equation (128).

a) The Virial Theorem

Equation (137) represents the post-Newtonian generalization of the classical tensor
virial theorem (cf. Chandrasekhar 1964¢). Under stationary conditions, the theorem
gives

zzuﬂ‘*‘%aﬁ—l_ 5aﬁP+;1§ [4Waﬁ+ 2<q)>aﬂ_ %—(uaﬂ"'—unu;uﬁ) - %Quﬁ‘l‘ %Zaﬁ] =0. (142)

The contracted version of this equation is

2T+ W+ 3P+;1; [4Waa+ 2{@Daa— L (Maa+Wus;00) — 3Qua+ §Zaa] =0, (143)

where
z=%fvav2dx, B = ——%prde, Waa=/;p‘02de,
Uew = —211,1,,;.m=_/vpquadx, (D)aa= —qubde, (144)
and
Qaa=2zaa=2GfoVp(x)p(x') ”“(")(x“_lx;"lv;,(l"s')(x"_x”') dxdx’.

In view of the foregoing relations equation (143) takes the form

fovax—1 [ pUds+3[p (1—}—26—12])dx+é[4fvpv2de
(145)

—2 o0 (+ U+%H+-g—%)dx—-%/vp‘vaUadx—i—Zaa]=0,

where we have further substituted for ¢ in accordance with its definition (eq. [40]). On
further simplification, equation (145) becomes

fvpvﬁdx—%fpuczx+3fvpdx+;1§{fvpvz(v2+n+%) dx

—ApU(ZU—HI——3%—)dx+4/1;pv2l]dx—;}fvpvaUadx (146)
—inVpr(x)p(x’) [v(x).(x—lxx)_][;/ﬂ: Jolx—x)] dxdx'}=0.
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1508 S. CHANDRASEKHAR Vol. 142

We shall find that the tensor and the scalar forms of the virial theorem are useful in
exhibiting the post-Newtonian effects of rotation on the equilibrium of bodies (see
Chandrasekhar 19655).

X. THE CONSERVATION OF ENERGY

An integral analogous to the Newtonian integral which expresses the conservation of
energy follows from equation (80) by integration over the volume V after multiplication
by v, and contraction. The reductions are somewhat involved; accordingly, we shall
preface the enumeration of the results of the integrations of the various terms of equa-
tions (80) by some lemmas (elementary in themselves) which must be used in their
reductions.

Lemma 11:

divy=tr l @ 1
pdlvv—dt+c2pdt(2v +3U). (147)
Equation (147) is simply another form of the equation of continuity satisfied by

1
*=p[145 G430 ] 159
LeMmmaA 12:
—pdivv=p* (fl—rtl_c_p(l 2—i—f‘)U) + p (1 24+ 3U). (149)
Equation (149) follows from eliminating dp/d! between equations (113) and (147).

DEFINITION Let U* be the gravitational potential arising from the distribution of the
density p* so that

V2U*=——47rGP*=—47rGP[1+é (%7)2'1‘3[])]- (150
Writing {
U* = U+;*2Q, 1s1)

we infer from the equation governing U and U* that
VvQ = — 47Gpg,  where ¢ = 3* 4 3U. (152)
We now state some further lemmas.

LEMma 13:
oU *aU* 1 oU gg

Poxe P Bx. o2’ qaxa_l_axa'

(153)

Equation (153) is a direct consequence of the definitions of the various quantities.

LEMMA 14: QU+ p
pr*va Fyo dx=%E'/Vp*U*dx. (154)

Proor: By Lemma 10,
aU [va(x) — 2a(x")](2a—wa')
a___d = —1G * * (5! dxdx’
fp v x=—3 /;fp (x)p*(x") xdx

|x—x'|3

=%Gf p*(x)p*(x')dt] L |dxdx (155)

.
d p*(x)p*(x') >
dt/va |x — x| dxdx
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and the result stated follows. It is to be noted particularly that Lemma 14 is correct to
terms inclusive of O(1/¢?): it is a genuine post-Newtonian result.
LEmmA 15: In the N, e'wtonian approm'mation

aU
= - 1.9 l
_/pv“(q axa axa dx = qu dt dx = fp( v+ 3U) dt dx. (so)

The proof of this lemma follows exactly on the lines of that of Lemma 9: the roles of ¢
and @ in that lemma are now played by ¢ and Q, respectively.

