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A predator–prey model with disease in the prey population is proposed and analysed. The mode of dis-
ease transmission plays an important role in such dynamics. Keeping this factor in mind, we observe the
dynamics of such a system for simple mass action incidence and standard incidence. Our observations
indicate that the phenomenon of rarity or non-occurrence of chaos in our proposed model is well defined
if the mode of disease transmission follows standard incidence. Moreover, using the method of Latin
hypercube sampling, we show that the region of stability increases if the disease transmission follows the
standard incidence law.
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1. Introduction

Mathematical models have become important tools to analyse the spread and control of infectious dis-
eases. Most models for the transmission of infectious diseases descend from the classical Susceptible-
Infective-Recovered model of Kermack and McKendrick. Susceptible individuals become infectious by
contact with infectious individuals. There are some biological differences between typical predator–prey
interactions and infectious diseases, but these differences have identified some potentially fruitful av-
enues of research (Earnet al., 1998). In the natural world, the species not only spreads the disease but
also competes with other species for space or food or is predated by other species. Probably, Hadeler &
Freedman (1989) were the first to describe a predator–prey model where the prey is infected by a par-
asite and the prey in turn infects the predator with the parasite. After that, a number of papers have
already appeared in this direction (e.g. seeVenturino,1995,2001;Hethcote,2000;Chattopadhyay &
Bairagi,2001; Hethcoteet al., 2004, etc.) and these type of models are known as eco-epidemiological
models (see Chattopadhyay & Arino,1999).

Most of the earlier works on eco-epidemiology modelling are based on finding the stability and
persistence of a system (e.g.Singhet al., 2004). These models are analysed by considering a linear
approximation to the non-linear equations that ecologists conventionally assume to be more complex
situations (Hastings & Powell,1991). But now the terms chaos, strange attractor and fractal are familiar
to many, if not all, ecologists (Schaffer & Kot, 1986). In fact,Allen et al. (1993) showed that chaos can
even prevent global population extinction if there are several distinct subpopulations that are weakly
coupled by migration and subject to locally varying external noise. The key feature of chaotic dynamics
is the sensitive dependence on initial conditions. Even a small change in initial conditions can lead
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302 S.CHATTERJEEET AL.

to different results.Chatterjeeet al. (2006) proposed and analysed an eco-epidemiological model to
observe the occurrence and control of chaos. They concluded that along with the rate of infection, the
rate of predation also plays a pivotal role for monitoring the dynamics of the system.

Chatterjeeet al.(2006) assumed that the disease transmission follows a simple mass action incidence
law. It is seen that in the case of constant total populationN, if the disease is not fatal and the model
does not address vital dynamics (the normal birth and death dynamics), then the infection termbsi may
be justified

(
since b

s+i is now a constant
)
, wheres is the susceptible population andi is the infective

population. Here, the meaning ofb becomes the encounter infection rate. But, for a large population, an
individual’s finite and often slow movements prevent it from making contact with a large number of in-
dividuals in a unit time. Such a mechanism is better described byb si

s+i thanbsi. For example,D’Amico
et al. (1996) fitted a simple mass action model and found that the estimated transmission coefficient
declined with both infected and susceptible host densities, showing that the simple mass action model
was inadequate to describe the transmission process. Begonet al. (1998,1999) concluded that standard
incidence is a better descriptor of transmission dynamics than density-dependent transmission for cow-
pox. Many more small-scale experiments showed that simple mass action did not describe transmission
adequately (e.g. seeReesonet al.,2000;Barlow, 1991,2000). The difference between the behaviour of
different forms of the disease transmission are given in many papers (seeGao & Hethcote, 1992;Gao
et al., 1995,1996;Hethcote & Van Ark,1987;Mena-Lorca & Hethcote, 1992, to mention a few). In
spite of the above observations, it is still an open question which functional form better describes the
mode of disease transmission.

The main aim of this article is to compare the outcomes of two infection mechanisms, standard
incidence or simple mass action incidence, with special emphasis on chaotic behaviour. To address this
question, we have considered the model proposed byChatterjeeet al. (2006) and modified the model
by assuming that the disease transmission follows standard incidence law. We compared the dynamical
nature of the two systems numerically for a wider range of force of infection. Finally, we use Latin
hypercube sampling (LHS), a stratified sampling technique that produces a more uniform distribution
of sample points throughout the sample space (Smithet al., 2005), to observe the dynamics of our
considered model systems in the full range of parameter space. It helps us to indicate which form of
the disease transmission will increase the stability region when the parameters are randomly generated.
Our observations indicate that it is more easy to make the system stable around the positive interior
equilibrium when disease transmission follows standard incidence instead of mass action incidence. It
is also observed that the risk of getting chaos in the system becomes much less if the force of infection
follows standard incidence.

The organization of the paper is as follows: We first discuss the basic formulation of the model in
Section2. In Section3, we discuss some preliminary results that include the boundedness of the solu-
tions and the conditions for the existence of different steady state. In Section4, we find the conditions for
the local stability of different equilibrium points and persistence of the coexistence equilibrium point. In
Section5, we perform the numerical simulations with special emphasis on the chaotic dynamic of the
system. In Section5.1, we have used LHS technique to see whether our result holds true when all the
system parameters are varied simultaneously. The article ends with a discussion.

2. The basic mathematical model

Chatterjeeet al. (2006) proposed a predator–prey model in which a transmissible disease is introduced
into the prey population. They made the following assumptions.
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They assumed that the disease spreads among the prey population and the disease is not genetically
inherited. As a result, the total prey population is divided into two classes: one is the susceptible prey
population ‘s’ and the other is the infected prey population ‘i ’. Therefore, at any timet , the total prey
population isn(t) = s(t) + i (t). They assumed that the susceptible prey population grows in a logistic
fashion with carrying capacityk > 0 and intrinsic growth rate constantr > 0. They further assumed
that the infected prey population cannot grow, recover or reproduce. But the infected prey population is
capable of contributing towards the carrying capacity of the susceptible prey population. The incidence
is assumed to follow simple mass action incidencecsi, wherec > 0 is called the transmission coeffi-
cient. Finally, they assumed that the predator populationp predates both the susceptible and the infected
prey population and the predation of both the prey population has a positive effect on the growth rate of
the predator populationp

With these biological assumptions, they proposed the following mathematical model:

ds

dT
= r s

(
1 −

s + i

k

)
− pF(s, i )− csi,

di

dT
= csi − pG(s, i )− ei,

dp

dT
= p(d1F(s, i )+ d2G(s, i )− f ),

whered1 andd2 arethe conversion rates of the susceptible and the infected prey population, respectively,
by the predator population. Moreover,d1 andd2 lie in the interval (0, 1),edenotes the natural death rate
of the infected prey populations andf is the natural death rate of the predator population.F(s, i ) and
G(s, i ) denote the predator functional responses for the predatorp, respectively.

