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ABSTRACT

Figures of equilibrium of liquid masses with internal motions of uniform vorticity define the Dedekind
sequence. It has been known for a long time that the Dedekind sequence of stationary ellipsoids is con-
gruent to the Jacobian sequence of uniformly rotating ellipsoids. It is shown in this paper that the charac-
teristic frequencies of oscillation of a Dedekind ellipsoid, belonging to the second harmonics, are identical
with those of a Jacobi ellipsoid having the same figure; but that the points at which instability sets in by
a mode of oscillation belonging to the third harmonics are different along the two sequences.

I. INTRODUCTION

In editing for publication a posthumous paper of Dirichlet (1860) on ‘“Untersuchungen
iiber ein Problem der Hydrodynamik,” Dedekind (1860) proved a remarkable theorem
to the effect that different states of fluid motion can preserve the same ellipsoidal figure
of a self-gravitating liquid mass. And Love (1888) showed that the simplest example of
Dedekind’s theorem is provided by the geometrical congruence of the Jacobian sequence
of uniformly rotating ellipsoids and the Dedekind sequence of stationary® ellipsoids with
internal motions of uniform vorticity.

Sincethe Jacobian and the Dedekind sequences, in spite of their geometrical congruence,
represent physically distinct systems, we should expect to distinguish them by differences
in their normal modes of oscillation. It is, therefore, a noteworthy fact (which will be
established in this paper) that the physical difference in the two sequences is #of mani-
fested among the modes of oscillation belonging to the second harmonics: the character-
istic frequencies belonging to these modes are identical for a Jacobi and a Dedekind
ellipsoid having the same figure. However, the difference between the two sequences ¢s
manifested among the modes of oscillation belonging to the third harmonics; and this
fact will be established by showing that the points where instability by a mode of oscil-
lation belonging to the third harmonics sets in are different along the two sequences.

This paper is devoted, then, to an examination of the equilibrium and the stability
of the Dedekind ellipsoids. And the method of treatment, as in the recent examinations
of the other classical sequences, will be based on the tensor virial equations of the second
and the third orders (for a general summary of these methods, see Chandrasekhar 1964).

II. THE DEDEKIND ELLIPSOIDS AND THE SECOND-ORDER VIRIAL THEOREM

In his 4 Treatise on Hydrodynamics (Vol. 2, chap. xv), Basset (1888) gives an ac-
count of the related investigations of Dirichlet, Dedekind, and Riemann (see also Lamb
1932). It is, however, convenient to have the principal properties of the Dedekind ellips-
oids derived in the context of this paper.

The state of fluid motions, characterized by a uniform vorticity ¢ about the xs-axis,
which we shall consider is

= —qx, up = (1 — ¢)¢a, and u; =0, ¢))

1 Stationary, that is, in an inertial frame of reference.
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where ¢ is some constant. The condition that this motion preserves the ellipsoidal
boundary,

x? | x| agl
F(x)="5+>5+=5—-1=0 @
. (x) a12+a22+a32 ,
is
oF q 1— q)
u; — = 2x1%2{ —— =0 )
7 6x] 142 ( a12 + a22 g‘ )
or
012
=T - (4)
. 1 a:+ as?
We shall write
uy = Qs and gy = Qotty, (5)
where
a,? as?
= — nd =4 —= ¢, ©)
O a2+ as? a Q=+ a’+ a2? £

To obtain the condition that the ellipsoid is also in gravitational equilibrium, we shall
make use of the second-order virial theorem. According to this theorem

d
E./V‘puixjdx= 2%+, +1164;, g

where

L= %/‘;P%iujdx ) (8

W, = —%Ap$ijdx= - 3G fP(x)P(x')(xi_xi ;= 2f) dxdx’
14

lx— x|

are the kinetic- and the potential-energy tensors, and

H=£pdx. (10)

(In the foregoing equations, the integrations are effected over the entire volume V occu-
pied by the fluid.)
Under conditions of equilibrium, the virial theorem gives

232,-,- + %ij = —I1d;;. (11)

For the case we are presently considering, the tensors T;; and 28;; are diagonal; and more-
over,