We now enumerate the results of the integrations of the various terms of equation (80)
after multiplication by v, and contraction,

fvva[g—t (ava)+div(avav)]dx=fv[—aa—t (01%) +div(oo) |ds

=3 fyor G dx = fp (o= +E) G as

(157)
dtf(mﬁ——p* 2———;pv>dx———— (n U+ )——d
(by Lemmas 1, 8, and 10) ;
_ oU 4 ((_1, xp*xp 3 2) 24U
_/I:pvaa e ¥ dl »/1;( borU + : PU dx+262/;,pv di dx (158)
(by Lemmas 13, 14, and 15) ;
2 - __14d 2
_—C—E-/vaa(qb_—l_&xa) “__f”"”_d" i, PUtex
(159)
——f[p(2v2+11)+3p] ——dx (by Lemmas 9 and 10 and eq. [40]) ;
20 %
7)0.—— (+ ) dx—dtprdx——f Udt X
(160)
202./’”)2 dx—|—62fpd—t(2v2+3U)dx (by Lemmas 10 and 12) ;
4 oUs 1 ,.
;/vaavﬁa—xad ff p(x)p (s’ )vﬂ(x)vﬂ(x)d” 7 1o
4
;‘/I; ('UaU Ua)dx—ﬁzt‘fp('sz—UuUa)dx+_2d_t'fpvaUadx
(162)
2 dv? , 1
jpr—dx———ffp(x)p(x)va(x)va(x)dtl |dxdx,
1 1
—2——/; vaWadx—————ffp(x)p(x )v,,(x)v,‘(x)dt| ldxdx

%' do.(x)

G , x—
._mfvam)p(xf)u(x><x.,—xa)]?_N 5) g ax aem

, dxd
462dtf./p( x)p(x") vu(x) o, (x)(xu_xll-)(xv xv)l—;f_-xﬁg;
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and

—I——fp‘l)ai(U _"U'a. )dx—"““_‘fp‘vu([]a ;a )dx

2¢2 Jy dt ~° e 2¢2 dt Uion

—————fpv de+———//p(x)p(x)va(x)va(x) ——i—dxdx’(lm)
4c¢2 dt e dt | x "

Xa— xa' dva(x)

zczf/p(x)P(x)vu(x)(x,, %) = di dxdx'.

Now adding the contributions (157)-(164), we find that we are left with

N AL IO TR (VRS

(165)

+;15 p(—10t 4+ 30 ~TIU — 302+ 502U — LooUs — i—vaUF;aﬂ)]dx =0.

Equation (165) may be interpreted as expressing the conservation of the lotal energy of
the system,; and it suggests that we may define

C=(o—3p*) 2+ p*MI—3p*U*
(166)

+% (= 30*+ 3U2 —TIU — 30T+ 302U — Z0aUa — 20Uy ),

as the energy per unit volume of the fluid. That various ‘“cross-terms” should appear in
such an expression is to be expected; but one could hardly have guessed the appearance
of the terms in U, and U, or the numerical coefficients of the other terms. Fortunate-
ly, the “guessing” is not needed: Einstein’s field equations treated in the most direct
manner lead to the correct expression.

XI. CONCLUDING REMARKS

The manner in which the post-Newtonian equations of hydrodynamics have been
derived brings out with particular clarity the essential “boot-strap” character of Ein-
stein’s general theory, a character which is somewhat obscured in the corresponding deri-
vations of Einstein, Infeld, and Hoffmann by the necessity in that treatment of formu-
lating the equations governing the motions of the singularities in the field. The severe
directness of the present treatment exemplifies, once again, the marvelous simplicity
and the inherent self-consistency of Einstein’s theory.

