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ABSTRACT

Darwin’s problem is concerned with the equilibrium and the stability of synchronously rotating homo-
geneous masses under their mutual gravitational and tidal interactions. The problem is solved consistent-
ly, in a method of approximation due to Jeans, in two special cases: the case when one of the two com-
ponents is of infinitesimal mass compared to the other and the case when the two components are of
equal mass and congruent. In the former case, the problem insofar as the equilibrium and the stability
of the infinitesimal mass is concerned, is hardly distinguishable from Roche’s simpler problem in which
the distorting mass is treated as a rigid sphere. However, in Darwin’s formulation, the distorting mass (in
the case considered) is a Maclaurin spheroid; and a principal result is that Darwin’s problem has no
solution when the eccentricity of the spheroid exceeds a certain maximum value (=0.40504).

In the case of the congruent components, the maximum angular velocity of orbital rotation, the dis-
tance of closest approach, and the Roche limit (where the equilibrium ellipsoid can be deformed into a
neighboring equilibrium ellipsoid by a quasi-static, infinitesimal, solenoidal, ellipsoidal displacement),
all occur at different points along the sequence; and instability, by a mode of natural oscillation of either
component by itself, sets in at a still different point. It appears, moreover, that of the two figures of
equilibrium one obtains (at each separation) those with the greater elongations overlap; all the physically
realizable equilibrium ellipsoids are therefore stable with respect to their individual natural oscillations.
The bearing of these results on the concepts of “limiting stability” and ‘‘partial stability’” due to Darwin
and Jeans is briefly examined.

I. INTRODUCTION

The classical investigations (and to a large extent the only extant investigations) on
the equilibrium and the stability of double-star systems are those of Darwin (1906).
Darwin’s investigations are summarized by Jeans, in an original account, in his Prob-
lems of Cosmogony and Stellar Dynamics (1919; see pp. 55-64, 85, 86, and 134-136).
However, the conclusions to which Darwin and Jeans arrived are vitiated by too loose
a usage of the terms “stability’” and “instability.” Thus, a recent re-examination
(Chandrasekhar 1963¢; this paper! will be referred to hereafter as ‘“Paper I”’) of the more
elementary problem of Roche (in which the tidally distorting secondary is treated as a
rigid sphere) has shown that, along a Roche sequence, instability in the strict sense (that
the configuration is characterized by at least one normal mode of oscillation with an
imaginary, or a complex, frequency) does not arise, as had commonly been supposed, at
the distance of closest approach compatible with equilibrium. In Darwin’s problem, in
which (in contrast to Roche’s problem) allowance is made for the centrifugal and tidal
distortion of both components, the ambiguities preventing the application of intuitive
considerations are even greater: along a Darwin sequence, the maximum angular velocity
of orbital rotation does not occur at the distance of closest approach; at neither of the
two extremes does the configuration allow an infinitesimal, solenoidal, ellipsoidal dis-
placement which will deform the equilibrium ellipsoid into a neighboring equilibrium
ellipsoid; and, finally, a displacement of the kind described is allowed at a still different
point.2 On these accounts we shall reconsider in this paper Darwin’s problem and com-

1 The following misprints in Paper I may be noted here: the headings for the second columns in
Tables 2, 4, and 5 (on pp. 1193, 1199, and 1205) should read ¢ instead of 6. Also in the (1, 3)-element of
the 3 X 3-determinant in equation (78) on p. 1200 read Bys — Bss tnstead of Bis -+ Bas.

2 As a further example of the ambiguities present in the discussions of Darwin and Jeans, we may
refer to the illustration on p. 86 of Jeans’s Problems of Cosmogony and Stellar Dynamics. In this illustration
it is not made clear (and it is not also clarified in the text) whether the dashed line (separating the do-
mains of “‘stability” and ‘‘instability’’) is intended to pass through S or end on a point on the line SB
(representing the Maclaurin sequence); and, in either case, what does the “‘instability” of the Maclaurin
spheroid, prior to the point of bifurcation at B, mean in this context? In view of all these ambiguities and
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plete the present re-examination of the stability of the ellipsoidal configurations of
homogeneous masses (see the various papers by Chandrasekhar and by Chandrasekhar
and Lebovitz in the Astrophysical Journal of the past three years).

II. DARWIN’S PROBLEM

Darwin’s problem is concerned with the equilibrium and the stability of two homo-
geneous bodies rotating about one another in a manner that maintains their relative
dispositions.?

Let the masses of the “primary” and the “secondary” be M and M’, respectively;*
and let the distance between their centers of mass be K. We shall refer the system in a
coordinate frame which is rotating uniformly with an angular velocity @ about their
common center of mass. Let the origin of the chosen frame be at the center of mass of
the primary, the x;-axis point to the center of mass of the secondary, and the xs-axis
be parallel to the direction of Q. In the frame of reference so chosen, the equation of
motion governing the fluid elements of the primary is (cf. Paper I, eq. [4])

dui_ _ 9p 9 rpl MR
LY 6x,+p Ep [%-FSB + 302 (%12 + x2? ﬁ:M,Qxl]—l—Zerlhul, )

where B is the self-gravitational potential and 8’ is the tidal potential due to M.

In Roche’s problem, the secondary is treated as a rigid sphere and the variation of
the potential B’ over the primary is expanded in a Taylor series in x; and only the terms
linear and quadratic in x; are retained. In Darwin’s problem, while an exactly analogous
procedure is followed, the attempt is made to allow, in a consistent manner, the distor-
tion of the secondary as well. In allowing for this distortion of the secondary, we shall
follow the method described by Jeans (1919).

Consider the tidal potential ¥’ in a coordinate system (X, X,, X3) whose origin is
at the center of mass of M’. The transformation to the coordinate system (x1, %2, ¥3) is,
clearly,

X = —(Xl—R), X9 = —Xg, x3 = X3. (2)

We now expand 28’ (X1, X2, X3) as a Taylor series about (R, 0, 0); and in writing the
Taylor expansion, we shall suppose that the secondary, as well as the primary, have tri-
planar symmetry in their respective coordinate systems. Then,

B/ (X1, X, Xs) = ' (R, 0, 0) + (X1 — R)(aXI)

R 0,0

62%’) D 925’
1 — 2 1y 2 > 1 .
+2(X1 R) aX12 R,0’0+2X2 aX22 + X3 3X3 +.-. 3

R,0,0 R 0,0

and we shall not consider the terms beyond those we have written.
Laplace’s equation which governs the potential exterior to a body requires that

62% o
Z aX =0. (4)

—o R,0,0

uncertainties, it is not surprising to find Milne (1952 p. 112) describing these results by the beautifully
uninformative statement: “it must suffice to say that only the earlier parts of the tidal series and the
various double-star series are stable.”

