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ABSTRACT

In this paper the fundamental frequencies of non-radial oscillations of polytropic gas spheres, belong-
ing to spherical harmonics of orders! = 1 and 2, are evaluated, in a “‘second approximation,” by a varia-
tional method. Also, the value of the ratio of the specific heats v is determined for which an accidental
degeneracy occurs between the fundamental modes of radial oscillation and non-radial oscillation belong-
ing to I = 2; it is found that this value of v varies from 1 6 for a homogeneous compressible sphere to
1 5719 for a polytrope of index # = 3.

I. INTRODUCTION

In a recent paper (Chandrasekhar and Lebovitz 1963; this paper! will be referred to
hereafter as “Paper I”’) the non-radial oscillations of gaseous masses belonging to the
spherical harmonics of orders / = 1 (in a “second approximation”) and / = 3 (in a “first
approximation’’) were considered on the basis of the virial equations of orders 1 and 3 and
trial functions of suitable forms for the Lagrangian displacement. The modes of oscilla-
tion belonging to / = 2 (in a first approximation) had been considered earlier (Chandra-
sekhar and Lebovitz 1962a, c); since their evaluation in a second approximation by the
method of Paper I would have required the use of the virial equations of order 4, as well,
it was not attempted. However, soon afterward, a general variational principle governing
the non-radial oscillations of gaseous masses and belonging to the spherical harmonics
of the different orders was established (Chandrasekhar 1964; this paper will be referred
to hereafter as “Paper I1”’). In this paper the variational principle will be used to evalu-
ate the modes belonging to [ = 2 in a second approximation with the principal object of
determining, more precisely than hitherto, the value of the ratio of the specific heats
v for which an accidental degeneracy occurs between the fundamental modes of radial
oscillation and non-radial oscillation belonging to! = 2. The facts that such a degeneracy
must occur and, further, that it may lie at the base of the beat phenomenon exhibited
by the 8 Canis Majoris stars have been pointed out (Chandrasekhar and Lebovitz 1962a,
b, and d); and the value ¥ = 1.6 (independently of the structure of the configuration)
for the occurrence of such a degeneracy was deduced by equating the first approximations
to the characteristic frequencies given by the two formulae (Ledoux 1945; Chandrase-
khar and Lebovitz 1962q)

e (3118 =

where I denotes the gravitational potential energy and I the moment of inertia of the
configuration. By restricting ourselves to polytropic gas spheres and evaluating oz* and
o5’ in a second approximation, we shall determine the dependence of v (for which oz? =
os?) on the density distribution in the configuration.

and gl = (1)

wys

II. THE CHARACTERISTIC EQUATION IN THE SECOND APPROXIMATION

As shown in Paper II (Sec. IIT) the non-radial oscillations of gaseous masses, belong-
ing to spherical harmonics of a particular order /, are determined by two radial functions

1 The following errata for this paper may be noted here: In eq. (66) the entry opposite 3.5 should be
0.054251 (in place of 0.054834); the last of the equations in (87) should read ¢* — 0.12097 (v — 1.04641) 02
-+ 0.0011820 (v — 1.2784) = 0; and finally in Table 1 on p. 199 the entry opposite $67£%d¢ in the last
column should read 160 393 (in place of 158.689).

1517

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1964ApJ...140.1517C

N

P

FT952A

1518 S. CHANDRASEKHAR AND NORMAN R. LEBOVITZ Vol. 140

¢ and x. And the variational principle, which expresses ¢% as a functional of ¥ and ¥,
requires that ¢? be stationary with respect to arbitrary, infinitesimal variations of ¢ and
x compatible with the boundary conditions.

Now it can be deduced from Pekeris’ (1939) exact treatment of the non-radial oscilla-
tions of a homogeneous compressible sphere that the proper solutions for  and ¥, in that
case, are of the forms

Yy = Artl 4 Bylt3 and x = Artt 4 Critd, @

We shall accordingly assume for ¢ and x these forms and treat the constants 4, B, and
C, as variational parameters.