They took the predator functional responses (which play an important role in determining the long-
term behaviour of a system;Hastings & Powell, 1991) for the predatorp with respect to the susceptible
prey populations (i.e. F(s, i )) and the infected prey populationi (i.e. G(s, i )) as modified Holling
type-II functional responses (seeGakkhar & Naji,2003), i.e.

F(s, i ) =
a1s

1 + b1s + b2i
and G(s, i ) =

a2i

1 + b1s + b2i
,

whichsatisfy the following two conditions:

H1. F(0, i ) = 0 anddF
ds > 0, ∀ s> 0,

H2. G(s, 0)= 0 and dG
di > 0, ∀ i > 0,

wherea1 anda2 arethe searching efficiency constants or equivalently the predation rates on the suscep-
tible and the infected prey populations, respectively, andb1 andb2 arethe positive parameters charac-
terizing the modified Holling type-II functional response.

With these assumptions, they proposed the following set of differential equations:

ds

dT
= r s

(
1 −

s + i

k

)
−

a1sp

1 + b1s + b2i
− csi,

di

dT
= csi −

a2i p

1 + b1s + b2i
− ei, (2.1)

dp

dT
=
(d1a1s + d2a2i )p

1 + b1s + b2i
− f p.
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304 S.CHATTERJEEET AL.

All the rate parameters are positive and constant. They assumed the positive initial conditions as
s(0)> 0, i (0)> 0 andp(0)> 0 for some initial time.

Here, we modify the model ofChatterjeeet al. (2006) by taking standard incidence as the mode of
disease transmission. Under this assumption, System (2.1) takes the following form:

ds

dT
= r s

(
1 −

s + i

k

)
−

a1sp

1 + b1s + b2i
−

csi

s + i
,

di

dT
=

csi

s + i
−

a2i p

1 + b1s + b2i
− ei, (2.2)

dp

dT
=
(d1a1s + d2a2i )p

1 + b1s + b2i
− f p.

For simplicity, we non-dimensionalize the model system (2.2) with the following scaling:S = s
k ,

I = i
k , P = a1 p

r andt = r T ; with these quantities, System (2.2) is transformed into a dimensionless
form as follows:

dS

dt
= S(1 − S− I )−

SP

1 + αS+ β I
−

λSI

S+ I
,

dI

dt
=

λSI

S+ I
−

γ I P

1 + αS+ β I
− δ I , (2.3)

dP

dt
=
(e1S+ e2I )P

1 + αS+ β I
− μP,

whereλ = c
r , δ = e

r , γ = a2
a1

, α = b1k, β = b2k, μ = f
r , e1 = d1a1k

r ande2 = d2a2k
r .

3. Preliminaries

3.1 Positive invariance

Let us put (2.3) in a vector form by setting

X = col(S, I , P) ∈ R3, (3.1.1)

F(X) =







F1(X)

F2(X)

F3(X)





 =













S(1 − S− I )−
SP

1 + αS+ β I
−

λSI

S+ I

λSI

S+ I
−

γ I P

1 + αS+ β I
− δ I

(e1S+ e2I )P

1 + αS+ β I
− μP













, (3.1.2)

whereF : C+ → R3 andF ∈ C∞(R3). Then, (2.3) becomes

Ẋ = F(X), (3.1.3)

with X(0) = X0 ∈ R3
+. It is easy to check in (3.1.2) that whenever choosingX(0) ∈ R3

+ suchthat
Xi = 0, thenFi (x)|Xi =0 > 0 (i = 1,2,3). Due to the lemma ofNagumo(1942), any solution of (3.1.3)
with X0 ∈ R3

+, sayX(t) = X(t; X0), is such thatX(t) ∈ R3
+ for all t > 0.
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3.2 Theequilibria and their existence conditions

System (2.3) possesses the following biological feasible equilibria (other then the positive equilibrium
point): E0 ≡ (0,0,0), E1 ≡ (1,0,0), E2 ≡ (S′, 0,P′), whereS′ = μ

e1−μα
and P′ = e1(e1−μα−μ)

(e1−μα)2
,

E3 ≡ (S̄, Ī , 0), whereS̄ = δ(1−λ+δ)
λ and Ī = (λ−δ)(1−λ+δ)

λ .

REMARK 3.2.1 The equilibriaE0 andE1 exist for any parametric value, whileE2 exists ife1 > μ(α+1)
andE3 exists if δ < λ < 1 + δ.

We now seek the regions of parameter space for which the model system (2.3) admits a feasible
interior equilibrium. Any feasible equilibria must correspond to a positive rootS∗ of the quadratic
equation

w1S2 + w2S+ w3, (3.2.1)

wherew1, w2, w3 aregiven by

(i) w1 = 2γμαe1 − γμ2α2 + 2γμ2αβ − 2γe1μβ − γμ2β2 − γe2
1

+ 2γe1e2 − 2γμαe2 − γe2
2 + 2γe2μβ,

(ii) w2 = γe2
2 + 2γμe1 − 2γμ2α − γe1e2 + γμ2β2 − λe2

2 + δe2
2

− δe1e2 + δμ2β2 − λγe1μβ + λγμ2αβ − λγμαe2

− γμ2αβ + δμαe2 − δμ2αβ + δe1μβ + 2λe2μβ (3.2.2)

− 2δe2μβ − 2γμe2 + 2γμ2β + λγe1e2 − 2γe2μβ

+ γμαe2 + γe1μβ − λμ2β2,

(iii) w3 = λγμ2β − γμ2 − γμ2β − δμ2β + γμe2 − λγμe2 + δμe2,

for which additionally

I ∗ =
μ+ (αμ− e1)S∗

e2 − μβ
> 0, P∗ =

(e1S∗ + e2I ∗)((λ− δ)S∗ − δ I ∗)

μγ (s∗ + I ∗)
> 0.