31t is not to be assumed that this will always be possible (see the remarks following eq. [9] below).

4 Again, as in Paper I, we are not implying by the usage of the terms ‘‘primary” and ‘‘secondary’’ that
M > M’; only that our attention is prémarily on M.
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Inserting the expansion (3) in equation (1), we have (in view of egs. [2])

dus _ ap g 62%/ 102( 42 2
Par ~ Gx@+ SB+2 (')Xj2 R,0,0+ 3 ( + st )
() g MR 2] |
w| 3% . T ® L+ 2
If we now specify Q? by requiring that
Q2= _M+M 8% ) (6)
MR \3X, R,0,0
equation (5) reduces to the form
du; 9 d 2
p dut - 22 EP (23 +3 E 3k9€k2) + 2 pQeirzuy, )
@ k=1
where )
2y’ (8258 )
=4 L2 =2
‘81 Q +<6X12 R,O.U, B2 Q + 6X22 RO 0, ®
and
6258 62513' 8228
B3 = - . (9)
aXB R,0,0 aXl a--)(2 R,0,0

It is manifest (and we shall presently verify) that equation (7) allows stationary solu-
tions (i.e., solutions with #; = 0) leading to ellipsoidal figures of equilibrium. On the
other hand, since the treatment has to be symmetric with respect to both components,
it is clear that stationary solutions derived from equation (7) can be considered valid
only if the initial choice of the frame of reference, which enabled the reduction of equa-
tion (1) to equation (7) (via eq. [6]), is independent of the particular component which
we may be considering momentarily. But this is clearly not the case: expression (6) for
Q2 is not symmetric in M and M’. Indeed, it is apparent that the determination of Q2 by
equation (6) is strictly admissible only in two cases: the case when M = M’ and the
two components are, in addition, congruent; and the “singular’” case M/M’ — 0 when
the distortion of the secondary by the tidal effects of the primary can be ignored. In
all other cases, the values of Q2 which will eliminate the “unwanted” terms in x; and X,
in equation (5) for M and in the analogous equation for M’, are different. Confronted
with this situation, Darwin and Jeans adopt the artifice of taking the average of the
two different values of Q2 and simply ‘““deleting” the unwanted terms from the respec-
tive equations. We shall avoid recourse to this artifice by simply restricting ourselves
to the two cases in which the method can be carried through consistently.

III. THE APPLICATION OF THE SECOND-ORDER VIRIAL
THEOREM TO DARWIN’S PROBLEM

In treating Darwin’s problem, we shall follow Paper I and use the same methods based
on the virial theorem and its extensions. In this section we shall assemble the necessary
formulae.

By multiplying equation (7) by x; and integrating over the volume V occupied by the
fluid, W)e obtain, in the usual manner, the second-order virial equation (cf. Paper I,
eq. [10]

d
i _/I;Puixjdx = 2T+ Wi; +[8: ;] + 8,114 Zﬂéizaﬂpuzxjdx , 10)
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where [[ ] signifies that the quantity enclosed is #not to be summed over the repeated
index. In equation (10)
n= dx, (1
Jypiz

and &;;, W,;, and I,; are the kinetic energy, the potential energy, and the moment of
inertia tensors defined in the standard way.
a) The Virial Equations Governing Equilibrium

When no motions are present in the frame of reference considered and hydrostatic
equilibrium prevails, equation (10) becomes

Bi; + (B8] = —106,5 . (12)
The diagonal elements of this relation give
Wiy + Bul11 = Waea + Bol2a = Wias + Bslss = —1I; (13)

while the non-diagonal elements give
Wis + Bul12 = Wy + Bela1 = 0,
Bz + Boloz = Wi + Bsls2 = 0, (14)
Wiy + Bslsn = Wis + Bl = 0.

In view of the symmetry of the tensors 7;; and ,;, it follows from the foregoing equa-
tions that so long as the B;’s are finite and unequal,

Wi;=0 and I;=0. (@ # 7) as

Therefore, in the chosen coordinate system, the tensors Li; and L;; are necessarily diagonal.

Equations (13) and (14) are entirely general: they do not depend on any constitutive
relations that may exist.

Now it can be shown quite readily that if the configuration is homogeneous (by
assumption or by virtue of incompressibility), then, an ellipsoidal figure is consistent with
the equations of hydrostatic equilibrium as well as the condition which requires the
pressure to be constant over the bounding surface; indeed, the satisfaction of these con-
ditions leads to precisely the same equations (13) and (14).

b) The Second-Order Virial Equations Governing Small Oscillations about Equilibrium

Suppose that an equilibrium ellipsoid, determined consistently with equations (13),
is slightly perturbed; and, further, that the ensuing motions are described by a Lagrangi-

an displacement of the form
g(x)er (16)

where \ is a parameter whose characteristic values are to be determined. To the first
order in &, the virial equation (10) gives

NV — 2NQensVi; = oWy + [8:01;] + 6,611, a7
where
Vi;j=£7p£¢x,-dx (18)

denotes the second-order unsymmetrized virial and 811, 688,;, and 81 ; are the first varia-
tions of I, T;;, and I;; due to the deformation of the ellipsoid caused by the displace-
ment &.