T = 30: 2, Too = 3021, and T33=0, (12)

where I,; denotes, as usual, the moment of inertia tensor. Equation (11), under these cir-
cumstances, gives

Q12122 + Wy = Q22111 + By = Wi = —11. 13)
The geometry of the equilibrium ellipsoids is determined by the equation
021y Wiy — Wy

= (14)
Q2211 Bz — Blge’
and the associated vorticity is determined by the equation
Q12122 - Q22111 = %322 - %u . (15)
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The expressions for the components of I:; and Z;; for homogeneous ellipsoids have
been given in an earlier paper (Chandrasekhar and Lebovitz 1962, egs. [57] and [58]).
With the aid of these expressions and of the definitions of ¢, and Q2, equations (14) and
(15) give

a’_ Ara? — dsa4? e
(122 A 2 1431132
and
a’as? 2 Aia.2— Azas?
1"Qs { _ 101 2Q2 — 2B, an
(>4 as?)? 7Gpaiazas (a2 —as?)

where the various index symbols (4, 445, By, etc.) have their standard meanings.

We now observe that equation (16) is the same as the equation which determines the
geometry of the Jacobi ellipsoid (cf. Chandrasekhar 1962, eq. [AI3]); the two sequences
of ellipsoids are, therefore, congruent. Moreover, by comparing equation (17) with the
corresponding equatlon which determines the angular velocity of rotation Q of the Jacobi
ellipsoid (cf. Chandrasekhar 1962, eq. [AI, 7]), we obtain the relation

(012+0»22)2

a1%as?

(18)

§‘2

Equation (18) relates the Q of a Jacobi ellipsoid with the ¢ of a congruent Dedekind el-
lipsoid.

And finally, we may note the following alternative form of equation (17) which we
shall find useful:

_0Q 5 19)
7Gpaiasas

III. THE SECOND-ORDER VIRIAL EQUATIONS GOVERNING SMALL
OSCILLATIONS ABOUT EQUILIBRIUM

Suppose that an equilibrium ellipsoid determined consistently with respect to equa-
tions (16) and (17) is slightly perturbed. Let the ensuing changes be described in terms
of a Lagrangian displacement €. Then, a fluid element, originally at x with a velocity u,
will find itself at x 4+ &(x, £) with a velocity u + Au where (to the first order)

. af't a E'L — D Sz
Aus =i G = DL 20
The virial equation (7), linearized to the first order in the displacement &, gives
d
?d—t/;p(Auixj+u¢£j)dx=26I¢j+ 55133;’]‘—!-5]15{5, (21)

where 83 ;;, 628,;, and 8II are the first variations in the respective quantities caused by
the displacement £ and the attendant change Au in the velocity.
It is known that 88, can be expressed in terms of the symmetrized virials

Vw=V¢;j+Vj;z'=,£,P£ixjdx+[,P$jxidx- @2

Thus (cf. Chandrasekhar and Lebovitz 19630, egs. [47] and [48])
5281'1' = —2B;V; (1 # ]) , (23)
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and
Wi = — (2Bsi —a2Au) Vit ai22 AV 249

l#1
(no summation over repeated indices in egs. [23] and [24]).

(Note that in writing egs. [23] and [24] a common factor 7Gpasazas has been suppressed.)
We shall now show how

f pAu;x;d x and 0T (25)
v

can be similarly expressed in terms of the virials V;;; in case #; (in the unperturbed con-
figuration) is a linear function of the coordinates.
Considering the time rate of change of V;,;, we have

dlu dlfpfzx Adx = fp xdx—l—fpg wdx, 26)

or, in view of the relation (20),
= pruixjdx +fp£iujdx . @n
v 14

On the assumption that in the equilibrium configuration we have a linear relation of the
form
uj = Qi (28)

where the Q;/’s are certain constants, equation (27) gives
) €q g

avi;
[/pAuixjdx = dt,] -0V, (29)

By making use of equation (29), we can now express 63 ;; in terms of the virials. Thus,

