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SUMMARY

Ratio-dependent models set up a challenging issue for their rich dynamics incomparison to prey-
dependent models. Little attention has been paid so far to describe the importance of transmissible
disease in ecological situation by considering ratio-dependent models. In this paper, by assuming the
predator response function as ratio-dependent, we consider a model of a system of three non-linear
di�erential equations describing the time evolution of susceptible and infected Tilapia �sh population
and their predator, the Pelican. Existence and stability analysis of di�erent equilibria of the system
lead to di�erent realistic thresholds in terms of system parameters. The condition for extinction of the
species is also worked out. Our analytical and numerical studies may be helpful to chalk out suitable
control strategies for minimizing the extinction of the Pelicans. We also suggest that supply of alterna-
tive food source for predator population may be used as a possible solution to save the predator from
their extinction. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Continuous predator–prey models have been studied mathematically since publication of the
Lotka–Volterra equations. In an ecological model to describe a predator–prey relationship, it
is necessary to specify the rate of prey consumption by an average predator. This functional
response largely determines dynamic stability, responses to environmental in�uences and the
nature of indirect e�ects in the food web containing the predator–prey pair. Nevertheless,
measurements of functional responses in nature are quite rare. Recently, much work has
been devoted to compare two idealized forms of the functional response: prey dependent
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and ratio dependent. Prey-dependent functional responses describe the relationship between
an individualist rate of consumption and food density. The behavioural response in which the
quantity of food per predator, or the prey=predator ratio, is substituted for prey density in the
equation is called ‘ratio dependent’ functional response. Most traditional predator–prey models
rest, mechanistically, on the law of mass action—the random encounter between particles in
a homogenously mixed gas or liquid. Under this assumption, the per capita growth rate
of a predator population is determined entirely, by the density of prey. In contrast, ratio-
dependent theory rests, mechanistically, on the law of diminishing returns—the increasing
di�culty a consumer has in meeting its energy demands as its population density rises. Under
this assumption, the per capita growth rate of predator is determined by the demand=supply,
or predator=prey ratio, a fact that can be demonstrated from geometric models of random
search in a �nite environment [1]. Royama [2] recognized two basic kind of attack functions,
which is called ‘instantaneous’ and ‘overall’ hunting equations. The former are de�ned by the
general relationship (in Royama’s symbolism)

n=f(X )Yt

where n is the total number of prey killed during time t. X is the density of prey and Y
is the density of predators. The equation holds if and only if X and Y are �xed during t,
and so only applies as t approaches zero. The above equation is Lotka–Volterra model when
f is linear and Watt–Ivlev–Gause or Monod–Michaelis–Menten–Holling equation when f
is appropriate non-linear predator satiation function. The mass-action predator–prey models
contain instantaneous functional responses.
Overall hunting equations, on the other hand, are captured by the general relationship (again

in Royama’s formalism)

z=F(x0; Yt)

where z is the number of prey killed when prey density is not �xed during t, x0 is the initial
density of prey, and Y is the �xed density of predators during t. This equation includes the
e�ect of diminishing returns because prey density can be reduced during t by predator attacks.
A special case of above equation is the Arditi–Ginzburg [3] formulation

z=F
(x0
Y

)

which is simple and parsimonious way of introducing diminishing returns into the hunting
equation. Because ratio-dependent models capture the e�ect of diminishing returns in the
prey=predator ratio, they can usually be considered, in Royama’s terms, as overall hunting
equations.
Royama [2] clearly demonstrates that many predator–prey models are interrelated and di�er

mainly in their generality, time scales and purpose. The only question is, which form is
more appropriate for modelling a particular situation? Mass action models apply only over an
instant of time, which may not be a serious restriction for systems in continuous motion, like
planets or chemostat. However, for systems in which the objects of interest sleep, hibernate,
or reproduce synchronously in response to diurnal and seasonal rhythms, the restriction may
cause serious problems. In such case it may be more appropriate to use a model that integrates
over the confounding temporal patterns. Hence the overall hunting equation, or the integrated
form of instantaneous equation, may be more appropriate for modelling natural ecosystem.
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Ecology and epidemiology are major �eld of studies in their own right, but there are
some common features between these systems. The system which includes both ecology
and epidemiology are now termed as eco-epidemiology (see, Reference [4]). Prey-dependent
models on such eco-epidemiological situations exist, but ratio-dependent models in the
eco-epidemiology system are less or none.
Since mid-August of 1996, a bacterial outbreak of Vibrio vulni�cus in the Salton Sea among