REMARK 3.2.2 The sufficient conditions for the existence of unique interior equilibrium point are as
follows:

(i) 2(μ(e1α + e2β)+ e1e2 + αμ2β) > μ2(α2 + β2)+ 2μ(e1β + e2α)+ e2
1 + e2

2,

(ii) λγ > δ,

(iii) e2 + λμβ < μ(1 + β).

3.3 Boundedness of the solutions

Let us first recall (without proof) the following lemma due to Barbalat (1959).
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306 S.CHATTERJEEET AL.

LEMMA 3.3.1 Let g be a real-valued differential function defined on some half line [a,+∞), a ∈
(−∞,+∞). If (i) lim t→+∞ g(t) = α, |α| < +∞, and (ii) g′(t) is uniformly continuous fort > a, then
limt→+∞ g′(t) = 0.

We shall prove the following key lemma.

LEMMA 3.3.2 Assume that the initial condition of (2.3) satisfiesS0 + I0 > 1. Then, either (i)S(t) +
I (t) > 1 for all t > 0 and therefore ast → +∞, (S(t), I (t), P(t)) → E1 = (1,0,0) or (ii) there exists
a t1 > 0 such thatS(t) + I (t) < 1 for all t > t1. Finally, if S0 + I0 < 1, thenS(t) + I (t) < 1 for all
t > 0.

Proof. See Appendix A. �

LEMMA 3.3.3 Assuminge1 < 1 ande2 < γ , there is anM > 0 such that for any positive solution
(S(t), I (t), P(t)) of System (2.3),P(t) < M for all larget , where

M =
1

ξ
, ξ = min{1, δ, μ}.

Proof. See Appendix A. �

THEOREM 3.3.1 The setΩ is a global attractor inR3
0,+ and,of course, it is positively invariant, where

Ω = {(S, I , P)εR3
0,+ : S+ I 6 1,P 6 M}.

Proof. See Appendix A. �

4. Local stability analysis and persistence

THEOREM 4.1 If the axial equilibrium is stable, then the disease-free equilibriumE2 andthe planar
equilibrium E3 do not exist, while the existence ofE2 or E3 ensuresthe instability ofE1. The disease-
free equilibriumE2 is stable providedλ − γ + γμ − δ < 0 ande1 + μα < α(e1 − μα). The planar
equilibrium E3 is stable ifδ̄ > 0, i.e.(−α + β)δ2 + (λα + β − α − 2βλ)δ − λ+ βλ2 − βλ > 0.

Proof. The variational matrixJ of System (2.3) around any arbitrary point(S, I , P) is given by

J(S, I , P) =










1 − 2S− I − (1+β I )P
(1+αS+β I )2

− λI 2

(S+I )2
−S+ βSP

(1+αS+β I )2
− λS2

(S+I )2
−S

1+αS+β I

λI 2

(S+I )2
+ αγ I P

(1+αS+β I )2
λS2

(S+I )2
− γ P(1+αS)

(1+αS+β I )2
− δ − γ I

1+αS+β I

P(e1+e1β I −αe2 I )
(1+αS+β I )2

P(−e2−e2αS+βe1S)
(1+αS+β I )2

(e1S+e2 I )
1+αS+β I − μ









.

(4.1)

At the axial equilibriumE1, we have

J(1,0,0)=







−1 −(1 + λ) −1
1+α

0 λ− δ 0

0 0 e1
1+α − μ





 . (4.2)

 by guest on January 29, 2011
im

am
m

b.oxfordjournals.org
D

ow
nloaded from

 

http://imammb.oxfordjournals.org/


ROLE OF HORIZONTAL INCIDENCE IN THE OCCURRENCE AND CONTROL OF CHAOS 307

SinceJ(1,0,0) is a upper triangular matrix, its eigenvalues are−1,λ−δ and e1
1+α −μ. Accordingly,

E1 is stable if e1
1+α < μ andλ < δ, and is saddle ife1

1+α > μ orλ > δ. Thus, the existence of the disease-
free equilibriumE2 or the planar equilibriumE3 ensuresthe instability ofE1 andvice versa.

Consider now the disease-free equilibriumE2. We have

J(S′, 0,P′) =











(−e1α+e1+μα2+μα)μ
e1(e1−μα)

(βα+β)μ2+(−βe1+e1−λe1α)μ+λe2
1

e1(e1−μα)
−μ
e1

0 (γ α+γ−λα+δα)μ+λe1−δe1−γe1
e1−μα

0

e1 − μα − μ −(e2−μβ)(e1−μα−μ)
e1−μα

0











. (4.3)

Thecharacteristic equation of (4.3) is given by

[−(e1 − μα)x + (e1 − μα)(λ− γ + γμ− δ)][−e1(e1 − μα)x2

+ μ(μα2 + μα + e1 − e1α)x − μ(e1 − μα)(e1 − μ− μα)] = 0. (4.4)

We know thatE2 exists if e1 > μ(α + 1). Hence, (4.4) will have roots with negative real parts if
λ− γ + γμ− δ < 0 ande1 + μα < α(e1 − μα).

Finally, at the planar equilibriumE3, we have

J(S̄, Ī , 0)=










(−1+2λ−2δ)δ
λ

(−1+λ−2δ)δ
λ δδ̄

(λ−δ)2

λ − (λ−δ)δ
λ γ (λ− δ)δ̄

0 0 −(δe1 + e2λ− δe2)δ̄ − μ









, (4.5)

where

δ̄ =
(1 − λ+ δ)

(−α + β)δ2 + (λα + β − α − 2βλ)δ − λ+ βλ2 − βλ
.

The characteristic equation of (4.5) is given by

[x + δ̄δe1 + δ̄e2(λ− δ)+ μ][λx2 + δ(1 + δ − λ)x + δ(λ− δ)(1 + δ − λ)] = 0. (4.6)

Assumingδ̄ > 0, we see from (4.6) that wheneverE3 exists, it is locally, asymptotically stable.
Hence the theorem.