ZBIU:/I;pAumjdx—i—/;pAujuidx

=0 [/pAuixldx —I-Q”_/VpAuszdx (30)
= Qi1 dV% F—QuVs; k) +0Qu (dV] = Qu i
or if Q? represents the square of the matrix Q, we can write
20F:;=0i dV% l-l-Qu dV]' — (Q%V i+ Q% i) . 31

Now, making use of equations (29) and (31), we can rewrite equation (21) in the form

aW;;; avs; aVi.x avs, dV ;
e O 0a = = 0 = Qa5 — (@it Qi)
or + E%ij‘l‘ 645011,
aW,; dV,
dl2,J - ZQJ’C k+ QQJsz k+ Q 2kVJ k= 623” + 5“6]:[ (33)
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When the time dependence of the perturbation is of the form e*, where A is a parame-
ter whose characteristic values are to be determined, equation (33) becomes

AV ii — 200V i + Q%kVige + Q%Vjye = 085 -+ 64011 (39)
And this equation must be supplemented by the condition
Vi Ve Vas
a12+a22—|—032— 0 (35)

required by the solenoidal character of &.
For the particular cases of the Dedekind ellipsoids, the matrices Q and Q2 have the

forms
0 O. 0 010, 0 0
O0=|0. 0 O and Qr={ 0 0,0. 0], (36)
0 0 o 0 0 0

and the explicit forms which equation (34) takes for the different components are rela-
tively simple. Thus, the equations which are even in the index 3 are

NV 33 = 633 -+ 611, (37
A2V — 2ANOWV i + 0iQeV i = 68y, -+ 611, (38)
AVys — 2N0eVai + 0105Vas = 8%y + 611 (39)
AVie — 200V + QiQoVie = 6Whe = —2BpV e, (40)
AVon — 2001V + 01Q0eVie = 6By = —2BpV e, (41)

where we have substituted for é%8;, in accordance with equation (23). Similarly, the
equations which are odd in the index 3 are

ANV 4 010:Visn = 683 = —2By3V s, (42)
AV 4+ 0102V 352 = Wz = —2BysVes, (43)
AV — 2N01 Vs + 010V s = 6813 = —2B13V s, (449
AV 30 — 200V 3a + 0102V 32 = 6Wez = —2Ba3Vos . (45)

Since in writing equations (23) and (24) a common factor 7Gpa;azas has been suppressed,
it is clear that in considering equations (37)—(45), we may alternatively suppose that
A% and {? are measured in the unit 7Gp and that the index symbols are so “normalized”’
that 4, + 4s + A; = 2 (instead of 2/aiaq2a3). This convention will be consistently
adopted in the rest of this paper. On this convention, equation (19), for example, be-
comes

01Q0: = —2B,,. (46)

IV. THE CHARACTERISTIC FREQUENCIES OF OSCILLATION OF THE DEDEKIND ELLIPSOID
BELONGING TO THE SECOND HARMONICS AND THEIR IDENTITY WITH
THOSE OF THE JACOBI ELLIPSOID

Considering first the equations governing the even modes, we observe that in view
of the relation (46), equations (40) and (41) become

)\2V1;2 = )\QgVu and >\2V2;1 = )\Q1V22 . (47)
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Excluding the possibility that A may be zero—a possibility to which we shall return
presently—we may conclude from equations (47) that

)\Vl;z = Q2V11 and )\Vg;l = Q1V22 . (48)

Eliminating Vi, and Vs from equations (38) and (39) with the aid of these last rela-
tions, we are left with

(%k2 + ZBIZ)VH = 6%11 + oIl (49)
and

(3N + 2B1g) Ve = 6Ly, + 611, (50)

where we have again made use of equation (46). Next eliminating 6II between equations
(37), (49), and (50) we obtain the pair of equations

(GAN + 2B1) Vi — 3N V55 = 6By — 6Wss
= —(3311 - B13)V11 + (B23 - B12)V22 + (3333 - Bl3)V33

(51)

and

BN+ 2Bi)Var — 30V 35 = 6By — 0Wiss (52)