the Tilapia has led to massive deaths not only among the �sh themselves, but also in the
pelican population. Studies have indicated that the bacterial infection contributes to low oxy-
gen levels in the tissues of the infected �sh. The shortage of oxygen causes the �sh to seek
oxygen from the sea surface and leads to a favourable environment for botulism to grow in
the tissues of the infected �sh. When pelicans prey upon these vulnerable �shes, it is likely
that they ingest the botulism toxins that eventually contribute to the development of Avian
botulism. Avian botulism is a debilitating neurological disease which usually in�icts death
upon its host. Chattopadhyay and Bairagi [5] proposed a mathematical model on this prob-
lem by assuming that the predator population preys only the infected prey population. They
obtained the conditions for which the system around the positive equilibrium is stable. Their
conditions depend on the search rate of the predator. Chattopadhyay et al. [6] modi�ed the
above model by taking into consideration that the predator population consumes both suscep-
tible and infected �sh population. They assumed that the functional response due to predation
of susceptible �sh population and infected �sh population follows Holling type I and Holling
type II functional responses, respectively. In the modi�ed model they obtained the conditions
for which the system will be disease free. As the predator population have to search the sus-
ceptible �sh due to scarcity, the ratio-dependent functional response would be an appropriate
choice.
In this paper, we consider a model of three non-linear di�erential equations consists of

susceptible Tilapia �sh, infected Tilapia �sh and their predator, the Pelican. In our paper we
assume that pelicans will consume whatever is available, be it infected or susceptible �sh to
describe the natural dynamics. We also consider that the functional response for preying the
susceptible �sh is ratio-dependent. We develop these assumptions into a model and then �nd
and classify its equilibrium points and have shown that this model is capable of producing
richer and more reasonable dynamics. We have also shown that when the functional response
due to predation of susceptible prey population has been taken as ratio-dependent the three
population can coexist with stable population distribution for some threshold value of the
force of infection. Numerical experiments are then carried out to con�rm and visualize our
analytical �ndings. Moreover, we try to understand the changes in the dynamics of system in
this situation.

2. BASIC MATHEMATICAL MODEL

We have two populations

(a) The �shes, Tilapia, whose population is denoted by N , number of Tilapia per unit
designated area.

(b) The pelican birds, whose population is denoted by p, number of birds per unit desig-
nated area.
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194 K. KUNDU AND J. CHATTOPADHYAY

The following assumptions are made for formulating the basic di�erential equations:

(1) In the absence of bacterial infection, the �sh population grows according to a logistic
fashion with carrying capacity k and an intrinsic birth rate constant r such that

dN
dt
= rN

(
1− N

k

)

(2) In the presence of bacterial infection we assume that the total �sh population N is
divided into two classes, namely, susceptible �sh population, denoted by s, and infected
�sh population, denoted by i. Therefore, at any time t the total number of �sh population
is N (t)= s(t) + i(t).

(3) We assume that only susceptible �sh populations, s, are capable of reproducing with
logistic law (1) and infective �sh population, i, dies before having the capability of
reproducing. However the infective �sh, i, still contribute with s to population growth
towards the carrying capacity.

(4) The mode of disease transmission follows the simple law of mass action. � is the rate
of transmission (or force of infection).

(5) The disease is not genetically inherited. The infected population does not recover or
become immune. The predator (bird) population preys both susceptible and infected
prey population. The death rate of infected prey population (not due to predation) is �.
The natural death rate of predator is denoted by d.