For the positive steady stateE∗ ≡ (S∗, I ∗, P∗), it is not an easy task to find the explicit criteria for
the local stability of the interior equilibrium points in terms of the system parameters. The application
of the Routh–Hurwitz criteria gives rise to a complicated mathematical expression, and as such we do
not find its biological meaning. Before proceeding to numerical experiments of the system aroundE∗,
we would like to study the persistence of System (2.3). Biologically, persistence means the survival of
all populations for all future time. To examine the persistence of the model systems under consideration,
we shall use the method of ‘average Lyapunov function’ (seeGard & Hallam, 1979;Hofbauer,1981).
This method was first applied byHutson & Vickers(1983) on ecological problems. �
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THEOREM 4.2 System (2.3) is persistent if

(i)

(e1 − μα)(λ− γe1 − δ)+ e1γμ > 0,

(ii)

(1+ δ− λ)(δe1 + e2(λ− δ)) > μ(−βλ2 + ((2β−α)δ+ 1+β)λ+ (α−β)δ2 + (α−β)δ) > 0.

Proof. We consider the average Lyapunov function of the form

V(S, I , P) = Sα1 I α2 Pα3,

whereeachαi (i = 1,2,3) is assumed to be positive. In the interior ofR3
0,+, we have

ψ(S, I , P) =
V̇

V

= α1

[
(1 − S− I )−

P

1 + αS+ β I
−

λI

S+ I

]

+ α2

[
λS

S+ I
−

γ P

1 + αS+ β I
− δ

]
+ α3

[
e1S+ e2I

1 + αS+ β I
− μ

]
. (4.7)

We have already proved that the solutions are bounded in the regionΩ (see Section3.3) and the
trivial equilibrium is a repeller under certain conditions (see Appendix B). To establish the persistence
of the solution, we have to show thatψ(S, I , P) > 0 at the equilibriaE1, E2, E3 ∈ R3

0,+, for anyαi > 0
(i = 1,2,3).

For E1, we have

ψ1(S, I , P) =
V̇

V

∣
∣
∣
∣
E1

= α1(λ− δ)+ α3

(
e1

1 + α
− μ

)
. (4.8)

Thus,ψ1(S, I , P) > 0 wheneverE2 andE3 exist.
For E2, we have

ψ2(S, I , P) =
V̇

V

∣
∣
∣
∣
E2

= α1

(
e1 − μα − μ− e2

1 + e1μα + e1μ

e1 − μα

)

+ α2

(
λe1 − λμα − γe2

1 + γe1μ(α + 1)− δe1 + δμα

e1 − μα

)

. (4.9)

Thus,ψ2(S, I , P) > 0 if e1 −μα −μ− e2
1 + e1μα + e1μ > 0 andλe1 − λμα − γe2

1 + γe1μ(α +
1)− δe1 + δμα > 0. Sincee1 < 1 (condition for the boundedness of the solution of System (2.3), see
Lemma 3.3.3),e1 −μα−μ− e2

1 + e1μα+ e1μ > 0. Thus, if Condition (i) of Theorem 4.2 holds, then
ψ2(S, I , P) > 0.

 by guest on January 29, 2011
im

am
m

b.oxfordjournals.org
D

ow
nloaded from

 

http://imammb.oxfordjournals.org/


ROLE OF HORIZONTAL INCIDENCE IN THE OCCURRENCE AND CONTROL OF CHAOS 309

For E3, we have

ψ3(S, I , P) =
V̇

V

∣
∣
∣
∣
E3

= α3

(
(1 + δ − λ)(δe1 + e2(λ− δ))

−βλ2 + ((2β − α)δ + 1 + β)λ+ (α − β)δ2 + (α − β)δ
− μ

)
.

(4.10)
Thus,ψ3(S, I , P) > 0 if Condition (ii) of Theorem4.2holds.
This completes the proof. �

5. Numerical results

Due to the complexity of the model system, the only choice for investigating the long-term behaviour of
System (2.3) is numerical integration. In our numerical study, we shall confine our analysis to System
(2.2). We have performed our numerical simulations with the help of MATLAB (version 6.5) software.
First, we shall study System (2.2) and compare the results with that of System (2.1). Then, for the better
understanding of disease transmission dynamics, we have used LHS techniques.

The main objective of the present analysis to follow is to investigate the role of the disease trans-
mission to maintain the stability of an eco-epidemiological system. This is a very important problem
from the current research point of view as the question ‘how should disease transmission be modelled?’
remains unsolved (McCallumet al., 2001). Several laboratory studies have been performed to find an
appropriate solution of this question, some of which have been addressed in the introduction. Our second
concern is on the occurrence of chaotic behaviour in such a system and the role of disease transmission
in such occurrences.

It should be noted here that the two models, Systems (2.1) and (2.2), differ only in the functional
response associated with the parameterc. So, it is very reasonable to compare the stability of the two
systems around their interior steady states by varying the key parameterc and keeping all the other
parameters fixed at some desired feasible levels. The model system (2.1) was proposed and analysed
by Chatterjeeet al. (2006). Accordingly, we begin our numerical analysis with the set of hypothet-
ical parameter values (see Table1) previously used byChatterjeeet al. (2006) to represent an eco-
epidemiological system where the disease factors influence the predator–prey system dynamics.

Chatterjeeet al.(2006) observed in their paper that forc = 0.845, System (2.1) enters into a chaotic
region. But here we observe that for the same parameter values, System (2.2) is stable around the positive
steady state (see Fig. 1).

Now, if we decrease the value ofc from 0.845 to 0.48, retaining the other parameter values same, we
observe that the dynamical behaviour of System (2.2) changes from a stable focus to a strange attractor
(see Fig.2). Figure2 is obtained by letting the system run for 20,000 time steps and examining for the
last 16,000 time steps to eliminate transient behaviour (seeHastings & Powell,1991).

Our next task is to observe whether the strange attractor is a chaotic attractor or not. We begin the
study by examining plots of each species of System (2.2) against time forc = 0.48. Dynamics that have
irregular behaviour, suggestive of chaos (seeHastings & Powell,1991), are illustrated in Fig.3. It is
clear that the solutions are bounded but not periodic (see Fig.3) and there is no observable regularity in
the time evolution for individual species, e.g. a varying number of secondary maxima between primary
maxima for speciess andi . The solution plots reveal wandering solutions of an irregularly oscillating
type without any uniform pattern. These type of solutions are said to display chaotic behaviour (Jordon &
Smith,1999).