It is known (cf. Paper I, egs. [37]-[40]) that 67,; and 628;; can be expressed in terms
of the symmetrized virial

Vi= Vi + Vj;»i . (19)
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Thus,
6l;; = Vi, (20)
and
W = —2B,;V3;, (1#7) @y
and
3Wis = — (2Bs; — ai’4s) Vii+di22 AaVu, (22)
I=i
where
B = 4; — a,~2Ai,- = Aj — aﬁA,-j , (23)

(no summation over repeated indices in egs. [21]-{23])

and A; and A4;; are the one- and the two-index symbols defined in an earlier paper
(Chandrasekhar and Lebovitz 1962). (Note that in writing egs. [21] and [22], a common
factor #Gpajasas has been suppressed.)
Replacing 8I;; by V; (in accordance with eq. [20]), we can rewrite equation (17) in
the form
MV i — 2MQeusVi; = 885 + [8:V 4] + 64011 . 24)

Equation (24) represents a total of nine equations for the nine virials V;;;. These nine
equations fall into two non-combining groups of four and five equations, respectively,
distinguished by their parity with respect to the index 3. The odd equations are:

NV = 6831 + BsVsr = — (2Bsy — B3)Var, (25)
NV = 6832 + BsVise = — (2Bas — B3) Vs, (26)
NV — 2NV o3 = 6813 + BiVis = — (2Bs1 — BV, @7
NV + 202V ;3 = 68Wos + B2V s = —(2Bos — B2) Vs, (28)

where we have substituted for é28;; (4 & 7) in accordance with equation (21). And the
even equations are:

NV = 6Wss + BsVes + 611, (29)
NV — 202V gy = Wy + BV + 611, (30)
NV + 2NQV ;2 = 622 + B2V e + 011, (31)
NV — 202V a0 = W15 + B1Vie = — (2B12 — B1) V12, (32)
NV 4+ 202V ;1 = o1 + BaVar = — (2B — B2) V1. (33)

¢) The Characteristic Equation for the Odd Modes
Adding equations (25) and (27) and similarly equations (26) and (28), we obtain

()\2 + 4B31 - 61 bl ﬂ3)V31 bl 2)\QV23 + 2)\QV3;2 =0 (34)

and
()\2 + 4Bs3 — By — 63)V23 —+ 2202V 3 — 2>\QV3;1 =0. (35)

Eliminating V3;; and Vs, from the foregoing equations with the aid of equations (25)
and (26), we obtain

)\()\2 + 4B3; — 81 — 133)V31 - 290\2 + 2By — 53)V23 = ( (36)

and
N2 + 4Bys — B2 — B5)Vas + 20N 4 2By — Bo)Var = 0 ; 6N
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and these two equations lead to the characteristic equation
NN+ 4B1; — B1 — B3)(N + 4By — B2 — Bs)

(38)
+ 4*(\* + 2By — B3)(N + 2Bz — B3) = 0.

d) The Characteristic Equation for the Even Modes

Turning to the even equations (29)-(33), we can combine them to give the following
four equations in which 6II no longer appears:

()\2 -+ 4By — ,31 — ﬁz)Vm + )\Q(Vu — sz) =0 , (39)
NV — Vz;l) = NUViu+ Vo) + (81 — 32)V12, (40)
NV — Vi) — 202V 10 = 6W11 — W + B1V11 — BeV s, (41)

INWVu 4 Vi) + 202V — Vo) — N2V = 6Wu + 6Weo — 26833

+ BV + BeVae — 285V .

Rearranging equation (41) and eliminating (V1,2 — V;1) from equation (42) with the
aid of equation (40) (and rearranging), we obtain the pair of equations

(‘%‘)\2 - Bl) Vi— (%)\2 “62) Vao— 2NV 1= OB — 5%322 ) (43)
(N2 = B) Vi + (3N 202 — By) Vo — (N2 —285) Vs

(42)

(44)

+2(Bi= B3 Vio = 6%+ 6%ss — 26Bss

From equations (21) and (22), we obtain (cf. Paper I, egs. [41] and [42])
W11 — 8Wee = — (3Bu — Bio) Vi1 + (3Bas — B1a)Var + (Bas — B1s)Vis  (45)
and
oW1y + 0Wae — 26Wss = — (3B + Biz — 2B13) Vi — (3Baz + Bay — 2Bs3) Vs,
+ (6B33 — Bz — Ba3)Vss . “e

Now substituting these relations in equations (43) and (44) and regrouping the terms,
we find

(N + 3By — Bi2 — BV — (%)\2 + 3B2s — Ba1 — B2) Va2 -+ (Bis — Ba3)Vss

(47)
- 2>\QV12 = O
and
(IN2+4 3Bi1+Biz— 2B13+ 292 — B1) Vi + (3N 4+ 3Boo+Bia — 2Bas+ 202 — B3) Voo
(48)

— (N 6B3y —Biy — By — 265) Vs + 2(B1— )5 Vi = 0.

Equations (39), (47), and (48) provide three relations among the four virials Vi1, Vs,
Vi3, and Vya. A fourth relation is obtained by making use of the solenoidal character of
the Lagrangian displacement. In the present context, the relation which expresses this
requirement is (cf. Lebovitz 1961, eq. [83])

Vu Ve Va_ “1dd)
(112 (122 032
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¢) The Roche Limit

Along a sequence of equilibrium ellipsoids, there is generally a neutral point where the
equilibrium ellipsoid can be deformed into a neighboring equilibrium ellipsoid by the appli-
cation of a quasi-static, solenoidal, purely ellipsoidal, infinitesimal displacement. Along
the sequence of the Maclaurin spheroids, such a neutral point occurs where Q? attains its
maximum value; and along a Roche sequence it occurs where {2, similarly, attains its
maximum value (cf. Paper I, Sec. V; also Chandrasekhar 1963a, b; Chandrasekhar and
Lebovitz 1963). But, as we shall presently verify in the case of the Darwin ellipsoids,
the occurrence of a neutral point of the kind described need not require that some par-
ticular parameter labeling the sequence attain an extreme value at that point.