It will be observed that we have made the coefficients of »**! equal in the assumed
forms of ¥ and x. This equality in the coefficients follows, as it has been pointed out to
us by Professor Paul H. Roberts, from the requirement that div &, as given by equation
(33) of Paper II, should behave like 7! at the origin>—a fact which becomes apparent
when we examine the behavior at the origin of the expression for ép given by equation
(35) of Paper II.

By substituting for ¥ and x the chosen forms in Paper II, equation (41), we find that
the characteristic equation for ¢2 becomes

|M| =0, ®
where M is a symmetric matrix whose elements are

My = o? 2141

p21—2(21—=1) (14 1) pas—2— Varte
R
+47G [ % (Frn— (141) 1%,
0
My = 6%pg+a — (20+ 1)U 4 1) p2r — Varts

R
+41raf0 7245 [Frn— (14+1) fldr,

[+ 3

]‘4[13)‘:0'2 l

pi+e — (21 + 1)1+ 3) p2 )

R
—42GU+3) [ r¥g(Frn— (14+1) f1dr,
0
R
M= 0%pai+4a— v (14 3)po142— Var+es+ 47G A rHF% adr
R
M23=(l+3)[(l+3)’)’—(2l+3)]P21+2—47rG(l+3)/0‘ r¥F y3gdr,

M33___(,z£l_‘l'3_)2 7(l+3)2p21+2+41r6(l+3)2erZ’gzdf,

l(l+1)p2l+4— 0

2 This circumstance, that ¢ — x must behave like 7*3 as  — 0, makes the reduction of the variational
principle given by eq. (41) of Paper II to the form of a determinant of a 2 X 2 matrix (by varying ¢ and
x independently of each other) strictly incorrect. However, it appears that the determinantal form retains
a certain usefulness in providing an adequate approximation (see n. 4 on p. 1522) and clarifying the origin
of the two physically distinct classes of modes.
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and the following abbreviations have been used:

R R
pm=£ prmdr, pm=/0- prmdr, (5)
_ (fldpad .dr _ d_ﬂéi ym) 87
Vm—fo gy er )rz—fo = =(orm)] ®)
Rd R
fiy=["Z0(e), g = dssa(s), ™

and

R
Fan(r) = [ S5 Loy = —p b 1) £ (r),

8
Firs(r) = [ 25 L (o) = — oy G4 1 ().

The integrals which are explicitly written out in equations (4) can be reduced by in-
tegrations by parts and expressed in terms of the moments,

fm=f0 fermdr, gm=£ gprmdr. ©)

# 21 f2 2
A 4 fd?’-**zﬁile,

R
/0‘ r2fgdr = 21—l— 1(f21+2+g21)

We find

R ool 2
£ r gdr—mgzzﬂ,

B 1
1 -
/(; r2F1+1fdr—2l| 1fzz,

R
/o~ r¥F igdr = 2l+1[(l+1)f21+2—lg2l]

(10)

R
fo r2F s fdr = 2l+1[(l+1)gzl—lf2l+2
er2lF+ gdr=# 21+
A 143 20+ 1 82+
R R
f rﬂFZH_ldf:/ rip2dr — 2l(l+1)f217
0 0

2141

R R Wi+ 1
_/O- f2le+1Fz+3dr=A r2+2p2dy — (2l’-li—— 1)(fzz+2+gzz)

R E 200041
-/0‘ rle2;+3dr=A rZZHp?dr—Z(l——l_‘:llng'
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The integral defining V,, (eq. [6]) can also be reduced by integrations by parts and by
making use of Poisson’s equation and the equation governing equilibrium. Thus,

Vm= * 1( d%)_( rm)dr

__ BY_44d%
- 4dr< rd dr]dr
(11)
R
=f prm 47er 431dp)d
0 r pdr
R
= 4G [ ptrm=tdr — 4(m = 3) pu—sy (m>4).
0

Using equations (10) and (11), we find that the expressions for the matrix elements of M
become

M= g2 21

par—2(2l—1)(1—1) pa—,

M= 0%pa1+a— (21+ 1) (1= 3) por— 4nG(l+ 1) goy

M= 0202 iy — (214 1) (143) pu+ 476 (14 3) g
M= o%puiri— L7 (14+3)1= 420+ 3) I pursa— 816 5 g, 7
143
Myy=(14+3)[(I4+3)v— (214 3) | po1+2 — 47G 2l—|—1 g21+2,
2 2
M= 0t 1 E 300 = y (14 3) parrat 876 420 s,