= —(3322 - Bza)V22 + (B13 - Bm)Vu + (3333 - st)V33 y

where we have substituted for 688;; — 6822 and 6%W;; — W33 in accordance with equa-
tion (24). Equations (51) and (52) must be supplemented by equation (35) which
express the solenoidal condition on &; and these three equations lead directly to the
characteristic equation

32+ 2Bz + 3By — By Bz — By; —3\ — 3By + Bus
Bz — Bys N+ 2B+ 3Bn — By —3N —3Bsus+ Bas | =0 . 53
1 1 1
a12 a22 a32
A somewhat simpler form of equation (53) is
3N+ 2By + 3Bu — B Bz — Bss 3(Bu + Bz — Bss) — B
B12 - BIS %A2+2312+3B22_B23 3(B22 + B12 - B33) - Bl3 =0 . (54)
1 1 1 1 1

Remembering that for the Jacobi ellipsoid ©2 = 2B, (in the present normalization), we
observe that equation (54) is identical with the equation which governs the correspond-
ing modes of the Jacobi ellipsoid (cf. Chandrasekhar and Lebovitz 1963a, eq. [AI 3]).
Returning to equation (47) and the possibility of a non-trivial root A = 0, we observe
that we do indeed have such a root belonging to a proper solution associated with the

possibility
Vi=Vea=V=0 and Vies# 0. (55)

In the existence of such a neutral mode, the Dedekind sequence has the same behavior
as the Jacobian sequence.
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Turning next to the odd equations (42)—(45), we can combine them so as to give the
two pairs of equations

(>\2 + 4313)V13 - 2Q1(>\V3;2 - Q2V3;1) =0 ’ (56)
()\2 + 4323)V23 - 2Q2()\V3;1 - Q1V3;2) =0 , (57)
and
)\2(V1;3 — V3;1) + 2)\Q1V3;2 =0 y (58)
N (Vs — Vi) + 2005Vs1 = 0. (59)

Excluding the possibility of a non-trivial root A = 0, we can rewrite equations (58) and
(59) in the forms

AV = 2()\V3;1 - Q1V3;2) (60)
and
>\V23 = 2()\V3;2 - Q2V3;1) . (61)
With the aid of these last two equations, equations (56) and (57) become
(A2 4+ 4B15)Vis — N1 Va3 = 0 (62)
and
()\2 "I- 4B23)V23 — >\Q2V13 =0, (63)
We first observe that equations (60)-(63) can be satisfied by setting
Vis= Vs + Vi = 0, Ves = Vs + Via=0, (64)
Ve _O1 A
2 = = — —l == )
A Qng 2B and V3;2 N Q2 (65

Besides this root A2 = (0., we have also the roots of the characteristic equation
()\2 + 4313) (}\2 "}‘ 4:B23) + 2>\2B12 = 0 5 (66)

which follows from equations (62) and (63) if V13 and V3 do not vanish identically. The
roots of equation (66) are

A? = — (2By13 + 2Bys + Bys) + [(2Bys 4 2Bys + Bia)? — 16B13Bys)'? ; (67)

and, again, this equation is identical with the equation which governs the corresponding
odd modes of the Jacobi ellipsoid (cf. Chandrasekhar and Lebovitz 1963a, eq. [AI, 2]).
Also, the root A? = (;Q,, which the Dedekind ellipsoid allows, coincides with the root
A% = —? which the Jacobi ellipsoid allows. Thus, there is a complete identity of the char-
acteristic frequencies of oscillation belonging to the second harmonics along the Dedekind
and the Jacobian sequences.

V. THE ISOLATION OF THE NEUTRAL POINT BELONGING TO THE THIRD
HARMONICS ALONG THE DEDEKIND SEQUENCE

Poincaré’s (1885) discovery of the neutral point along the Jacobian sequence, where
the sequence of the pear-shaped equilibrium configurations branches off, has generally
been considered as one of the major accomplishments in the theory of the ellipsoidal
figures of equilibrium of liquid masses. Nevertheless, the question whether a similar
neutral point occurs along the congruent Dedekind sequence does not appear to have
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been considered, or indeed, even raised.? However, the identity of the characteristic
frequencies of oscillation belonging to the second harmonics along the two sequences
makes the question of more than academic interest: for the isolation of the neutral point
belonging to the third harmonics along the Dedekind sequence will enable us to estab-
lish whether the physical difference between the two sequences is manifested among
these higher modes of oscillation.