The requirements on the displacement, expressed in terms of the symmetrized virials,
are

Ve=Vu=Va=0, Vu#0, Ve % 0, Vas = 0, (52)
and Vi Ve V
1 22 33 _
a? + a? ' ag 52

The conditions (52) express the required purely ellipsoidal character of the displacement;
and the condition (53) expresses the required solenoidal character. The additional re-
quirement, that the displacement is not to affect the equilibrium of the ellipsoid, implies
that equations (25)-(33) (or equivalently, eqgs. [36], [37], and [39]-[42]), with \ set equal
to zero, are also satisfied. The equations to be satisfied, besides equation (53), are, there-
fore,

W11 — 6Wao + B1V11 — B2V =0 (54) -
and
W11+ 8Way — 268Wss + BV + B2Vas — 265V = 0. (55)
Combined with equations (45) and (46), the foregoing equations give
(81 — 3Bu1 + Bi2)Vi1 — (B2 — 3Baz + Bi3)Vas + (Bas — B13)Vis = 0 (56)
and
(81 — 3B11 — Biz + 2B15)Vi + (B2 — 3B2a — Bia + 2B33) Ve

+ (— 283+ 6Bs3 — Biz — B23)V33 = 0.

The condition for the occurrence of a neutral point of the kind described is that the de-
terminant of equations (53), (56), and (57) vanishes; i.e.,

(57)

B1— 3Bu B2 — B2+ 3By; — Bis B3 — By
Bl—SBll—BIZ—l— 2B13 +B2—3B22~Bl2+ 2B23 —263+6B33_Bl3_B23 =0.
1 1 1
a,? aq? as? (58)
Equation (58) can be simplified to the form
B1— 3By +Bis By — By — B3+ 3B33 — Bs
Bls—Bm 62_3B22+B23 _.83+SB33_B23 — 0. (59)
1 1 1
a1? aq? as?
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We shall define the point along a sequence of ellipsoids, where equation (59) is satisfied,
as the Roche limit. It should be emphasized that the condition for the occurrence of the
Roche limit has no bearing on the onset of instability: the point along the sequence,
where instability sets in, is determined by equation (51) with X\ set equal to zero, i.e.,
by the equation

3B11 —Bia— B Bys — B3 3B11 — 3Bga+Big— Bas+ B2 — b1
Biy— Bys+ Q2 3B33—Bos— B3  3Bas— 3Bss+Bia— Bz + 202 — B34 8
1 1 1 1 1
e T FEREFEREPY.
1 3 L 3 (00)
Bjy; — By 3B11 — 3B2s+Bis— B+ B2 — b1
4+ 2(B1—By) ~0;
4By — B1— B2 _1 i_!_i_,_i !
032 a2 022 032

and this equation is quite different from equation (59). (For a further clarification of
these matters see Lebovitz 1963.)

IV. THE CASE M /M’=0

In this case, the primary is of infinitesimal mass compared to the secondary; and we
may consider the secondary as unaffected by the presence of the primary. The departure
of the secondary from sphericity is, then, determined solely by the centrifugal potential.
The secondary is, accordingly, a Maclaurin spheroid or a Jacobi ellipsoid. However, it
will appear that solutions for Darwin’s problem exist only for members of the Maclaurin
sequence with eccentricities less than 0.40504. Consequently, we need not consider the
Jacobian form for the secondary.

Consider, then, a Maclaurin spheroid whose meridional section has an eccentricity e.
The angular velocity of rotation which we must associate with this eccentricity is (cf.
Chandrasekhar and Lebovitz 1962, eq. [77])

Q2 _ 2(1 — eg2)1/2
ﬂ'GpMc 63

(3 —2¢?)sin—? e—%(l—-ez), (61)

where pue. is the density of the spheroid.

In order now that the ‘“satellite” we are considering may rotate synchronously with
the Maclaurin spheroid, it is necessary that it describe a circular orbit about it with
the same angular velocity Q. The orbit must accordingly be described at such a distance
R that the dynamical condition (6) leads to the same value of Q? as equation (61). The
equation which expresses this equality can be obtained as follows.

The gravitational potential, in the equatorial plane of a homogeneous spheroid, at a
distance @ from the center is given by

‘ 1— g2)12 o ., (ea o 020y, \1/2
B __(=e) dch[<—-2——2) sin—! ( M°>— (1— Mc) ] , (62)
ﬂ'GpMc e ela Me [0} € AMc w?

where ay, denotes the semimajor axes. From equation (62) we readily find that

1 R’ _ 21 =)' [ R _1<60Mc) ——( _ eza2Mc>1/z]
TG puo \0X 1>w= R e? ] PP R 1 72 . (63)

Equation (6) now gives

2 — p2)1/2 242 172
A () ()]
T PMe
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Since @2 given by equations (61) and (64) must agree, we must have

sin—1<""M“> e““"(1—”M°) = (3—2¢?)sin—! ¢ — 3e(1— e2)12. (65

Equation (65) determines R/ax. along the Maclaurin sequence. It should be noted in
this connection that, if the mass of the spheroid is specified (as it is in the present con-
text), ay. will vary along the sequence. What is constant is a®y.\/(1 — €?). Accordingly,
a convenient unit in which we may measure R is

aye = (1 — )16, (66)

Returning to equation (62) and evaluating its second derivatives with respect to X
and X, we find

1 (62%'> —4 (ﬂu_cy ( 1—e? >1/2__ Q? N
'n'GpMc 0X 2 @=R R 1— 62(12MQ/R2 WGpMc !
290/
(g)?éz)amﬂ = @
and
1 62%’) _ 2 (amc) ( 1—e¢? )1/2 . 69
‘R'GPMc 3X32 w=R 1erMc 1—e¢ a2Mc/R2
Letting

f(O) (o ey 2
1— eta’,/R2) 7 7G pue :

(where ¢, by this definition, is a dimensionless constant depending only on the eccen-
tricity of the Maclaurin sphero1d) we find that the coefficients 8; defined in Section IT
(egs. [8] and [9]) have now the values

B = ¢t2, Be=0, and Bs= — (g — 2)@. (71)
It might be noted here that the value ¢ appropriate to Roche’s problem is 3.

a) The Properties of the Equilibrium Ellipsoids
With the 8’s given by equation (71), the virial equation (13) gives

%11 + qﬂ2.[11 = %22 = %33 - (q - 2)92[33 ) (72)
or, alternatively,
Plgln + (g — 2)135] = Wiz — Wu (73)
and
’ (g — 2)I33 = W — Waz . (74)
We shall find it convenient to consider equations (73) and (74) in the forms
q Iy 5&33 B3y
1 = (75)
+q —2 Iy 2833 %22
and

Q2 = Wiz — W, - BWss —BWu _ 6)