The approximation considered by Cowling (1942) and others of neglecting the varia-
tions in the gravitational potential during the oscillations is equivalent, in the present
context, to ignoring the integrals over Fiy1, Fiys, f, and g in the expressions for the matrix
elements of M given in equations (4). Ignoring, then, these terms and substituting for
the remaining terms in V,, in accordance with equation (11), we obtain the simpler
expressions

M@ = g2 21+1

R
par=2(2=1) (1= 1) pua — 416 [~ pritdr,

R
Mlz(a') = 0'2p21+2’— (2l+ 1) (l— 3)?21—‘ 4:7TG£ p21’2l+2d7 ’

Mi3(®) = o2 l_{; 3

R
Mo = 0%pgyrsa— [v(1+3)2—4(2143) 1 par42 — 47I'Gf pirittidr ,
0

pai+e— (214 1) (I 4+ 3) pai,

(13)

Mys@ = (I+3)[(1+3)y— (214 3) | pai+a -

, (4

Ms® = ¢ l(l-l—l)) pP21+a—

v+ 3) %2142,

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1964ApJ...140.1517C

No. 4, 1964 NON-RADIAL OSCILLATIONS 1521

The Characteristic Equation for the Radial Mode of Oscillation in the Second A pproximation

The variational expression for the characteristic frequencies of radial oscillation is
given in Paper II (eq. [49]). With the trial function

¥ = ar® -+ b5 (14)
with the two variational parameters ¢ and b, we obtain the characteristic equation

a’ps — 33y — 4)p2 o?ps — 53y — 4)ps.
o%0s — 53y — 4)ps  o’ps — (257 — 28)ps

where pn, and p,, continue to have the same meanings as in equations (4). It is known
(cf. Ledoux and Walraven 1958) that this “second approximation” gives the frequency
of the fundamental mode of radial oscillation to well within 5 per cent in most cases of
physical interest.

=0, (15)

III. APPLICATION TO POLYTROPES

We shall use the characteristic equations derived in the preceding section to evaluate
the frequencies of the fundamental modes of the radial and the non-radial oscillations of
the polytropes.

When 7, p, and p are expressed in terms of the usual Emden variables £ and 6 (cf.
Chandrasekhar and Lebovitz 1962¢, eq. [8]) and o? is measured in the unit
47Gp./(n + 1) (where » is the polytropic index), it can be readily verified that the
elements of the secular matrix continue to be given by equations (12) if we replace 47G,
wherever it occurs, by # 4+ 1 and define p,, pn, and g, in terms of the corresponding
dimensionless variables as follows:

pn= [ C0emag,  pa= [ Cerignae,

and . . . (16)
w=[ ‘gorgmat= [ degmon [ dnnon(n),
g fo gorEmdE /0‘ £& f£ nm0"(n)

where & is the first zero of 6.
In the case under consideration, g, can be expressed directly in terms of p, and p,.,
thus,

£, £ 2
g(6) = [or(nyndn = — [ (n%%—” )dn—s 0 g6, an

where 6, is the value of d/df at &, and

n—m

_21[01 |p7lz+Pm+f 0n—‘£m+1d£—‘§1161/|pm n+1_pm (18)
Also, it may be noted that
p2= £12] 0, and P2=1;—_|_—:1,€13|01/[2. (19)

In Table 1, we list the values of the various integrals which are needed for the deter-
mination (in the second approximation) of the lowest modes belonging to/ = 0, 1, and 2.

a) The Convective Instability of the Polytropes for
v<1+4 1/n by Modes Belonging tol = 1

We have already shown in Paper I, by an application of the virial equations, that the
manifestation of the convective instability of the polytropes for v < 1 4 1/%#, by modes
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belonging to / = 1, can be explicitly demonstrated: the critical value of v for marginal
stability predicted by the (approximate) theory differs from 1 4+ 1/% by less than 0.7
per cent for n < 3.5. It is evident that the present characteristic equation | M| = 0 for
! = 1 must predict the same critical values of v (for the different polytropes) as were
derived in Paper I: for the trial function assumed for the Lagrangian displacement in
both the treatments are the same; the characteristic equations which follow cannot,
therefore, be different.? And the fact that the present characteristic equation | M| = 0
for I = 1 leads to the same critical values for vy as were derived in Paper I can, indeed,
be verified directly.*