(6) Here we assume that due to easy availability of infected �sh, functional response
(infected prey eaten per predator per unit of time) follows the Holling type I func-
tional response whereas due to scarcity of susceptible �sh the predator have to search
food, the functional response (susceptible prey eaten per predator per unit time) has
been taken as ratio-dependent.

From the above assumptions, we can now write down the following di�erential equations:

ds
dt
= rs

(
1− s+ i

k

)
− �is− m1sp

ap+ s

di
dt
= �is−m2ip− �i

dp
dt
=
�1sp
ap+ s

+ �2ip− dp

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

as our model.
Here m1 is the search rate of susceptible prey, a is the half saturation coe�cient and �1 is

the conversion factor due to predation of susceptible prey, m2 is the search rate of infected
prey, �2 is the conversion factor due to predation of infected prey.
For simplicity, we non-dimensionalize system (1) with the following scaling:

S=
s
k
; I =

i
k
; P=

ap
k
; rt= �
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with these quantities the system is transformed into a dimensionless form as follows:

dS
d�
= S(1− S − I)− �IS − �1SP

P + S
=F1(S; I; P)

dI
d�
= �IS − �1IP − �I =F2(S; I; P)

dP
d�
=
�2SP
P + S

+ �2IP − 	P=F3(S; I; P)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2)

Clearly the system is not de�ned at (0; 0; 0) so following [7] the system (2) is rede�ned as

dS
d�

= S(1− S − I)− �IS − �1SP
P + S

=F1(S; I; P)

dI
d�
= �IS − �1IP − �I =F2(S; I; P) (3a)

dP
d�

=
�2SP
P + S

+ �2IP − 	P=F3(S; I; P)

F1(0; 0; 0) = 0 F2(0; 0; 0)=0 F3(0; 0; 0)=0 (3b)

where �= �k=r; �1 =m1=ar; �1 =m2k=ar; �2 = �2k=r; �=�=r; 	=d=r; �2 = �1=r. For conve-
nience, in the following, time � is replaced by t as the dimensionless time. Initial condition
for system of Equation (2) is given by, S(0)= S0¿0; I(0)= I0¿0 and P(0)=P0¿0 which
are biologically meaningful.

3. BOUNDEDNESS

Due to the boundedness of the functional responses, we see that

lim
(S; I; P)→(0;0;0)

F1(S; I; P)= lim
(S; I; P)→(0;0;0)

F2(S; I; P)= lim
(S; I; P)→(0;0;0)

F3(S; I; P)=0

Using Equation (2) we can conclude that the functions F1(S; I; P), F2(S; I; P) and F3(S; I; P) are
continuous functions on R+

3 = [(S; I; P) : S¿0; I¿0; P¿0] [8,9]. Straightforward computation
shows that they are Lipschizian on R+

3 . Hence the solutions of (2) with non-negative initial
condition exist and are unique. It is also easy to see that these solutions exist and stay non-
negative for all t¿0. In fact, if S(0)= S0¿0, then S(t)¿0 for all t¿0. Same argument is
valid for I and P-component. Hence, the interior of R+

3 is an invariant set for the model
system (2). Our next task is to consider the boundedness of the solutions of system (2).

Lemma 3.1
All the solutions which initiate in R+

3 are uniformly bounded if the condition (�1=�2)¡(�1=�2)
is satis�ed.

Proof
We de�ne W = �2S + �2I + �1P.
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196 K. KUNDU AND J. CHATTOPADHYAY

The time derivative of W along the solutions of (2) is

dW
dt
= �2S(1− S − I)− �2�1IP − �2�I + �1�2IP − �1	P

Now for each �¿0 and for the condition (�1=�2)¡(�2=�1) we have

dW
dt

+�W6((1− S) + �)�2S + (�− �)�2I + (�− 	)�1P

Now, if we take �¡min(�; 	) then the right-hand side of the above equation is bounded and
we can de�ne a constant l=(�2(1 + �)2=4)(¿0) such that (dw=dt) + �W6l.
Thus applying the theory of di�erential inequality [10], we obtain