(Q—Z)Iszi q111+(q—2)ls3
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Expressions for the various tensors describing the properties of homogeneous ellips-
oids have been given in an earlier paper (Chandrasekhar and Lebovitz 1962, egs. [57]
and [58]); in particular

Wi = — 27GparasasA.d and Ii=iMa?, o

(no summation over repeated indices)

where p is the density (not necessarily the same as pu.), @1, a2, and a3 are the semi-axes
of the ellipsoid, and the A.’s are the one-index symbols defined in the same paper.
Inserting the expressions for B.; and I,; in equations (75) and (76), we obtain

ga,? Aial— Azas? -
1+(q—2)d32_z42022—z43(132 ®
and
Q2 _ Ar1a2 — Azaz? _ Asasr — Aszag? 79
7Gp q012+(q—2)as2 (g—2)as? '

where it may be recalled that A, 4s, and A3 are expressed in terms of the elliptic inte-
grals, E(0, ¢) and F(0, ¢), of the two kinds with the arguments

. a,? — ag? as
# =sin—! PR and ¢ =cos™! o (80)
17— a3 1

A convenient procedure for solving equations (78) and (79) and determining the fig-
ures of the equilibrium ellipsoids is the following:

We start with a Maclaurin spheroid of some assigned eccentricity e. The angular
velocity of rotation appropriate to this eccentricity is known from equation (61); and
the distance R at which the satellite must circulate, in order that it may rotate synchro-
nously with the spheroid, follows from equation (65). Equation (70) then determines
the constant ¢ which appears in all the subsequent formulae. Next, we consider equation
(78) with the value of ¢ which has been determined. For an assigned value of the ratio
a3/a1 (or, more precisely, in the calculations, an assigned value of the argument ¢)
equation (78) requires that as/a; (or, more precisely, in the calculations, the argument
6) have a determinate value. A pair of values (¢, §) compatible with equation (78) will
not, in general, determine (in accordance with eq. [79]) a value of Q? appropriate for the
Maclaurin spheroid considered. The problem, then, is to determine a pair of values
(¢, 8) which will be compatible with equation (78) and which will yield at the same time
a value of Q? (in accordance with eq. [79]) in agreement with equation (61). It was found
that in practice the problem can be solved (to an accuracy sufficient for our purposes)
by simple interpolation among four pairs of values (¢, §) compatible with equation (78).
Table 1 illustrates a sample calculation. It will be observed that for the chosen value
of e there are two solutions.

Calculations similar to that illustrated in Table 1 have been carried out for other
values of ¢ and the principal results are summarized in Tables 2 and 3. And in Figures
1 and 2 these results for the Darwin ellipsoids are compared with those for the corre-
sponding Roche ellipsoids of Paper I. It will be observed that the results for the two
sets of ellipsoids are very nearly the same. This near identity of the results in the two
cases is due to the fact that the values of ¢ for the Maclaurin spheroids, in the range of
eccentricity of interest, differ from 3 (the value appropriate for a rigid sphere) by an
amount which hardly exceeds % per cent (see Table 2). A fact of greater interest in the
present context is that, by the manner of its formulation, Darwin’s problem does not
allow solutions for Maclaurin spheroids with eccentricities exceeding the value

emax = 0.405034 ; 81
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whereas, in Roche’s problem, in the limit p = M/M’ — =, we have solutions for the
entire (combined) Maclaurin-Jacobi sequence (though, in this limit, the Jacobian part
of the sequence must be considered as unstable; see Paper I, Secs. VIII and X). This
difference in the two problems arises from the requirements, in Darwin’s problem, that
the secondary (now of infinitesimal mass) also be in equilibrium and rotate synchronous-
ly with the primary, requirements which are absent in Roche’s problem since, in this

TABLE 1

SAMPLE CALCULATION FOR THE CASE p = pu., ¢ = 0.40,
Q2 (IN THE UNIT 7Gp) = 0.08727, R/an, = 2.4170,
AND ¢ = 3.01679

2
¢ o (g, 0) _;2(1‘;;: 9 ¢ 0 2o, 0) _;(ﬁ‘,’ 9
55° 759568 0 08569 +0 0158 64° 802319 0 08860 —0 0133
56 76 089 08679 -+ 0048 65 80 845 08778 — 0051
57.. 76 613 08772 ~ 0045 66 81 368 08670 + 0057
58. 77 140 0 08848 —0 0121 67 81 888 0 08534 +0 0194
Interpolated solutions:
¢ =1562490, 6= 762345, a:/a:=0.5861, a3/a1=0.5521,
¢ =652508, 6=812111, az/a,=0.4378, az/a1=0.4146 .
TABLE 2
THE CONSTANTS OF THE DARWIN SEQUENCE FOR M /M’ =0
9/ 7GpMe R/ame R/émo q
039 . ..... 0 08287 2 4623 2 5309 3 0153
400 ....... .08727 2 4170 2 4883 3 0168
.402. .08816 2.4081 2 4799 30171
404 .08906 2 3994 2 4717 3.0174
0.405 . 0 08951 2 3950 2.4676 3 0175
TABLE 3

THE PROPERTIES OF THE DARWIN ELLIPSOIDS
(M/M' = 0; p = pmo)
¢ = cos! az/a1; 0 = sin~i vV [(0:? — @) /(a2 — ad)]; Ai* = @104 & = a:/(a10205) Y3

e ¢ 0 az/a1 as/ay As* Aq* Ag* & a2 a3
0.390 | 52°857| 74°471] 0 64041| 0.60380] 0 435093| 0 756253| O 808655 1 3726/ 0 8790 0 8288
.400..} 56 490} 76 345 58612] .55208 397593 774184 .828223| 1 4566 .8537 8042
402. .| 57 569| 76 911 56934 .53629| 385819 779969 834212| 1 4851| 8455 7964
404 .| 59 082 77 709| 54531} .51382] .368813| .788445 842740; 1 5282 .8333 7852
.405. | 60 784| 78 612| .51764] .48811} .349012 798498 852490 1 5818| .8188 7721
.405. .| 61 533| 79 010/ .50526 47665 .340077 803094 .856828| 1 6073 .8121 7661
404 .| 63 182 79.884] .47762] .45116 319954| .813574| .866471| 1 6680 .7967| .7525
402 | 64 564| 80 615] 45405 .42950{ .302615 822751 874634] 1 7244] .7830| 7406
0.400. | 65 508| 81 111| 0 43776 0 41457 0 290539 0 829214| 0 880245 1 7663| 0 7732| 0 7322
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problem, the secondary is considered as a rigid sphere and synchronism (in the sense
that the major axes of the two ellipsoidal components remain collinear) loses its mean-
ing. While the mathematical basis for the difference in the two problems is manifest, it
is hard to believe that equilibrium along the combined Maclaurin-Jacobi sequence can
be affected by considering the attendant infinitesimal secondary as a rigid sphere or as
a liquid mass in equilibrium.