In this section, we shall show how the various integral properties provided by the
third-order virial theorem enable us to isolate the neutral point belonging to the third
harmonics along the Dedekind sequence; and it will appear that it occurs at a point
different from where the pear-shaped sequence branches off along the (congruent)
Jacobian sequence.

Now the third-order virial theorem gives

d
71 [,Puixjxkdx = 2(TCiju+ Tirss) + Wiz + Win; s + b +1;0 (68)

where

T = %/;pumjxkdx )

BWijr= — %/;P%ijxkdx , (69)
and

I, = xpdx .
k /; P
Under conditions of equilibrium, equation (68) gives
2Ziie + Tinsi) + Bijye + Wary; = —Midi; — Midar . (70)

It has been explained on earlier occasions (cf. Chandrasekhar 1962, 1963a, &, and
1964) that the first variations of all the integral relations which follow from the virial
equations of the various orders must vanish at a neutral point. In particular, at a
neutral point belonging to the third harmonics, the first variations of the integral rela-
tions which follow from equation (70) must vanish for a Lagrangian displacement which
leads to a set of third-order virials

V¢;5k=fp£,~xjxkdx 1)
14

which are not all zero. And as in the cases of the Maclaurin, the Jacobi, and the Roche
sequences, the five relations which are odd in the index 1 and even in the indices 2 and 3
will suffice to isolate the neutral point; and the relations to be considered in this in-
stance are

Wiz + 2T192 =0, (72)
BWizs + 23153 = 0, (73)
Wiy + 235 = —10, (74)
Warze + Waoyt + 2(Toe + Toey) = —1I, (75)
Wiz + Wiz + 2Ty + Tss) = —1I0L. (76)

2 Tt is remarkable that no reference to the sequences of Dedekind and Riemann (1860; see also Basset
1888) is to be found in any of the writings of Poincaré, Darwin, or Jeans.
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By suitably combining equations (72)-(76), we can obtain two relations, besides (72)
and (73), which are independent of II;. Thus, defining (cf. Chandrasekhar and Lebovitz
1963aq, eq. [62])
Sijs = —4BWij; — 2Wji6 + 2Wasss
and rn
Rijj = —4Zij;; — 2&j50 + 28iiye s

(no summation over repeated indices)

we readily obtain the relations

Sie 4+ 2R19s =0  and  Syzz+ 2Ri33=0. (78)
And the conditions we seek to satisfy in isolating the neutral point are
J1 = =269 — 4619, =0, (79)
Jo = —208y33 — 46T13;3 = 0, (80)
Js= 681+ 20R1 =0, (81)
and Js= 068133+ 20Ry;33 =0, (82)

where 0812;, etc., are the changes in the respective quantities induced by an appropriate
Lagrangian displacement.

It has been shown in an earlier paper (Chandrasekhar and Lebovitz 1963a, Table 2)
that the first variations of 6%is;s, 08;3;3, 65122, and 8533 can all be expressed as linear
combinations of the three symmetrized virials

Vin=3Viu= 3[/P£1x12dx )

Viea=Viaa+2Vy 2= fP&szdx + 2/ pfax1xadx (83)
v v
and
V""—:V" 2V‘= ‘-2d 2 'd .
133 1;33 1 2V /I;P §ix?dx + /Vpéaxlxa x
We shall now show how the particular 6T ;;;’s which occur in the relations (79)-(82) can
also be expressed in terms of these same five virials.