0¡W (S; I; P)¡
1− e−�t
�

+W (S(0); I(0); P(0))e−�t

and for t → ∞ we have

0¡W¡
1
�

Hence all the solutions of the above system (2) that initiate in R3
+ are con�ned in the region(

B= S; I; P ∈ R3
+ : W =

1
�
+ 
; for any 
¿0

)

4. EQUILIBRIA AND THEIR EXISTENCE

For population models in deterministic environments, with the environmental parameters are
all well-de�ned constants, it is a natural curiosity to �nd out the community equilibria
where all the populations have time independent values, that is where all net growth rates
are zero. Classical three species predator–prey models always possess at least four equi-
librium points: (i) trivial equilibrium, (ii) axial equilibrium, (iii) plannar equilibrium, (iv)
positive interior equilibrium [11]. As observed by Freedman and Mathsen [12], Kuang and
Beretta [13] and Jost et al. [14], ratio-dependent models are not well de�ned at the origin.
Hence the system (2) is not well-de�ned at the origin (0; 0; 0) and thus cannot be linearized
around (0; 0; 0). This is responsible for the ratio-dependent predator–prey model system to
have very rich and complicated dynamics around (0; 0; 0). The system of Equations (2) has
�ve equilibria, one is E0(0; 0; 0) (though system (2) cannot be linearized around E0(0; 0; 0))
and the second is E1(1; 0; 0), the third one is E2((�=�); (�− �=�(1 + �)); 0), the fourth one
is E3((�2(1− �1) + �1	)=�2; 0; ((�2 − 	)(�2(1− �1) + �1	)=	�2)). The �fth and most interesting
equilibrium point (from biological point of view) is E∗(S∗; I∗; P∗) where S∗; I∗ and P∗ are
non-zero positive solutions of the equations F1(S; I; P)=F2(S; I; P)=F3(S; I; P)=0, where S∗

is the real positive root of the quadratic equation

f(S) = (��2 + �1�2)S2 − (��2 + �1�2 + ��2 + �1�2 − �	− �1	+ ��1�2 − �2	

− ��1	− �1�2�)S + (��2 − �	− ��	− �1�2�)=0
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and is given by S∗=(k1 + A)=B where k1 = (��2 +�1�2 +��2 +�1�2−�	−�1	+��1�2−�2	−
��1	− �1�2�)

A = [k21 − 4k2(��2 + �1�2)]1=2

k2 = ��2 − �	− ��	− �1�2�

B = 2(��2 + �1�2)

I∗ and P∗ are given by I∗=((�	s∗+�1	s∗−�1�2s∗−�	)=�2(�s∗−�+�1s∗)), P∗=(�S∗−�)=�1,
respectively.

Remark 4.1
It is easy to see that equilibria E0 and E1 exists for all parameter values. The plannar equilibria
E2 and E3 exist if �¿� and �2¿	, �1¡(�2=(�2 − 	)), respectively.
Remark 4.2
If the condition �2¡(	(1 + �)=(1− �1)) is satis�ed then there exists an unique positive real
root S∗ of the equation f(S)=0. In order to have P∗¿0 we must have S∗¿�=�. Moreover,
I∗¿0 implies S∗¿(�	=(�	+ �1	− �1�2)). Therefore the interior equilibrium E∗(S∗; I∗; P∗)
exists if the conditions (i) �2¡(	(1 + �)=(1− �1)), (ii) S∗¿max((�=�); (�	=(�	+�1	−�1�2)))
are satis�ed.

5. CONDITIONS FOR EXTINCTION

At the trivial equilibrium E0, the Jacobian matrix is not de�ned. Let us now for a moment,
consider in a general context, that is to say we consider a system in RN

dX
dt
=H (X (t)) +Q(X (t)) (4)

in which H is C1 outside the origin, is continuous and homogenous of degree 1.