Moreover, we know that there are quite a good number of available sophisticated mathematical tools
to analyse the dynamical behaviour of autonomous systems, in order to conclude the actual nature of
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TABLE 1 Default parameter values taken from the paper of Chatterjee et al.(2006), which is treated
as the fixed set of parameter values in our numericalsection

Parameters/variable Definition Default values Unit

r Intrinsic growth rate 1 day−1

k Carrying capacity 1 individuals ha−1

a1 Predation rate ons 1 ha per individual day−1

a2 Predation rate oni 0.344 ha per individual day−1

b1 Positive constant 4.055 ha per individual
b2 Positive constant 8.0 ha per individual
f Death rate ofp 0.02 day−1

e Death rate ofi 0.051 day−1

d1 Conversion rate 0.21 —
d2 Conversion rate 0.67742 —
s(0) Initial value ofs 0.094 individuals ha−1

i (0) Initial value of i 0.091 individuals ha−1

p(0) Initial value of p 0.05 individuals ha−1

FIG. 1. The figure depicts the dynamics of (a) the system (2.1) with mass action incidence; and (b) the system (2.2) with standard
incidence forc = 0.845.

it. Here, we find Lyapunov exponents (seeSprott,2003) to show that the dynamics shown by System
(2.2) forc = 0.48 is actually chaotic. A fundamental property of chaotic dynamics is sensitivity to small
changes in initial conditions. Lyapunov exponents quantify this divergence by measuring the mean rate
of exponential divergence of neighbouring trajectories. If the largest Lyapunov exponent of a trajectory
is negative, then it is stable, while a trajectory with the largest Lyapunov exponent as zero is periodic,
but if the largest Lyapunov exponent is positive then it is chaotic.

All the Lyapunov exponents corresponding to the strange attractor seen in Fig.2 are depicted in
Fig. 4, and it is clear that the largest Lyapunov exponent is positive (λ1 = 0.1221, takingλ1 > λ2 > λ3)
and other two Lyapunov exponents are zero (λ2 ' 0.0) and negative (λ3 = −0.195), respectively.
Consequently, the strange attractor is chaotic.

Now, we shall check for the sensitive dependence of the future dynamics on the current state, the final
signature of chaos, where a small change in initial conditions may lead to different dynamical behaviour.
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FIG. 2. The figure depicts the dynamics of System (2.2) (standard incidence ) forc = 0.48.

We have illustrated this behaviour by comparing the trajectories generated by slightly different initial
conditions. We have changed the initial value of the predator population by 0.01 (from 0.05 to 0.06),
keeping the initial values of the susceptible and infected prey population fixed, and observed that the
two initial conditions lead to dynamics that are essentially uncorrelated (although, of course, restricted
to the attractor). It was seen that as time progresses, the system would be indeterminate (see Fig.5).
Thus, even a slight perturbation in species numbers, as would occur naturally, may lead to unpredictable
results through time.

So, we observe that whenc = 0.48, System (2.2) enters into a chaotic region. It is known that de-
terministic predator–prey models with strong periodic forcing have a complicated bifurcation diagram
which includes limit cycles, the period-doubling route to chaos and the quasi-periodic route to chaos
(Rinaldiet al.,1993;Gragnani & Rinaldi,1995). To understand the route to chaos, a systematic investi-
gation of the dynamics was done by constructing a bifurcation diagram. Here, also we have run System
(2.2) for 20,000 time steps and examined the last 16,000 time steps to eliminate transient behaviour.
Then, we have plotted the successive maxima and minima of all the species withc as a function of the
control parameter and other parameters are kept fixed at the level given in Table1 (see Fig.6).

One objective of studying chaos is to find the reasons behind the occurrence of such dynamics and
hence to find a probable solution to control such dynamics. We observe from the bifurcation diagram
(Fig. 6) that if the force of infectionc is increased from 0.48 to 0.75, the dynamics of System (2.2)
gradually changes from chaos to a stable focus. Thus, to keep System (2.2) stable around the positive
steady state or to prevent the system from chaos, we shall have to keep the force of infection above
certain threshold valuect1 = 0.75.

We shall now try to find the role of simple mass incidence in the occurrence of chaos in an eco-
epidemiological system and compare it with the standard incidence.

We observe from the bifurcation diagram (Fig.7) that to keep System (2.1) stable around the positive
steady state and to prevent the occurrence of chaos, we shall have to keep the force of infection above a
certain threshold valuect2 = 2.8 which is roughly four times that ofct1. So, we may say that it is more
easy to keep System (2.2) stable around the positive steady state, than System (2.1).

The main result obtained by comparing the bifurcation diagrams (Figs6 and7) are presented in
Table2.
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FIG. 3. Time evolution of different population components for the parametric valuec = 0.48.
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FIG. 4. The spectrum of Lyapunov exponent for System (2.2) around the strange attractor obtained forc = 0.48, see Fig.2.

FIG. 5. Divergence of trajectories for the predator population for two different initial conditions ‘—’ and ‘...’ differing only by
0.01 withs(0) andi (0) unchanged.

From Table2, it is clear that the range ofc for which chaos occurs is much smaller for System
(2.2) in comparison to System (2.1). Thus, we may conclude that the occurrence of chaos in the case of
the population following standard incidence rate as the mode of disease transmission is much less than
the population following simple mass action. Hence, we see that the phenomenon of non-occurrence
or rarity of chaos in nature is well defined by the model where the mode of disease transmission
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FIG. 6. Bifurcation diagram depicting the dynamical nature of different populations of System (2.2) (where the mode of disease
transmission follows standard incidence) by varying the parameterc, holding the other parameter values fixed at the level given
in Table1.
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FIG. 7. Bifurcation diagram depicting the dynamical nature of different populations of System (2.1) (where the mode the of disease
transmission follows simple mass action incidence) by varying the parameterc, holding the other parameter values fixed at the
level given in Table1.
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TABLE 2 Simulationexperiments of model systems(2.1) and(2.2)with other parameter
values fixed at the level given in Table1

Dynamicalbehaviour Dynamical behaviour
of System (2.1) of System (2.2)

Range in which (where the mode of disease (where the mode of disease
the parameter transmission follows transmission follows
c is varied simple mass action) standardincidence)
0.426 c 6 0.47 Limit cycle Limit cycle
0.486 c 6 0.56 Limit cycle Chaos
0.576 c 6 0.75 Limit cycle Limit cycle
0.756 c 6 1.25 Chaos Stable focus
1.256 c 6 2.7 Limit cycle Stable focus
c > 2.7 Stable focus Stablefocus

follows standard incidence rate. Moreover, the system with mass action incidence as the mode of
disease transmission is more stable around the interior steady state than the system with standard in-
cidence.