TABLE 1
A TABLE OF INTEGRALS
”n
INTEGRAL
10 15 20 30 35
P2 3 14159 2 71406 2 41105 2 01824 1 89056
p4- 12 1567 11 1197 10 6110 10 8516 11 7454
Ps 62 8853 64 9770 71 7372 109 748 160 39
P8 379 112 460 821 617 802 1625 30 3585 89
po - 1 41815 1 34001 1 27421 1 16855 1 12515
ba 1 57080 1 44002 1 33547 1 18120 1 12446
Pa 4 38231 4 23148 4 17017 4 31761 4 56828
bs 17 4550 18 7887 21 0149 30 4548 40 9726
g2 2 35619 1 72803 1 33547 0 885900 0 749639
I 5 58325 4 02839 3 09731 2 09611 1 82105
£ 19 2477 14 4461 11 7151 9 2748 9 0368

b) The ‘““‘Kelvin Modes” Belonging tol = 2; and the Modes
Exhibiting Convective Instability

Using the same matrix equation | M| = 0 for I = 2, we have determined, with the
aid of the integrals listed in Table 1, the lowest characteristic values for polytropes with
the indices 1, 1.5, 2, 3, and 3.5. The calculated characteristic values together with the
constants of the corresponding characteristic vector (1, B/A4, C/A) are listed in Table 2.

We notice the remarkably slight dependence of ¢% on v for n < 2. We also observe
that for moderate central condensations (z < 1.5) the approximation y o~ x = y!#!

3 The fact that the two methods, the variational and the virial, must lead to the same characteristic
equation (albeit by different routes) can be seen as follows: in the variational method, the characteristic
equation for o2 appropriate to a trial function of the form

& = Lujwwion + Lq

(assumed in Paper I) follows from inserting this expression for § in a certain Hermitian form (§, H¥),
where H§ gives the time-dependence of § for small departures from equilibrium in accordance with the
linearized equations of motion, and making the result stationary for small variations of the constants
L;. ik and L;; whereas, in the virial method, we start with the three zero-order and the eighteen second-
order x;xr-moments of the exact non-linear equations of motion, linearize these moment equations for
small departures from equilibrium, and f4en make the same assumption for the Lagrangian displacement.
The two sets of homogeneous equations which follow for the constants L;;;x and L;, clearly, cannot dif-
fer ()cf. Clement [1964] where the analysis exhibiting this equivalence is set out in full in another con-
text).

4 We find, for example, that the equation [M| = 0 for [ = 1 leads to the values v = 1996, 1 662,
1.494,1.327, and 1.279 for the marginal stability of the polytropes # = 1,1 5,2, 3, and 3.5, respectively;
2[1n8c]1)these values should be compared with 1.995, 1.661, 1.493, 1 326, and 1.278 derived in Paper I (eq
88]).
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provides a satisfactory representation.’ As we have seen in Paper II (Sec. IVd) the
assumption ¢ = x = r't! leads to an expression for o? which is exactly analogous to
Kelvin’s formula for the non-radial modes of an incompressible sphere. On this account,
it would seem proper to describe the modes obtained in this section as the “Kelvin
modes.”

TABLE 2
THE SQUARES OF THE CHARACTERISTIC FREQUENCIES AND RELATED CONSTANTS BELONGING
TO THE FUNDAMENTAL MODES OF RADIAL AND NON-RADIAL (! = 2) OSCILLATIONS
(e? Is Listed in the Unit 47Gp./[n + 1])