H (sX )= sH (X )

for all s¿0, X ∈RN , and Q is a C1 function such that

Q(X )= o(X )

in the vicinity of the origin.
Throughout the section, ‖:‖ denotes the Euclidean norm on RN and (: ; :) the associated

inner product. In the case of our model, N =3

X = (x1; x2; x3)= (S; I; P)

H (X ) = (H1(X ); H2(X ); H3(X ))

Q(X ) = (Q1(X ); Q2(X ); Q3(X ))

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:191–207



198 K. KUNDU AND J. CHATTOPADHYAY

The function Hi and Qi (i=1; 2; 3) are given by

H1(X ) = x1 − �1x1x3
x1 + x3

H2(X ) = −�x2

H3(X ) = −	x3 + �2x1x3
x1 + x3

Q1(X ) = −x21 − x1x2 − �x1x2
Q2(X ) = �x1x2 − �1x2x3
Q3(X ) = �2x2x3

Let X (t) be a solution of system (4). Assume that lim inf t−→∞ ‖X (t)‖=0, and X is bounded.
One can extract from the family (X (t + :))t¿0 sequences X (tn + :); tn −→ ∞, such that
X (tn + :) −→ 0 locally uniformly on s∈R.
De�ne

yn(s)=
X (tn + s)

‖X (tn + s)‖ (5)

Recall that

Q(X )= o(X )

in the vicinity of the origin. We can then write Q as

Q(X )= (‖X ‖)20(1) (6)

We have

dX (tn + s)
ds

=H (X (tn + s)) +Q(X (tn + s)) (7)

From (5), we have

X (tn + s)=yn(s)‖X (tn + s)‖ =yn(s)〈X (tn + s); X (tn + s)〉1=2 (8)

Now using the derivative of 〈X (tn + s); X (tn + s)〉 with respect to s
d
ds
(〈X (tn + s); X (tn + s)〉)=2

〈
X (tn + s);

dX (tn + s)
ds

〉

in (8), we obtain

d(X (tn + s))
ds

=
dyn(s)
ds

(‖X (tn + s)‖) + yn(s)
‖X (tn + s)‖

〈
X (tn + s);

dX (tn + s)
ds

〉
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Therefore, we have

H (X (tn + s)) +Q(X (tn + s)) =
dyn(s)
ds

‖X (tn + s)‖+ yn(s)
‖X (tn + s)‖〈X (tn + s); H (X (tn + s))

+Q(X (tn + s))〉

Now dividing by ‖X (tn + s)‖ and replacing X (tn + s)=‖X (tn + s)‖ by yn(s); we obtain
dyn(s)
ds

= H (yn(s))− 〈yn(s); H (yn(s))〉yn(s)

+ ‖X (tn + s)‖
{

1
‖X (tn + s)‖2 Q(X (tn + s))

−
〈
yn(s);

1
‖X (tn + s)‖2 Q(X (tn + s))

〉
yn(s)

}

which is equivalent to

dyn
ds
=[H (yn(s))− (yn(s); H (yn(s)))yn(s)] + ‖X (tn + s)‖[Q(yn(s))− (yn(s); Q(yn(s)))yn(s)]

Clearly, yn is bounded, ‖yn(s)‖=1 for any s and (dyn=ds)=1 is bounded too. So applying the
Ascoli–Arzela theorem (see, e.g. Reference [15]), one can extract from yn a subsequence—
also denoted by yn—which converges locally uniformly on R towards some function y such
that ‖X (tn + s)‖[Q(yn(s)) − (yn(s); Q(yn(s)))yn(s)]tn→∞ → 0 and y satis�es the following
system:

dy
dt
=H (y(t))− (y(t); H (y(t)))y(t); ‖y(t)‖=1 ∀t (9)

Equation (9) is de�ned for all t ∈R.
Let us, for a moment, focus on the study of Equation (9). The steady states of H are

vectors V satisfying

H (V )= (V;H (V ))V

This is the so-called non-linear eigenvalue. Note that the equation can be alternatively written
as

H (V )=�V

with ‖V‖=1; it then holds that �=(V;H (V )).
These stationary solutions correspond to �xed direction that the trajectories of Equation (9)

may reach asymptotically

[(�− 1)v1 + (�− 1 + �1)v3]v1 = 0 (10)

[(�+ �)v2]v2 = 0 (11)

[(�+ 	− �2)v1 + (�+ 	)v3]v3 = 0 (12)

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:191–207
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Now, we are in a position to discuss in detail the possibility of reaching the origin following
�xed direction.