We first prove the following lemma.
LeMMA: If the macroscopic fluid motions in an equilibrium configuration are of the form

U = Qikxk y (84)

where Q is a certain constant matrix, then for a quasi-static Lagrangian displacement €
f pAuix,xmdx = - (anVi;mn+anVi;ln)7 (85)
14

where Av; is the Lagrangian change in u; resulting from the displacement &.
ProoF: For a general time-dependent Lagrangian displacement, it follows from the
definition of the virial V', that

— —pr Di xzxmdx+[,p£iulxmdx+£’pgixlumdx. 86)
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Making use of equations (20) and (84), we obtain

de CVisim pr% xlxmdx +anfpg xmxndx +an pSlexndx, (87)

or

aVi;im
—l—fPAulex dx+an i} mn+an i3ln . (88)

For a quasi-static deformation dV;./dt = 0 and equation (88) reduces to the result
stated.
With the aid of the lemma, we can express 63 ;;;; in terms of the virials. Thus,

26I,’j;k=-/I;pAuiu,‘xkdx+[’pAu,'u¢xkdx+[]pu¢uj$kdx

(89)

=lej£) PAuixzxkdx+Qu./1;PAijzxkdx +Qiman/I;p£kxmxndx .

Now making use of equation (85), we have
26850 = —Qi1(QuVisen + QinVisin) — QuilQunVisen + QenVisin) + QimQinVizmn - (90)

It is to be particularly noted that, unlike the 688.;,’s, the §Z;;;.’s cannot be expressed in
terms of the symmetrized virials only the unsymmetnzed virials occur explicitly.

For the case we are presently considering the only non-vanishing elements of Q are
(cf. eq. [36])

Q=01 and  Qu = Q:, (o1)
and we find from equation (90) that
26800 = —2010:Vin — O Vi, (92)
2680y = —4010:Voe + QVian, (93)
20833, =0, (94)
28T = —Q1Qe(Vie + Vam) — 0V, (95)
and 20%133 = —1Q2Vim . (96)

And combining the foregoing equations appropriately, we find

20Ry90 = (2Q22 — 40:10) Vi + (40102 — 20:%) Vi + 120102V 2,02, 97)
and
20R33 = —410:Vi;n — 202V 10 + 40102V 3551 . (98)

Equations (95)—(98) together with the known expansions of 6BWia;0, Was;s, 65122, and
65'133 (given in Chandrasekhar and Lebovitz 1963a, Table 2) enable us to express
, J4 (defined in egs. [79]-(82]) as linear combinations of the five virials Vi,

V1;22, Vz;m, V1;33, and V3;13. ThU.S, we may write

Ji= <i] 1;11>V1;11 + <il 1;22>V1;22 + <i|2$12>V2;12
G133 Vs + (E|313) Vs (G=1,...,4),

(99)
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where {7]|1;11), etc., are certain “matrix elements’” which are known. Equation (99)
must be supplemented by the further condition

3

—_ (100)
(l]_2

1 1
V1;11+E;2(V1;22+ 2V;12) +a—32‘(V1;33+ 2Vs13) =0,

which is an expression of the solenoidal character of & (cf. Chandrasekhar and Lebovitz
1963a, Sec. VI).

Equations (99) and (100) provide five linear homogeneous equations for the five
virials; and a necessary condition for the occurrence of a neutral point is the vanishing
of the determinant of equations (99) and (100) at that point. By evaluating the de-
terminant with the constants of the congruent Jacobi ellipsoids provided in an earlier
paper (Chandrasekhar 1962, Appendix I), the point where it will vanish was determined
by interpolation. Then, the constants of the equilibrium ellipsoid, appropriate to the
point so determined, were evaluated directly and the fact that all the conditions, requi-
site for the ellipsoid to be critical, were indeed satisfied, was explicitly verified.

TABLE 1

THE CONSTANTS OF THE DEDEKIND AND THE JACOBI ELLIPSOIDS
WHICH ARE NEUTRALLY STABLE*

Parameter Dedekind Jacobi Parameter Dedekind Jacobi
Ellipsoid Ellipsoid Ellipsoid Ellipsoid

Costas/a; . 69°4875 69°8166 2By
Sin71[(a2—as®) + (=—QiQ:0r Q%) +0 287815 0 28400

(a2—ad)]2 | 73°3537 73°903 N —1 215604
as/a 0 441331 0 432159 Q2. +0 236767
as/a 0 350412 0 345026 Ay* 40 2638224 0 258301
a 1 86303 1 885826 A.* +0 7595720 0 764728
a2 0 822212 0 814976 Ag* +0 9766054 0 976971
as +0 652826 0 650659

* The parameters d; and 4;* have the following meanings: d; = a;/(a102a3)!/ ¢ and 4A;* = a1a2a34;

The constants of the critical Dedekind ellipsoid are listed in Table 1 and are contrasted
with those of the Jacobi ellipsoid at the point of bifurcation. The two critical ellipsoids
are seen to be distinct; and this distinctness is a manifestation of difference between
the Dedekind and the Jacobian sequences.