RapIAL NON-RADIAL (I=2)
n Y
o2 a3/ a1 o2 B/A C/A
10 1355 0 25002 0 01594 0 30305 0 04938 +0 02537
1 60 30726 01928 30332 04604 + 02287
165 36437 02252 30357 04293 + 02055
5/3 38338 02357 30365 04194 4+ 01982
15 155 24711 02615 29302 07114 + 02754
1 60 30287 03206 29390 06429 + 02284
165 35825 03790 29475 05810 4+ 01859
5/3 37663 03983 29503 05616 + 01727
20 155 23357 03925 26848 09219 + 02462
1 60 28473 04910 27062 08041 + 01753
165 33509 05922 27271 07020 4+ 01143
5/3 35171 06265 27339 06709 + 00959
30 155 17088 09509 18184 14326 4+ 01203
1 60 20195 13147 18845 11701 -+ 00195
165 23125 17596 19503 09691 — 00538
5/3 24069 19299 19721 09123 — 00738
35 155 11740 20435 12214 18433 + 00533
160 13442 34067 12990 14854 — 00457
165 15028 59891 13780 12296 — 01097
5/3 0 15538 0 74444 0 14044 0 11597 —0 01259

To test how good the approximation is of ignoring the variations in the gravitational
otential during the oscillation, we have evaluated ¢ from the simplified equation
ﬁ)M("Ol = 0 (cf. eq. [13]) for the case » = 3,1 = 2, and v = 1.6 and §. We find

: {0.2264 (y=1.6),
a’ =

0.2398  (y=$); =0
and these values should be compared with ¢2 = 0.1884 and 0.1972 listed in Table 2. It
would not appear from this comparison that the approximation is a very good one under
the circumstances considered.

In addition to the Kelvin modes we have considered, there exist also modes which
exhibit the convective instability of the polytropes for ¥ < 1 4+ 1/#. Indeed, we find

5 If we had varied ¥ and x independently of each other, then for the same assumed form of the trial
functions we should have found ¢% = 0.1800, 0.1868, 0 1935, and 0.1957 for the case # = 3 and y = 1.55,
1.60, 1 65, and §, respectively; and these values should be contrasted with the values o2 = 0.1818, 0.1885,
0.1950, and 0.1972 listed in Table 2 derived after satisfying the proper boundary condition, ¢ — x — con-
stant 7¥*3 as 7 — 0,
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from the same secular equation | M| = 0 and ! = 2 that a neutral mode occurs when
(cf. Paper I, eq. [88]; also n. 3 on p. 1522)

1.9946 for n=10,
1.6588 for n=15,
v =1+:14899  for n=20, @1)
1.3188 for n=30,
1.2686 for n = 3.5.

The departures of these values from 1 4+ 1/# is a measure of the accuracy attained by
the present manner of application of the variational method.

¢y The Radial Modes

The characteristic equation (15) governing the radial modes has also been solved for
the same values of v and % for which the Kelvin modes for / = 2 have been determined.
The results of the calculations are included in Table 2.

TABLE 3

THE VALUES OF v FOR WHICH THE ACCIDENTAL DEGENERACY OCCURS AND
THE CONSTANTS OF THE CORRESPONDING MODES

Rap1aL NON-RADIAL ([=2)
n Y
a? as/ a1 a? B/A C/4A
0 1 6000 0 26667 0 0 26667 0 0
10 1 5965 30330 0 01906 30330 0 04626 +0 02304
15 1 5918 29376 03109 29376 06537 + 02358
20 1 5855 27001 04622 27001 08364 + 01947
30 1 5719 18473 1101 18473 13240 4+ 00790
35 1 5745 0 12592 0 2619 0 12591 0 16526 —0 00005

d) The Value of v for Which the Accidental Degenercy Occurs

By interpolating among the values of ¢? listed in Table 2, the values of v, for which
o? for the radial mode and the non-radial mode belonging to / = 2 are equal, were deter-
mined. The results of this interpolation are given in Table 3.

We observe that, in contrast to what follows from the solutions in the first approxi-
mation, the value of v for which the accidental degeneracy occurs depends on the density
distribution in the configuration. However, the dependence is not very pronounced.