We have reached such a conclusion by varying the parameterc only, holding the other parameter
values fixed at the level given in Table1. Naturally, a question arises whether the same result holds
when the parameters are not fixed but are chosen randomly from a joint probability distribution. So
a possible extension, as a more sophisticated and powerful support of the above results, is obtained
by assuming that a set of parameter values is a random sample from the joint probability distribu-
tion of the whole parameter space. We assume a Gaussian distribution of the parameters. The logic
behind this assumption is very simple and realistic. First, we have fixed some arbitrary parameters un-
der which both the processess are stable and these values are taken to be the mean of the Gaussian
distribution. Now, we can set the range of the variance in such a way that most of the random sam-
ples will fall in the positive plane. In other words, most of the 3σ limits of the Gaussian distribu-
tion of the parameters will lie in the positive plane and as a result, most of the random sample will
fall in the positive plane with high probability. It is illustrated through Fig.8 where almost all the
histograms are defined in the positivex-plane. So, although the Gaussian distribution is defined in
whole real line, it is not unrealistic to assume the underlying distribution of the model parameters to be
Gaussian.

To draw the random sample, we adopt the most commonly and frequently used method of uncer-
tainty and sensitivity analysis of parameters popularly known as LHS.

5.1 Latin hypercube sampling

LHS, a stratified random procedure, provides an efficient way of sampling variables from their distribu-
tions (Iman & Conover, 1980). The LHS involves samplingns values from the prescribed distribution
of each ofk variablesX1, X2, . . . , Xk. The cumulative distribution for each variable is divided intoN
equiprobable intervals. A value is selected randomly from each interval. TheN values obtained for each
variable are paired randomly with the other variables. Unlike simple random sampling, this method en-
sures a full coverage of the range of each variable by maximally stratifying each marginal distribution. In
our case, we have(X1, X2, . . . , Xk) = (c, r, k,a1,a2, b1, b2, e, f, d1, d2), i.e. the number of variables
k = 11 and the number of random samples drawnN = 10,000.
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FIG. 8. Histogram of different parameters drawn randomly by LHS technique.

The algorithm used here to find which incidence function tends to yield greater stability using LHS
can be summarized as follows:

(1) Give the mean value of each parameter and its standard deviation. In our case, we observe
from Table1 that both the systems are stable around the positive steady state forc = 3 with
other parameters the same as in the text. So, we have considered these parameter values as the
mean values of the parameters. We have taken the standard deviation to be 0.01 because this
is the maximum standard deviation for which all the parameters fall in the positive region (see
Fig. 8).

(2) Then, LHS is used to draw a random sample. The LHS involves the following steps:

(a) Divide the cumulative distribution of each variable intoN equiprobable intervals.

(b) From each interval, selecting a value randomly, for thei th interval, the sampled cumula-
tive probability can be written as (Wyss & Jorgensen, 1998) Probi = (1/N)ru+(i −1)/N,
whereru is a normally distributed random number.ru is an uniformly distributed random
number ranging from 0 to 1.

(c) Transform the probability values sampled into the valuex using the inverse of the distribu-
tion functionF−1, whereF is the cumulative density function of the normal distribution:

x = F−1(Prob).
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(d) TheN values obtained for each variablex are paired randomly (equally likely combina-
tions) with theN values of the other variables.

(3) Using Steps (1) and (2), we have drawn 10,000 random samples (each of which is actually a set
of all the parameter values) from the 11-dimensional parameter space. Then, we have collected
those random samples in set ‘S’ for which all the parameter values are positive.

(4) Then, we have used the rejection technique. Within the random samples collected in the set ‘S’,
those sample values for which System (2.1) is stable are collected in set ‘A’ and others are re-
jected. Finally, the probability of a sample parameter value falling in a region of parameter space
where System (2.1) is stable around the positive steady state,P(A), was obtained by

P(A) =
n(A)

n(S)
,

wheren(A) is the number of elements in set ‘A’ andn(S) is the number of elements in set ‘S’.
Similarly, a probabilityP(B) is also obtained for System (2.2) from

P(B) =
n(B)

n(S)
,

wheren(B) is the number of elements in set ‘B’.
We subtract these two probabilities to obtain a probability difference.

(5) Repeat Steps (3) and (4) for 1000 times. Find the average of all these probability differences. We
observe that the mean of(P(B)− P(A)) > 0 (see Fig.9).

We observe that when the parameters are random, then also the system following standard incidence
is more stable than mass action incidence in probabilistic sense. We obtain the above result by setting the
standard deviation at 0.01. In the second stage, we slowly increase the standard deviation up to 0.1 and

FIG. 9. Figure depicting the relation between the probability difference between the two systems and the standard deviation.
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observe that the probability of System (2.1) to be stable is still more than System (2.2). But obviously,
the probability differences decrease when the standard deviation increases.

6. Conclusion

In this paper, we have modified the model proposed byChatterjeeet al. (2006). The main objective of
this paper is to compare the different modes of disease transmission giving special emphasis to chaotic
dynamics. The mode of transmission is crucially important for two reasons. First, it determines the
probable response of the disease to control. Second, the objective in many models of eco-epidemiology
is to predict what will happen when the infection is introduced into a system in which it does not
currently exist. So, if we know the threshold for disease (i.e. the minimum population size or population
density of susceptible hosts necessary for the disease to increase), there is a possibility to control the
disease (McCallumet al., 2001). Another important aspect of a dynamical system is the occurrence of
the chaos. It is already known to us that though chaos is rare, it may occur in nature for some realistic
parameter values (Hastings & Powell,1991). In the present study, we have also tried to find a relation
between the occurrence of the chaos and the mode of disease transmission.

We have first shown the boundedness of the solution and worked out analytically the conditions
for the local stability criteria of different equilibrium points and the conditions for the persistence of
both the prey and the predator species. Since the structure of the model presented here is a complex
one, our main results are based on the numerical simulations. Moreover, numerical simulations help us
to find the long-term behaviour of the system. With the help of numerical integration, we have shown
different dynamical behaviour exhibited by the considered model, e.g. stable population distribution,
limit cycle, quasi-periodic oscillation and chaotic behaviour. To confirm the presence of the chaos, we
have calculated the Lyapunov exponent of the system and the largest Lyapunov exponent is found to be
positive. It is seen during the chaotic behaviour that though for a short period of time the behaviour may
be fairly regular, over a long period of time the irregularities occur in the behaviour of the system, and
the sensitivity to the initial condition and unpredictability becomes more visible.