The characteristic vector (Viai, Vige, Vo, Viss, Vsas), which solves equations (99)
and (100) when its determinant vanishes (as it does at the point we have determined), is
found to be

Vin = +10.2450, Vi = +2.49310, Vauo = —5.01287 ,
Viss = —1.0252, and V3,3 = 1 (as arbitrarily set).

(101)

To show that a neutral point along the Dedekind sequence does occur at the point we
have determined (via the imposition of certain necessary conditions), we have only
to verify that a Lagrangian displacement satisfying all the requirements of a proper
solution does exist with the virials having the values (101). And this fact can be verified
as follows.

First, we observe that the linearized third-order virial equations together with the ap-
propriate solenoidal conditions on £ suffice to determine all the characteristic frequencies
belonging to the third harmonics uniquely. Therefore, the corresponding proper solu-
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tions for & are uniquely determined by the specification of the eighteen third-order
virials Vi, and conversely. This unique determination of the proper solutions by the
virials is possible only if the solutions for € are quadratic in the coordinates. And, more-
over, it is clear that the conditions we have used to isolate the neutral point are precisely
those which follow from the general virial equations which determine the characteristic
frequencies.

With the knowledge that the proper solutions are quadratic in the coordinates, we can
at once write down the form of £ for which the only non-vanishing virials are those
listed in (101). We must have

£ = (a + B)a? + yao? 4 6xs? + &,

£ = —2axxs, and £3 = —2Bx1x3,

(102)

where a, B, v, 8, and « are five constants. (Note that the solenoidal requirement on &
is satisfied by the chosen form.) For the displacement (102) we find

Vin = a?[3(a + B)a:? + vas? + das* + Tk ,
Vige = a?[(a + B)a? + 3va? + das? + 7],
Viss = as?{(a + B)as® + yan? + 36as* + 7«],

V2;12 = —20.1112022, and V3;13 = —23012032 ,

(103)

where a common factor 4ma;aza3/105 has been suppressed. It should be noted here that
the condition,

&> = Tl(a + B)a? + va? + dag? + 5« =0, (109)

which follows from the requirement (which we may impose) that the center of mass of
the ellipsoid does not move during the perturbation, is equivalent to the imposition of
the solenoidal condition in the form (100).

Equations (103) now enable us to determine the constants a, 8, v, §, and « if these
virials are to have the values listed in equations (101). We find

a = 12.8685, B = —4.07205, v = 51.7212, § = —4.0782, and « = —3.6739. (105
The corresponding proper solution for £ is (with the normalization x = — 1)

& = 2.3943 %% 4 14.078 2, — 1.1100 x5 — 1,

& = —7.0053 x1xs, and £ = +2.21674 x1x3 .

(106)

With this explicit determination of &, the demonstration, that a neutral point does
occur at the point isolated, is complete.

VI. CONCLUDING REMARKS

The remarkable behavior of the Dedekind ellipsoids, with respect to their modes of
oscillation and manner of instability, suggests that the behavior of the more general
ellipsoids of Riemann (which include the irrotational ellipsoids of particular interest; cf.
Basset 1888) be similarly examined. We shall return to this examination in another

paper.

I am indebted to Miss Donna Elbert for her assistance with the numerical work.
The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.
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Note added December 7, 1964.—Since this paper was written, the properties of the
associated Riemann sequences have been fully investigated; and the analysis discloses
many interesting relationships between these sequences and those of Maclaurin and
Jacobi. Further, analogues of Riemann’s irrotational sequence exist for compressible
masses and disclose new possibilities for the occurrence of genuine triaxial configurations.
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