For the polytrope » = 3, the accidental degeneracy occurs for v = 1.572. While this
value of v differs from 1.6 by only 0.028, the stellar requirements for the coincidence of
the two frequencies are appreciably different: on the assumption that differences in vy
arise from different admixtures of a monatomic gas and radiation, the change in the
effective ratio of the specific heats from 1.6 to 1.572 means that 1 — 8 = (radiation
pressure/total pressure) changes from 0.0532 to 0.0868; and this change in (1 — 8) im-
plies, on the standard model, a change in (Mu?/©) from 4.62 to 6.36. It would therefore
appear that the suggested interpretation of the beat phenomenon exhibited by the
B Canis Majoris stars will not be found inadequate on this account: its validity will have
to be tested on other grounds.

We are greatly indebted to Miss Donna D. Elbert for her assistance with all the
numerical work in connection with the preparation of this paper.
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APPENDIX
AN ALTERNATIVE FORMULATION OF THE VARIATIONAL PRINCIPLE

In deriving the variational principle in Paper II, the assumption was made that the density
vanishes on the boundary; and this assumption was explicitly used in the further reductions
Nevertheless, it was found, after suitable transformations of the basic equations, that the
variational principle gives correctly the characteristic frequencies of the Kelvin modes of an
incompressible sphere (cf. Paper I1, Sec. IVd, eq. [53]). The fact that such ‘“‘suitable transfor-
mations” are possible suggests that there is an alternative formulation of the variational prin-
ciple which is valid without the assumption that the density vanishes on the surface. We shall
show that such an alternative formulation exists which, moreover, permits the density to be
discontinuous in the interior.

It is convenient for our present purposes to adopt the Lagrangian, instead of the Eulerian,
formulation of the perturbation equations.

If AF(x) and 6F(x) denote, respectively, the Lagrangian and the Eulerian changes in a
variable F(x), then (cf. Lebovitz 1961, eq. [21])

AF(x) =0F(x) +&-grad F(x), (A.1)
where & (x) is the Lagrangian displacement. Also, it may be verified that the Lagrangian
change in the gradient of F (X) is given by

A(aF _aAF*G_FiE_@ (A.2)
dx; Ox dx;

Using the foregoing equations, we find that the Lagrangian form of the equations governing
the perturbations are (cf. Paper I, eqgs. [9]-[13])

aAp A, 0B 9AD

2, ¢, = 92P 90 .
Ap=—pdivE, Ap=—vypdivi, A-4)
and
AL =0V +E-grad B, (A.5)
where
_ e 1,
0B (x) GLP(X ) Ei(x )ale [x— x| dx’; (A-6)

and the boundary condition is that Ap vanish on the boundary.
Multiplying equation (A.3) by §;, contracting, and integrating over the volume occupied
by the fluid, we obtain

ot [o1&1%x = [rp(divE)ax+ [ £ 52 div gdx

_/;szaxz(gk MB)d fp&aa%; ,

where we have performed an integration by parts in the first term on the right-hand side of
equation (A.7) and have used equations (A.4) and (A.5) as well as the equilibrium condition
grad p = p grad B.

(A.7)
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It can be verified that equation (A.7) provides a variational base for determining the char-
acteristic frequencies. The verification is sufficiently similar to that given in Paper IT (Sec. IT)
that it is omitted here.

We shall now specialize equation (A.7) to the case when the equilibrium configuration is
spherically symmetric. One can, without loss of generality, restrict consideration to a single
spherical harmonic ¥;(¢#, ¢). The Lagrangian displacement may then be written (cf. Paper II,
eq. [31]; see also eqs. [32] and [33])

¢(r) m _ 1 dx(r) Y ,™ (9, ¢)
L= Tn(be), o=y Ty, FR
and (A.8)
£, = 1 dx(r) oV ,™(9, ¢)
I+ 1)rsind dr de

These expressions for the components of & must be substituted into equation (A.7) and the
integrations over the angles performed. This reduction has already been performed for the
left-hand side and the first two terms on the right-hand side of equation (A.7) (Paper II, eq. [38])
with the result

| Tty (@) Jor = ey -0 5%
(A.9)

+f0 —d—zsb—-—(iﬁ x)———fpétaxi(ék i)dx—fvp&%dx,

where we have suppressed a factor Ny, = dn(l + |m])!/(20 + 1) (¢ —|m|)! since it will ulti-
mately appear in every term of equation (A.10) and hence may be canceled.