Case 1: v2 = 0

(a) v1 = 0 and v3 �=0.
In this case, there is a possibility of reaching the origin following the P-axis with �= − 	
(b) v1 �=0 and v3 = 0:
In this case, there is no possibility to reach the origin following S-axis.
(c) v1 �=0 and v3 �=0:
In this case, there are two subcases

Case i: If �2 + �1	¡�1�2 there is no possibility of going to the origin following a �xed
direction that is contained in the positive octant.
Case ii: If �2 + �1	¿�1�2 the trajectories may follow a �xed direction that is contained in

the positive octant.

Case 2: v2 �=0. In this case the trajectory always follow the P-axis to reach the origin.
Under these conditions, discussed above, it is possible to reach the trivial equilibrium point

E0(0; 0; 0) and hence E0 is an attractor for the model system (2).

6. BEHAVIOUR AROUND THE OTHER EQUILIBRIA

Theorem 6.1
The axial equilibrium E1(1; 0; 0) is unstable saddle along the S-axis if �¿� (which is the
condition of existence of E2). Existence condition of E2 itself shows that it is unstable saddle.
The plannar equilibrium E3 is unstable saddle if (a+ �− �)(e�+ h(�− �))¿bd�.
Proof
In order to �nd the stability of the other equilibria we have to calculate the Jacobian matrix
J (S; I; P) for system (2) at any point (S; I; P) within the �rst quadrant of SIP-plane except
origin, and is given by

J =

⎡
⎢⎢⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎥⎦

where a11 = (1−S−I)−�I−(�1P2=(P + S)2), a12 =−(1+�)S, a13 = (−�1S2=(P + S)2), a21 = �I ,
a22 = �S−�1P−�, a23 =−�1I , a31 = (�2P2=(P + s)2), a32 = �2P, a33 = (�2S2=(P + S)2)+�2I−	.
The eigenvalues of the variational matrix for the equilibrium E1(1; 0; 0) are given by −1,

(�−�), (�2−	). Therefore, it is easy to say that if the equilibrium E2 exists then automatically
E1 is unstable saddle in nature.
Further the eigenvalues of the variational matrix for the equilibrium E2 are �′

1 and �
′
2 which

are the roots of the equation

�2 +
�
�
�+

�(�− �)
�

=0
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and clearly �′
1 and �

′
2 have negative real parts (as �¿� for the existence of E2). Now if

�′
3¿0 i.e. if (�2 − 	) + (�2(�− �)=�(1 + �))¿0 then E2 is a unstable saddle. Now �′

3¿0
if the conditions (�¿�) and (�2¿	) (which is the existence condition of E3) are satis�ed.
Therefore, we can say that existence conditions of E2 and E3 imply the unstable saddle nature
of the plannar equilibrium E2.
Further the eigenvalues of the variational matrix for the equilibrium E3 are �1, �2 which

are the roots of the equation

�2 − B�+ C=0
where B=(1 − 2S3 − (�1P23=(P3 + S3)

2) + (�2S23 =(P3 + S3)
2) − 	); C=(1 − 2S3)((�2S23 =

(P3 + S3)2)− 	) + (	�1P23=(P3 + S3)2).
Here S3 = (�2(1− �1) + �1	=�2), P3 = ((�2 − 	)S3=	) and �3 = �S3 − �1P3 − �.
Now if the condition �3¿0, i.e. ((�2(1− �1) + �1	=�2))((�	+ �1	− �1�2=	))¿� is satis�ed

then E3 is a unstable saddle in nature.
Next we assume that the interior equilibrium exists and study its local stability. This

will yield some analytic and computational conditions for stable coexistence of all three
species.

Theorem 6.2
If the conditions

(i) S∗¿�1=2.
(ii) �2¿(�1��2S∗=(1 + �)�1P∗) then the interior equilibrium E∗ is locally asymptotically

stable.