The constants describing the Darwin ellipsoid and the Maclaurin spheroid at ema.x are
listed in Table 4.

0.090 -

TGP 0.089 -

0.088 -

0.087 ' y 1 L
56 58° 60° 62° 64° 66°
Cos™'ay /a,
F1c. 1.—The variation of Q% along the Darwin and the Roche sequences for the case M /M’ = Q. The

points R L. and S L. denote the Roche limit and the stability limit, respectively. Along both sequences
the Roche limit occurs at the point where Q2 attains its maximum.

2.49

2.48

Ty

2.47

2.46

1 1 1 J
56° 58° 60° 62° 64° 66°

2.45 L
Cos lay/a,

F16. 2.—The variation of the distance between the centers of mass of the two components in the
Roche and in the Darwin problems for the case M /M’ = 0. Along both sequences the distance of separa-
tion is measured in the units of the mean radius of the central body. (In the Darwin problem the central
body is a Maclaurin spheroid.) The points R L. and S L. have the same meanings as in Fig. 1. Along both
sequences the Roche limit occurs at the distance of closest approach,
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The constants describing the Darwin ellipsoid and the Maclaurin spheroid at ¢ = ¢, are
included in Table 4.

V. THE CASE OF CONGRUENT COMPONENTS

We now consider the case when the masses and the densities of the two components
are the same. The components of the system will then be congruent and the reduction
to a stationary solution in a common rotating frame of reference can be accomplished
without any ambiguity. The problem then is to determine the geometry of the ellipsoidal
figures of equilibrium (in the framework of the approximation described in Sec. IT) when
the centers of mass of the two components are at a distance R apart and they are rotating
about each other with an angular velocity @ consistent with their figures and their sepa-
ration. The solution of this problem can be accomplished as follows.

Consider a homogeneous ellipsoid of mass M and semi-axes a;. The gravitational
potential 8, at an external point x;; is given by

du
— — 3
B(x;) GMf (zaﬁ—i—u O (83)
where
A%u) = (a® + u)(a2 + u)(as® + u) , (84)
and M is the positive root of the equation
3 2
xj
=1. (85)
; a;*+\

For the application of the general method described in Section II, we need the first
and the second derivatives of ¥ with respect to the spatial coordinates at (R, 0, 0).
For such a point

N = R — g/ (86)
and
A\) = R[(R* + a® — a)(R2 + ag® — ad)]'2. @7

Also, in evaluating the derivatives of &8 given by equation (83), we must allow for the
fact that \, as determined by equation (85), is, implicitly, a function of the coordinates
and that

2% -1
axz a12+>\[2 (a,2+)\)2] ’ ®8)
By straightforward calculations we now find:
= - wR, ( ( 0, (89)
(6x1 R 0,0 * dx2/ k0,0 0x3/ Rr,0,0
32y _ GM ,
0212/ R0 a1+3A()\) ©0
B\ (6223 _
<6x22 R,0,0 “ and 0xst/ R0 % ©v
where
© du
.= 3 .
=AM S, R F A0 o
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It follows from equations (90) and (91), and it can also be verified directly from the defi-
nitions of the a;’s, that

GM
A(N)°
Making use of the foregoing expressions, we can write for the tidal potential, acting

on the component whose equilibrium we are considering by the other component (which
is congruent to it), the expansion

B = %’(R, 0, 0) + a1 Rx; + %[(az + a;;)xﬁ — qagxs® — a3x32] + ... 5 (99

and the equation of motion (1), governing the fluid elements of M, takes the form
(since, now, M = M’

(93)

al+a2+a3=3

dui _ _ 9p

o
P g7 = —a—x—;—f-p P { B+ 302 (x2+ x22) + 3] (a2 + as) €12 — agxe? — asxs?] ©5)
—_ x1R(%QZ— 0.1)} -I" 2p96“3'uz .

Hence, by the choice
2= 2 , (96)

equation (95) reduces to the standard form (7), with the coefficients 8; having the values
61=2a1+a2—l— as, Bz=2a1——a2, and Bs = — as. 97)

The coefficients «; are expressible in terms of the standard elliptic integrals, E(6, ¢)
and F(8, ¢), of the two kinds with the arguments (cf. eq. [80])

. a;? — as’ . a2 — ag?
f =sin—1 P g and ¢ g =sin 1\/——1?———. (98)
Thus,
4 L [F(0,¢r) —E(0, ¢2)] ©9)
MT (e —ag)3sin 0 ) Or »or) 1,
_ 4 1
%2 a2 — a2)%2 sin® 0 cos? 6
. . (100)
_ 2 p_ sin? @ sin ¢ cos ¢ ]
X[E(oy ¢R) F(oy ¢R)COS 0 \/(l—sin2 0 sin2 ¢R) ’
az3= 4 1 [tan¢rV/ (1 —sin? 0 sin2 ¢r) —E(6, ¢z) ] (1o1n)
3 (012_(132)3/2 COS2¢ R R ) R b

where a common factor #Gpaia:a; (= 3GM/4), in the expressions for the a’s, has been
suppressed.

a) The Properties of the Equilibrium Ellipsoids
With the coefficients 8; given in equations (97), the virial equations (13) now give
2(A:1— Asas?/ar?)
2+ (ag/a1) + (1 +as?/a:?) (as/ a1)
— 2[(4:as%/a:s? ): (dsas?/a:?)] —
(2= az/a1)(as?/a:?) + ( a3as?) / (010:%)

where it may be recalled that the coefficients 41, 42, and 4; are also expressible in terms
of the elliptic integrals of the two kinds with, however, the arguments ¢ = cos™ as/a

(102)

ay,
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(which is different from ¢g) and 6 (which is the same as in egs. [99]-[101] for the a’s).