To facilitate evaluating the final two terms of equation (A.9), we state the following lemma:
Let & be given by equation (A.8), F(r) be arbitrary, and let Sy denote the unit sphere and
dS; the associated element of area. Then

Nlm

S Ergrad(F (r) T3, 9) 1451 = (¢—+F Srdm.  (A10)

The proof is omitted, since it is an easy consequence of a known result (cf. Chandrasekhar
1961, p. 625).
Turning now to the third term on the right-hand side of equation (A.10), we find

—/;p‘g’-grad (E,%) dx = —'/O-Rdrrzp(r)fﬁld&.f-grad<%%% Yﬂ”)

= =N [ o[¥ i (LS + 52 K ar

rt

=—szf0 p(r)(-1552 YW ingp L4 L2200 4,

r3dr ' ridr dr r2dr d

(A.11)

B

r3dr  r2dr

¢2
L (p+x ) 41erzﬁ]dr
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To reduce the final term in equation (A.9) we first find 628 with the aid of equation (A.7)
and the known expansion of |x—x’|~! in spherical harmonics,

Ix-x Zfl(f ') Z_l I+ :m{ ;1 Vim(d, ) Vi" (¥, o), @12

where .
el i <g
fi(r, ?') = (A.13)

ri/r’H1if r'>r.

Applying the lemma (eq [A.10]), we find

I ! a 1 I3
0B(x) =G AP(X )Ei(x )G_JH—:_JC—'T dx
1,19 ’ 4 i_—___l
=6 "ar () fffasie (5
1= |m])! 0fulr, 1) e
_ _(_— m ’ i\r, 7
=GN T Y3 0) o) [w(r) 2L
D fitr, o) Jar =2 vimes, ) [ L5 — im0,
where, in virtue of equation (A.13),
_ v(s) | dx(s)
Ty = [Tt 124 g
and (A.15)
Kz(r)=/ p(lil)[(lJrl)tP(S) dxd(sS)]d

We cannot eliminate both J; and K; from the final formula, but we can eliminate one of
them, say J;. For this purpose we need the following formula, which is an easy consequence
of equations (A. 15)'

d ‘K)" H'_l —lrl—le—l—(Zl—l—l)p?g- (A.16)

d?’ l+1 plt2

Using equations (A 14) and (A 16) and the lemma (A.10), we now find

47G
/p-f'grad 6%dx=ﬁ1r_‘?1f drprzf dS:1€ -grad [( Z_H-rK) Yl
_4nGNim ¥ i(ft_z ) d_X<Jl_z )
T2l FL ”["dr pi K )+ G K ]d’

47GNim B dK, dJ l)
= 7 Y et & .
47G N sz o? d +— 2 1 (J, P K, 77 dr (A.17)

- K 1#2 87TGN1m E dJl
— 2 i iV im &l
~4rGNlmA P r2dr 2N+ 1 A K, P dr

V __87GNin ll/ dx
_47rGN,mf o S f oK 1! (l )d
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On account of equations (A.11) and (A.17), equation (A.9) becomes

ot (G o= [ vl 5

"'2f drr( ; dx>d +2§1G1f pKur (lw dx>d

which is the desired formula.

It may be useful to note that the formula (A.18) can be deduced also from equation (41)
of Paper II, if one continues to assume that p(R) = 0. Straightforward manipulations in-
volving integration by parts and explicit use of the condition p(R) = 0 alter two of the terms
of that equation as follows:

(A.18)

(A.19)
— Bdpy?
_4f0 S dr +47rGf P ———dr
and
R d0(s) Ry R o¥
A. 7‘2l[[ *—87—1—- S] dr_v/o p2ﬁd7’—‘—'/0~ 7’21K1(K1 2 l_H)dr
(A.20)
_ [ _‘»E_ _ ¥ dx
=[5 2l+1f pKor! (z )d
where
_1rd _ . 9x
30 (r) = == (ow) = ZX],
and we have made the observation that
E§
[ gl(_sl) ds= —rplfl—l-Kl(r). (A.21)

Using equations (A.19) and (A.20) in equation (41) of Paper II, we recover equation (A.18).
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