We observe that if the system follows standard incidence as the mode of disease transmission, then
the chance for the occurrence of chaos decreases and it becomes easier to make that system stable around
the positive steady state. These observations were obtained by varying the parameterc and holding the
other parameter values fixed. Finally, using the method of LHS, we have shown that the system with
standard incidence yields more stability even when all the parameters are varied randomly. Exploring
the entire parameter space, we have observed that the stability region increases in the case of standard
incidence.

Finally, our observations may be summarized as follows:

(a) The phenomenon of non-occurrence or rarity of chaos in nature is well defined by the model
where the mode of disease transmission follows standard incidence rate.

(b) The stability region is larger in the case of standard incidence than the simple mass action.
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Appendix A

Proof of Lemma3.3.2. We consider firstS(t) + I (t) > 1 for all t > 0. From the first two equations of
(2.3), we get

d

dt
(S(t)+ I (t)) = S(1 − S− I )−

(S+ γ I )P

1 + αS+ β I
− δ I . (A.1)
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Hence,for all t > 0, we have thatdS(t)
dt + dI (t)

dt 6 0. Let

lim
t→∞

S(t)+ I (t) = η. (A.2)

If η > 1, then by the Barbalat lemma, we have

0 = lim
t→∞

d

dt
(S(t)+ I (t))= lim

t→∞

[
S(t)(1 − S(t)− I (t))−

(S(t)+ γ I (t))P(t)

1 + αS(t)+ β I (t)
− δ I (t)

]

6 lim
t→∞

[S(t)(1 − S(t)− I (t))− δ I (t)]

= lim
t→∞

[S(t)(1 − η)− δ I (t)]

6− min{(η − 1), δ} lim
t→∞

(S(t)+ I (t))

= − min{(η − 1), δ} < 0.

This contradiction shows thatη = 1, i.e.

lim
t→∞

(S(t)+ I (t)) = 1. (A.3)

Let us denoteg(t) = S(t)+ I (t) for t ∈ [0,∞). Of course,g(t) is differentiable andg′(t) is uniformly
continuous fort ∈ (0,+∞). Thus, with (A.3) all the assumptions of the Barbalat lemma hold true and,
therefore,

lim
t→∞

d

dt
(S(t)+ I (t)) = 0. (A.4)

Sincefrom the first two equations of (2.3)

d

dt
(S(t)+ I (t)) = S(t)(1 − S(t)− I (t))−

(S(t)+ γ I (t))P(t)

1 + αS(t)+ β I (t)
− δ I (t), (A.5)

then(A.3) implies that

lim
t→∞

d

dt
(S(t)+ I (t))= lim

t→∞

[
S(t)(1 − S(t)− I (t))−

(S(t)+ γ I (t))P(t)

1 + αS(t)+ β I (t)
− δ I (t)

]

= − lim
t→∞

[
(S(t)+ γ I (t))P(t)

1 + αS(t)+ β I (t)
+ δ I (t)

]
. (A.6)

Hence,(A.4) and (A.6) are in agreement if and only if limt→∞ I (t) = 0 and limt→∞ P(t) = 0, which
jointly from (A.3) implies that limt→∞ S(t) = 1. This completes the case (i).

Suppose that assumption (i) is violated. Then, there existst0 > 0 at which for the first timeS(t0)+
I (t0) = 1. According to (A.5), we have

d

dt
(S(t)+ I (t))

∣
∣
∣
∣
t=t0

= −
[
(S(t0)+ γ I (t0))P(t0)

1 + αS(t0)+ β I (t0)
+ δ I (t0)

]
< 0.

This implies that once a solution withS+ I has entered into the interval(0,1), then it remains bounded
there for allt > t0, i.e. S(t)+ I (t) < 1 for all t > t0.
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Finally, if S(t0) + I (t0) < 1, then applying the previous argument it follows thatS(t) + I (t) < 1
for all t > 0, i.e. (iii) holds true. This completes the proof.
Proof of Lemma3.3.3. Lemma 3.3.2 implies that for any(S(t0), I (t0), P(t0)) suchthatS(t0)+ I (t0) >
1, either a timet0 > 0 exists for whichS(t) + I (t) < 1 for all t > t0 or limt→∞ S(t) = B

δ and
limt→∞ I (t) = 0. Furthermore, ifS(t0)+ I (t0) < 1, thenS(t)+ I (t) 6 1 for all t > 0. Hence, in any
case a non-negative time, sayt∗, exists such thatI (t) < 1,S(t) < 1, for all t > t∗.

SetW = S(t)+ I (t)+ P(t).
Calculatingthe derivative ofW along the solution of System (2.3), we find fort > t∗,

Ẇ = S(t)(1 − S(t)− I (t))−
(S(t)− e1S(t)+ γ I (t)− e2I (t))P(t)

1 + αS(t)+ β I (t)
− δ I (t)− μP(t)

6 S(t)1 − δ I (t)− μP(t) (∵ e1 < 1,e2 < γ )

6 1 − min{1, δ, μ}(S(t)+ I (t)+ P(t))

= 1 − ξW,

whereξ = min{1, δ, μ}.
Thus, there exists a positive constantM such thatW(t) < M for all larget . The assertion of Lemma

3.3.2 now follows and the proof is completed.
LetΩ be the following subset ofR3

0,+:

Ω = {(S, I , P)εR3
0,+: S+ I 6 1,P 6 M} (A.7)

Proof of Theorem3.3.1. Due to Lemmas 3.3.2 and 3.3.3, for all initial conditions inR3
+,0 suchthat

(S(t0), I (t0), P(t0)) doesnot belong toΩ, either there exists a positive time, sayT , T = max{t1, t∗},
suchthat the corresponding solution(S(t), I (t), P(t) ∈ intΩ for all t > T or the corresponding solution
is such that(S(t), I (t), P(t)) → E1(1,0,0) ast → +∞. But, E1 ∈ ∂Ω. Hence, the global attractivity
of Ω in R3

0,+ hasbeen proved.
Assume now that(S(t0), I (t0), P(t0)) ∈ intΩ. Then, Lemma 3.3.2 implies thatS(t) + I (t) < 1

for all t > 0 and also by Lemma 3.3.3, we know thatP(t) < M for all larget . Let us remark that if
(S(t0), I (t0), P(t0)) ∈ ∂Ω, becauseS(t0)+ I (t0) = 1 or P(t0) = M or both, then still the corresponding
solutions(S(t), I (t), P(t)) must immediately enter intΩ or coincide withE1.