A convenient procedure for solving equations (102) and determining the figures of
the equilibrium ellipsoids is the following.

We first assign an angle ¢z. Then for a chosen ¢, we determine, by a method of trial
and error, the angle 8 (which occurs in the expressions for both the 4’s and the a’s) such
that the first of the two equalities in (102) is satisfied. But for an arbitrarily chosen ¢, the
value of a;, which the second equality in (102) requires, will not agree with the value
which the assigned ¢z and the determined 6 will require according to equation (99). The
problem, then, is to “adjust” ¢ such that, for the assigned ¢z, the values of a, required
by equations (99) and (102) agree. Table 6 illustrates a sample calculation of how this
agreement may be accomplished.

In Table 7 we give the results of the calculations for various initially assigned values
of ¢z. The results are further illustrated in Figures 3 and 4.

TABLE 6
A SAMPLE CALCULATION: ¢z = 20°

3 '] a1*(by eq [102})]| a1 (by eq [100}) ai¥—a
48° 66°522 0 05696 0 06810 —0 01113
49 67 167 05840 06261 — 00421
50 67 823 05978 05757 + 00221
51 68 488 0 06107 0 05292 +0 00815

Interpolated solution:

¢ = 49°65 , 9 =67°59, a1 =0.05930.
TABLE 7
THE CONSTANTS OF THE DARWIN ELLIPSOIDS FOR THE CASE OF CONGRUENT COMPONENTS
¢z = sin™! v [(a® — @) /R?; ¢ = cos™ w/ar;
0 = sin™ v [(a? — a2) /(a2 — as)]; A* = (010203) diai™® = (a10203)as
bR ¢ [ Ar* Az¥* Ag* ar® az* ag*

10° 332047 | 57°912 | 0 589264 | 0 681901 | O 728836 | 0 032510 | O 032941 | 0 033113
14 40 296 | 61 630 546740 694712 758548 .045185 .046462 046852
17 45 154 | 64 579 511346 707511 781143 053141 055504 .056072
20 49 647 | 67 590 473159 723240 803601 059300 063186 .063908
25. 56 511 | 72 562 404072 .755948 839979 064760 072082 072914
29 61 566 | 76 320 344941 787365 . 867694 064360 074908 075666
30 62 780 | 77 212 320774 795825 874400 063587 .074944 075664
40 73 922 | 84 621 | 0 177895 | 0 886727 | 0 935377 | 0 043609 | 0.060124 | 0 060340

G = ai/(a10205)% R = R/(masa:)'/3

or @ /rGp R az/a1 as/a1 a1 da as
10°, . . 0 06502 3 4667 0 88687 0 83822 1.1039 0 97901 0.92531
14 . . .. .09037 3 1231 .82229 .76271 1 1683 .96065 89104
17 . 10628 2 9749 76808 70520 1 2268 .94225 .86512
20 . . 11860 2 8874 . 70969 .64750 1 2959 .91967 .83908
25 . 12952 2 8436 .60574 .55178 1 4410 .87284 . 79509
29 .12873 2 8894 .51958 .47614 1 5930 .82767 . 75847
30 12717 2 9122 49796 45741 1 6374 81538 . 74898
40 .. 0.08722 3 4599 0.29123 0.27695 2.3145 0 67405 0.64100
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We observe that along the Darwin sequence, the place where @2 attains its maximum
value is different from the place where R attains its minimum value. And it is also seen
that at a certain point along the sequence R = 2a;; at this point the two components are
in contact; and beyond this point R < 2a; and the two components are overlapping.
From Figure 4 it would appear that contact occurs very nearly where R attains its mini-
mum value; but a more careful examination reveals (see Table 8) that at the distance of
closest approach the components are almost, but not quite, in contact. It follows from
these results that, of the two congruent figures of equilibrium which one obtains as solu-
tions of the relevant equations (at each separation), those with the greater elongations
overlap; consequently, these second solutions, “although satisfying the mathematical
equations, are physically impossible.”

09 -

0.06 | - 1 1 1 1
30° 40° 50° . 60° 70° 80°

Cos"u_,/a,

F16. 3.—The variation of Q? along the Darwin sequence of congruent components of equal mass,
Along the sequence we distinguish the points 0%, s, Rumin, and Qnex, where the angular momenta
and I, (see eq. [105]), the distance (R) between the centers of mass of the two components, and the
angular velocity @ attain their extreme values. The Roche limit occurs at R.L.; and instability by a mode
of oscillation belonging to the second harmonics setsin at S.L. The results for the Roche sequence for the
case M/M’ = 1 are included for comparison; along this sequence, besides the Roche limit (R.L.) and
stability hmlé (S.L.), we also have the point (P) where 1nstab111ty by a mode of oscillation belonging to
the third harmomcs sets in,

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1964ApJ...140..599C

0% - JTAD J599T)

]

FT952A

1.6 -

1.5 |

1.4

N~
el
Kl

1.3 +

1.2+

L

1.0 ] { 1 1 |
30° 40° 50° 60° 70° 80°

Costay/a

F16. 4.—The variation of the distance (R) between the centers of mass of the two components and of
the semimajor axis (4) along the Darwin sequence of congruent components. The points indicated by
M, M2, Qumax, R L., and S.L. have the same meanings as in Fig. 3. At R,, where the curves for 3R and g
cross, the two components are in contact. It will be observed that R. occurs very close to the distance of
closest approach The results for the Roche sequence for the case M /M’ = 1 are included for comparison;
and the various points along this sequence have the same meanings as in Fig. 3.