Proof
The variational matrix of system (2) around the positive equilibrium E∗(S∗; I∗; P∗) is

V =

⎡
⎢⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎥⎥⎦

where A11 = (�1S∗P∗=(P∗ + S∗)2)−S∗, A12 =−(1+�)S∗, A13 = (−�1S∗2=(P∗ + S∗)2), A21 = �I∗,
A22 = 0, A23 = − �1I∗, A31 = (�2P∗2=(P∗ + s∗)2), A32 = �2P∗, A33 = (−�2S∗P∗=(P∗ + S∗)2).
For positive equilibrium E∗(S∗; I∗; P∗), the characteristic equation is given by

X 3 + 
1X 2 + 
2X + 
3 = 0

where the coe�cients 
I ; I =1; 2; 3 are


1 = −(A11 + A33)


2 = (A11A33 − A12A21 − A23A32 − A13A31)


3 = (A11A23A32 + A12A21A33 − A12A23A31 − A13A21A32)
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From Routh–Hurwitz criterion, E∗ is locally asymptotically stable if and only if 
1¿0; 
3¿0
and 
1
2¿
3.
Now 
1 = (S∗ + (�2S∗P∗=(P∗ + S∗)2)− (�1S∗P∗=(P∗ + S∗)2)).
The condition for 
1¿0 is S∗¿(�1S∗P∗=(P∗ + S∗)2). Simplifying we get if S∗¿�1=2 then


1¿0.
Here 
3 = (S∗ − (�1S∗P∗=(S∗ + P∗)2)) + �(1 + �)S∗I∗(�2S∗P∗=(P∗ + S∗)2)− �1(1 + �)S∗I∗

(�2P∗2=(P∗ + S∗)2) + ��2I∗P∗(�1S∗2=(P∗ + S∗)2).
The condition for 
3¿0 is ((1 + �)S∗I∗P∗=(P∗ + S∗)2)(��2S∗ − �1�2P∗)¿0, i.e. if

�S∗¿�1P∗, i.e. if �S∗¿(�S∗ − �) (putting the value of P∗) which is obvious.
After tedious computations, we have 
1
2¿
3 if the condition �2(1 + �)�1P∗¿�1��2S∗

is satis�ed.

7. RESULTS AND DISCUSSION

In this section we use numerical experiments to con�rm and visualize our analytical �ndings.
The dynamics of system (2) around the positive interior steady state has been numerically
simulated for a wide range of parameter values. We consider the hypothetical set of parameter
values as r=0:9=day, k=50 tonnes, m1 = 0:4=day, a=1:2 tonnes, �=0:25=day, m2 = 0:08=day,
�=0:02=day, �1 = 0:25=day, �2 = 0:01=day, d=0:06=day. These satisfy the existence condi-
tion and stability condition. The speci�c growth rate r of the susceptible prey S and the
force of infection � are the two parameters that directly in�uence the population density of
the preys.

7.1. Dynamics of the system for increasing rate of infection �

The dynamics of the three populations (for r=0:9), around E∗, for increasing � is shown in
the following �gures:

(a) The infected prey population does not persist below a minimum strength (thresh-
old) of infection (�min =0:21), and hence, the disease does not spread in the prey
population. For �¿0:21, there is a range of (0:21¡�¡0:343) where both the sus-
ceptible and infected �sh population co-exist at equilibrium with their predator
population.

(b) Increasing � (when �¿0:342= �max) further induces instability in the system. If the
force of infection exceeds its threshold value (�¿0:342) we observe that predator pop-
ulation tends to extinction whereas both susceptible and infected �sh population oscillate
with �uctuating amplitude. This is not as usual observation, perhaps some chaotic dy-
namics may observe in such situation. As this part is not our interest for this paper,
we are leaving this for our future study.

Figure 1 also shows that the response of the susceptible prey population and therefore
the predator population for increasing force of infection is highly non-linear. These threshold
phenomena for the force of infection may be used as a control parameter for monitoring
the system.
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Figure 1. (a) The �gure depicts the stable population distribution of three species around the inte-
rior equilibrium point for �=0:25; (b) the �gure depicts the extinction of infected prey population
for �=0:21; (c) the �gure depicts the coexistence and stable population distribution around E∗ for
�=0:342; and (d) the �gure depicts the �uctuating oscillations of susceptible and infected �sh popu-

lation whereas the predator population tends to extinction.