It is clear that the equations derived in this paper can be applied to investigate the
post-Newtonian effects of general relativity on the hydrodynamic behavior of large-scale
systems. Examples of such applications will be found in the two papers following.

I am grateful to Dr. M. J. Clement for carefully checking the analysis of this paper.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.
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APPENDIX

COMPARISON OF THE POST-NEWTONIAN METRIC
WITH SCHWARZSCHILD’S EXACT SOLUTION

Karl Schwarzschild’s exact solution for the metric in the interior of a spherically symmetric
stationary distribution of matter (described by the same energy-momentum tensor as that used
in this paper) is given by

ds?=re"(dxy)?— £2(d 6%+ sin? 0d¢p?) — eMd &2 (A.1)
where » and X are functions of the radial coordinate £ determined by the equations

r 1 - 260

, (A.2)
¢
MCE) =ilc_72[ A e£2d£=47r (1+ 2) gdg, (A.3)
and GME) T dv GIM(E)
v
2[1__ e ]dg o _|_ G ot A9

For a comparison of this solution with that obtained in this paper (appropriately specialized to
the case of spherical symmetry and hydrostatic equilibrium), we must first transform the metric
(A.1) to isotropic coordinates. The required transformation is

_ at _ dé
log 47 =[S = [ e 7T

where the constant 4 is to be determined by the condition that in the Newtonian limit » and &
must coincide. In the post-Newtonian approximation the transformation (as deduced from

eq. [A.5]) is
$=r(1+%) where U(r)=fm(—;y7(21)—dr. (A-6)

The transformation to the coordinate » reduces the spatial part of the metric (A.1) to

(A.5)

—<1+36—(21)(dx12+dx22+dx32); an

and this is in agreement with the solution used in this paper.

According to the solution obtained in § IV, go, = 0, when there are no internal motions.
Therefore, it remains to verify that to O(¢™%) Schwarzschlld’s solution agrees with the solution
given in the text, namely,

20 1
g00=1—'“c—5—+ﬁ(2U2—4<I>). (A.8)
First we observe that the equation

——=d7p (1—!—%) £2 (A.9)

determining MM(£), when expressed in terms of the variable 7, becomes

d M au >] 2

& il A.

—~ 41rp[1—|— T+ 30 +7 5> | (*.10)
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The integral of this equation, after some reductions involving several integrations by parts, can
be brought to the form

M) =M () 5[ s M +3um () — 3 FED g TEEL) 4, T

where

M(r)=d4n [ pridr and  dM(r)=4n [ plirtdr. (A.12)
0 0
Next, considering equation (A.4) and transforming it to the variable r, we have
dy U 1 dU GM(r) 2GPM?(7)
1 = bl A A.
ye? dr (1 c? "ar r? + 62 pr + crd @-13)

After some considerable reductions, the integral of this equation can be brought to the form

. ZGLZ/'_[_ [UH—/ Géim(r)d +3f 62W(7)
(A.14)

+ S / G2M2(r)

A dr +41rGf prdr]
Inclusive of terms of O(¢™%) Schwarzschild’s metric, therefore, gives

go=1+r+32+ ..

.14+0(c™8), (A.15)

where [. . . .] denotes the quantity in square brackets in equation (A.14). Agreement with the
solution (A.8) requires, then, that

2<I>=U2—I—/ G&S}E(r)d +3/ Gzﬂ[?( )d + /(;TGZM:;”d

(A.16)

+4xG [ “prar.

But as defined in the text, ® is determined, in the present case of spherical symmetry and hydro-
static equilibrium, by the equation

1 d a®
2ﬁ>= — 4wGp <U+%H+g=§>; (A.17)

r2dr

and it can be verified that equation (A.16) does, indeed, represent the solution of equation
(A.17).
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