Appendix B. Behaviours of the system aroundE0(0,0,0)

At the trivial equilibrium pointE0, the Jacobian matrix (4.1) is not defined. We have analysed the
stability of the system around the trivial steady state following the technique used by Arinoet al.(2004).
Let us now for a moment consider in a general context, i.e. to say we consider a system inRN ,

dX

dt
= H(X(t))+ Q(X(t)), (B.1)

in which H is C1-outsidethe origin and is continuous and homogenous of degree 1.

H(sX) = sH(X)
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for all s> 0, X ∈ RN , andQ is aC1-functionsuch that

Q(X) = o(X)

in the vicinity of the origin. Throughout the section,‖∙‖ denotes the Euclidian norm onRN and(∙, ∙) the
associatedinner product. In the case of our model,N = 3,

X = (x1, x2, x3) = (S, I , P),

H(X)= (H1(X), H2(X), H3(X)),

Q(X)= (Q1(X), Q2(X), Q3(X)).

Thefunction Hi andQi (i = 1,2,3) aregiven by

H1(X)= S−
λSI

S+ I
,

H2(X)=
λSI

S+ I
− δ I ,

H3(X)= −μP,

Q1(X)= −
SP

1 + αS+ β I
,

Q2(X)= −
γ I P

1 + αS+ β I
,

Q3(X)=
(e1S+ e2I )P

1 + αS+ β I
.

Let X(t) be a solution of System (B.1). Assume that lim inft−→∞‖X(t)‖ = 0 andX is bounded.
One can extract from the family(X(t +∙))t>0 sequencesX(tn +∙), tn −→ ∞, such thatX(tn +∙) −→ 0
locally uniformly ons ∈ R. Define

yn(s) =
X(tn + s)

‖X(tn + s)‖
. (B.2)

Recallthat

Q(X) = o(X)

in the vicinity of the origin. We can then writeQ as

Q(X) = (‖X‖)2o(1). (B.3)

We have
dX(tn + s)

ds
= H(X(tn + s))+ Q(X(tn + s)). (B.4)
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From(B.2), we have

X(tn + s) = yn(s)‖X(tn + s)‖ = yn(s) ∙ 〈X(tn + s), X(tn + s)〉
1
2 . (B.5)

Now, using the derivative of〈X(tn + s), X(tn + s)〉 with respect tos

d

ds
(〈X(tn + s), X(tn + s)〉) = 2

〈
X(tn + s),

dX(tn + s)

ds

〉

in (B.5), we obtain

dX(tn + s)

ds
=

dyn(s)

ds
(‖X(tn + s)‖)+

yn(s)

‖X(tn + s)‖

〈
X(tn + s),

dX(tn + s)

ds

〉
.

Therefore,we have

H(X(tn + s))+ Q(X(tn + s))=
dyn(s)

ds
‖X(tn + s)‖

+
yn(s)

‖X(tn + s)‖
〈X(tn + s), H(X(tn + s))+ Q(X(tn + s))〉.

Now, dividing by‖X(tn + s)‖ andreplacing X(tn+s)
‖X(tn+s)‖ by yn(s), we obtain

dyn(s)

ds
= H(yn(s))− 〈yn(s), H(yn(s))〉yn(s)+ ‖X(tn + s)‖

[
1

‖X(tn + s)‖
Q(X(tn + s))

−
〈
yn(s),

1

‖X(tn + s)‖
Q(X(tn + s))

〉
yn(s)

]
,

which is equivalent to

dyn

ds
= [H(yn(s))− (yn(s), H(yn(s)))yn(s)] + ‖X(tn + s)‖[Q(yn(s))− (yn(s), Q(yn(s)))yn(s)].

Clearly, yn is bounded,‖yn(s)‖ = 1 for any s and dyn
ds = 1 is bounded too. So, applying the

Ascoli–Arzela theorem (see, e.g. Brezis,1983), one can extract fromyn asubsequence—also denoted by
yn—whichconverges locally, uniformly onR towards some functiony such that‖X(tn+s)‖[Q(yn(s))−
(yn(s), Q(yn(s)))yn(s)]tn→∞ → 0 andy satisfies the following system:

dy

dt
= H(y(t))− (y(t), H(y(t)))y(t), ‖y(t)‖ = 1, ∀ t. (B.6)

Equation (B.6) is defined for allt ∈ R.
Let us, for a moment, focus on the study of (B.6). The steady states ofH are vectorsV satisfying

H(V) = (V, H(V))V.

This is the so-called non-linear eigenvalue. Note that the equation can be alternatively written as

H(V) = φV,

with ‖V‖ = 1; it then holds thatφ = (V, H(V)).
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Thesestationary solutions correspond to fixed direction that the trajectories of (B.6) may reach
asymptotically:

[(φ − 1)v1 + (φ − 1 + λ)v2]v1 = 0, (B.7)

[(φ − λ+ δ)v1 + (φ + δ)v2]v2 = 0, (B.8)

[(φ + μ)v3]v3 = 0. (B.9)

Now, we are in a position to discuss in detail the possibility of reaching the origin following fixed
direction.
Case 1.v1 = 0.

(a) v2 = 0 andv3 6= 0. In this case, there is a possibility of reaching the origin following theP-axis
with φ = −μ.

(b) v2 6= 0 andv3 = 0. In this case also, there is a possibility of reaching zero following theI -axis
with φ = −δ.

(c) v2 6= 0 andv3 6= 0. In this case, there is a possibility to reach the origin either withφ = −δ or
with φ = −μ following the P I -plane.

Case 2.v1 6= 0.

(a) v2 = 0,v3 = 0. In this case, we cannot reach the origin following theS-axis, i.e. to say that the
S-axis is not a fixed direction that the trajectories can follow to reach the zero.

(b) v2 = 0 andv3 6= 0. In this case, we have two possibilities:

(i) with φ = −μ, there is a possibility to reach the origin;

(ii) with φ = 1, there is no possibility of reaching the origin following theSP-plane.

(c) v2 6= 0, v3 = 0. In this case, there is no possibility of reaching the origin following theSI-plane.

(d) v2 6= 0,v3 6= 0.

(i) With φ = −μ, there is a possibility for going to the origin following a fixed direction that
is contained in the positive octant.
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