7.2. Population stability in (�− r) parameter space
Figure 2 shows the stability of system equation (2) obtained through linear stability analy-
sis, for variation in both the force of infection (�) and the speci�c growth rate (r) of the
susceptible prey. Here we observe that �max is the increasing functions of the growth rate r
of the susceptible prey but the growth rate r does not a�ect the value �min. Thus, this system
(susceptible and infected �sh and their predator Pelican) co-exist for a larger range of values
of the force of infection � for prey species with higher growth rates.
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Figure 2. (a) The �gure depicts the stable population distribution for r=1:5 and �=0:4; and (b) the
�gure depicts the extinction of infective population for �=0:21.

Since �min is �xed, the infected prey I¿0 for �¿�min =0:21 indicating that there is a
minimum threshold of the force of infection, below which the infected population does not
persist and hence the disease does not spread.

7.3. E�ect of rate of infection (�) when infected population has negative e�ect on the
growth rate of predator

Next we go through the regions where there are interesting dynamics and shed new light
on their physical meaning. We consider that the conversion factor due to predation of in-
fected prey of the predator is negative. By taking the hypothetical set of parametric values
m1 = 0:4=day, �=0:15=day, m2 = 0:08=day, �1 = 0:3=day, �2 = 0:01=day, and taking the other
parameters �xed we observe that all the three population show the stable coexistence:

(a) The infected prey population does not persist below a minimum strength (threshold) of
infection (�min =0:148), and hence, the disease does not spread in the prey population.
For �¿0:148, there is a small range of �, (0:148¡�¡0:165) where both the suscepti-
ble and infected �sh population co-exist at equilibrium with their predator population.
Increasing � (when �¿0:165) further induces instability in the system. If � exceeds the
value 0.165 it has been shown that the susceptible prey population as well as predator
population goes to extinction.

(b) If predation rate of taking infected prey is larger than predation rate of taking sus-
ceptible prey (keeping the other parameter �xed varying m1 = 0:1=day, m2 = 0:25=day,
�1 = 0:08=day, �2 = 0:09=day) the infected prey population does not persist below
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Figure 3. (a) The �gure depicts that the stable population distribution around the interior equilibrium for
�=0:15; (b) extinction of infective prey population for �=0:148; (c) extinction of susceptible prey as
well as predator when �=0:166; (d) extinction of infective population for m1 = 0:1=day, m2 = 0:25=day,
�1 = 0:08=day, �2 = 0:09=day, �=0:0534; and (e) extinction of susceptible prey as well as predator

population for m1 = 0:1=day, m2 = 0:25=day, �1 = 0:08=day, �2 = 0:09=day, �=0:055.
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Figure 4. Stable coexistence of three population for m1 = 0:1, m2 = 0:25, �1 = 0:08,
�2 = 0:09, �=1, r1 = 0:23, k1 = 20.

a minimum strength (threshold) of infection (�=0:0534). For �¿0:0534, the preda-
tor population goes to extinction (Figure 3).

When predation rate of taking infected prey is larger than predation rate of taking suscep-
tible prey then numerical results shows that for a small �=0:0534 we can get an infected
prey free region. If �¿0:0534 the predator population goes to extinction. So we should think
about how the predator can population survive? Is there any way? Our suggestion is that
alternative food source may overcome this situation. In such context, model system (1) takes
the following form:

ds
dt
= rs

(
1− s+ i

k

)
− �is− m1sp

ap+ s

di
dt
= �is−m2ip− �i

dp
dt
= r1

(
1− p

k1

)
− �1sp
ap+ s

+ �2ip

where r1 is the speci�c growth rate of predator population and k1 is the carrying capacity of
the predator population. We also observed that if r1¿0:23 then the system exhibits the stable
population distribution of three species for large value of � (Figure 4).
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