TABLE 8
THE CONSTANTS OF THE ELLIPSOIDS AT THE VARIOUS CRITICAL POINTS*

Critical Point br @ R Q?/=Gp & & s
P (min) 13°34 39°17 3 1667 0 08648 1 1567 0 96414 0 89670
N, (min) 16 33 44 10 3 0017 10301 1 2128 94671 87092
R (min) 24 34 55 64 2 8426 12883 1 4192 87966 80098
R=2a. 24 40 55 72 2 8426 12890 1 4212 87902 80043
Q2 (max) 26 64 58 62 2 8536 13025 1 4986 85511 78030
Roche limit 28 36 60 77 2 8771 12944 1 5658 83537 76450
Stability limit 28 89 61 43 2 8871 0 12887 1 5882 0 82902 0 75953

* Basing himself on Darwin’s calculation, Jeans (1919) quotes values for the configurations D (min), N2 (min), R (min),
and R = 2ai; but they are all substantially different from the ones obtained in this paper Thus, for the conﬁguratlons enumer-

ated, according to Jeans, R = 3 324, 3 167, 2 952, and 2 843, respectively; and these values should be contrasted with the ones
given in the table
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And finally, we may also distinguish along the Darwin sequence a Roche limit where
equation (59) is satisfied. It is found that this point is again different from the points
where Q2 and R attain their extremes. Along the Roche sequences these three points
coincide; but along the Darwin sequence they are all distinct.

The constants of the ellipsoids at the different “critical” points we have enumerated
(and others besides) are listed in Table 8.

b) The Characteristic Frequencies of Oscillation Belonging to the
Second Harmonics: The Point of Onset of Instability

With the values of a; listed in Table 7, the coefficients 8; follow from equation (97);
and equations (38) and (51) can be solved for their characteristic roots. The roots
0? (= — N?) obtained in this manner are listed in Table 9. An examination of the roots
listed in this table shows that the Darwin ellipsoids (like the Roche ellipsoids) become
unstable by a mode of oscillation belonging to the second harmonics. The point beyond
which the Darwin ellipsoids are unstable was determined by interpolation among the
roots g4? listed in Table 9; and the constants of the corresponding ellipsoid are included
in Table 8.

TABLE 9

THE SQUARES OF THE CHARACTERISTIC FREQUENCIES BELONGING
TO THE SECOND HARMONICS

(02 Is Listed in the Unit #Gp)

EveEN MobES Opp MobpES
¢r
o1? o2? o3? 742 052 o¢?
10°. 1 469 1 1811 +0 4608 1 4243 0 8611 0 0715
14 1 525 1 1877 + 3306 1.5182 .8200 .1040
17. 1 569 1 1621 + 2475 1 5820 7864 1267
20. 1.617 1 1100 + .1741 1 6412 7479 1467
25. 1.703 0 9748 + .0690 1 7305 6688 L1712
29, 1770 0 8370 — 0018 1 7939 5910 1802
30 1786 0 7999 — .0177 1.8084 5696 .1807
40. .. . 1.887 0.4254 —0 1244 1 9264 0 3299 0.1457

We observe that the point at which instability sets in is subsequent to all the points
considered in Section Va above. In particular, since instability first occurs among the more
elongated of the ellipsoids, it is clear that all the physically realizable ellipsoids are stable
with respect to their own natural oscillations.

¢) The Variation of Angular Momenta along the Sequence:
The Criteria of Darwin and Jeans

In the earlier discussions of the problem of the stability of double-star systems by
Darwin and Jeans, it is argued that the discriminant, relevant for distinguishing stability
along a sequence, is the total angular momentum of the system; and that, in the context,
the relevant quantity is

MM’

m“]ﬂ’ (103

P = [(111+122)M+ (Tu+1I)u+

where the subscripts M and M’ signify that the quantity enclosed refers to that particu-
lar component. Precisely, the assertion of Darwin and Jeans is that the minimum of ¢,
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along the sequence determines the “configuration of limiting stability” (Jeans). In addi-
tion to this concept of “limiting stability,” Darwin introduces the concept of ““partial
stability” to describe a system which “is stable except for tidal friction arising from the
tides in the primary” (Jeans). And, further, according to Jeans, “Darwin believes that
the limit of partial stability of a series of configurations . . . can be found by discovering
the value at which

MM’

%2=[(111+I22)M+mR2]Q (104)5

is a minimum, the value of I, representing all that part of the moment of momentum
which is liable to variation when tides cannot be raised in M’.”

4.0 !

3.8

3.6
Wy
3.4
3.2
O
1 1 1 )
30
10° 15° 20° 25° 30°

s

F1c. 5.—The variation of the angular momenta 9% (curve labeled 1”’) and M. (curve labeled ¢2”)
(see eq [105]) along the Darwin sequence of congruent components. The various critical points indicated
on the curves have the same meanings as in Fig 3.

For the case of congruent components considered in this section,

M = Mt + a?) + RJQ
and _ (108)
Me = sMa?2(a® + a?) + RAQ,

where a(= 17/[a18:a;]) is the mean radius of either component and is a constant along
the sequence. The variation of 3¢ and M, along the sequence we have constructed is
exhibited in Table 10 and Figure 5. We observe that $; and ¢, do show minima along
the sequence. We find that

M a2 M a?

P4 (min) = 3.481 ———  and PMa(min) = 3.196 .
27Gp

(106)
27Gp

The further constants describing the ellipsoid at I, (min) and M, (min) are included in
Table 8.

5 In writing this expression, we have departed slightly from Jeans’s notation.
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If we trust the arguments of Darwin and Jeans, we should conclude that “instability
unconditionally” sets in at 9% (min) and “presumably” sets in at I, (min). But insta-
bility, in the strict sense we are using that term, certainly does not set in at either point
by any natural mode of oscillation of either component by itself. The question remains
whether the tidal coupling between the two components can induce a further instability
or at least a neutral mode of oscillation. No treatment of such coupled oscillations exists
at the present time. And it would appear that only by such a treatment can criteria,
similar to those of Darwin and Jeans, emerge.

TABLE 10

THE VARIATION OF THE ANGULAR MOMENTA I AND I ALONG THE
DARWIN SEQUENCE OF CONGRUENT COMPONENTS

[ and M, Are Listed in the Unit M a%/(2xGp)}

¢r M . [-3:3 D M
10° 3 509 3 286 25° 3727 3 319
14 3 482 3 207 29 3 920 3 458
17 3 509 3 197 30 3979 3 502
20 3 567 3 219 40 4 908 4 222
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