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1.0 Introduction : , The study described below was aimed at as-
Remote sensing is a useful tool in monitoring . Scesing ﬂile is_pectrgl separabll'lty of vc.ageta.tlon classes
: . . M& in a part of the Vindhyan Hills, India using IRS-1A
and inventorying land use and vegetation (Aldrich g gata  The impact of multiband image
1975, Tateishi er al. 1991, Murai and Honda 1991 enhancen%lent.s on s ectfal separability was élfo A
and Tiwari ef al. 1991). Information extraction from assessed. | P : Y
- satellite data can be done through visual interpreta- \
tipn (Beaubien" 1986) or through computer-aided 2.0 Stu:dfy Area
digital processing (Horler and Ahren 1986). The . '

identification of various vegetation or land-cover = . P . . _ -
classes from remotely sensed data is mainly depend- latitude and between 82°25' and 83732 E longitude in

ent on their spectral response and spectral separa- the Vindhyg}an Hills of Uttar Pradesh, India. The area
bility. (Jenson 1986 and Singh 1987). A number of hasa seafsc})nally dry tropical climate, gion}inated bya. .
enhancement algorithms are currently available to  typical monsoon scason. There are three seasons:.
increase the spectral separability between classes. winter (November to February), summer (April to.

. ] gl .
(Sabins 1987 and Jenson). Most of the studies June) and| rainy (July to September). March and
October! are transition months between winter and

-summer: and between the rainy season and Win,ter,

of classes. Assessments of the spectral separability res(?ecFi\;/e;ly. The temperatul;e ranges ﬁom. 10° to -
of vegetation cover classes have been carried out for 25°C in' wanter and from 30° to 45°C in SUIME.
northeastern India by Singh using Landsat MSS . The average annual rainfall is 820 mm, of which 86

' data, for the western Himalayan forests by Tiwari per g:ent: i% contributed by the monsoon.
et al. using IRS-1A LISS-I data and for _t}}e Andaman 3.0 Mjetlho d
Island forests by Roy et al. (1991) using Landsat A
TM data. However, no literature is available on A subscene of 1,300 x 1,300 pixels was

' spectral separability of dry tropical vegetation types. extracte;d from an IRS-1A LISS-I scen¢ of 16
~ October 1988. Digital processing was carried out

using al VAX 11/780 computer with VIPS-32 and
indigen@qs software at the Regional Remote. Sensing
Service' Qentre, Dehra Dun. Two kinds of multiband . -
image enhancements were carried out for the study: .
2 Regional Remote Sensing Service Centre, Dehra Dun, India. - princip ?.l c omponent analysis (P C A) and h_ue satura- .
3 Botany Department, Banaras Hindu University, Varanasi, India. © tion intcgenlsity transformation (HSI).

' Thé_s,[tudylarea lies between 23°50' and 24°40'N

carried out on vegetation class identification using
enhanced data have been based on visual separation

! National Remote Sensing Agency, Hyderabad, India.
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The purpose of PCA1 is t.b. compress all the
information from the original ﬁour-bard} data into
fewer principal components. The procedure employs
a linear transformation inl which the axis of the
original variable is geometrically rotated.! The out-
put PCA images are then noxmalifzed with a Gaussian
stretch. ' AR

. L :

In HSI transformation, hue" fefers to ithe domi-
nant or average wavelength of the light cohtributing
to a colour; saturation sp§ciﬁ¢$ ‘the prin’i:ty of the
colour relative to grey: and intefn;sity relates to the
 total brightness of a colour, In éthe hexagon model
approach, intensity is deﬁn]ed by| the dis Lalhce along
the grey line from'bla‘c‘k to any, given lzlexagonal
projection. Hue is exprésse(i‘i by the angle around the
hexagon, and saturation as the distance from the grey
point at the centre of the hex‘agonf. ‘The f4 'n!her away
from the grey point, the morc’Séturaféd t}jfle colour
(Schowengerdt 1983). For flthe HSI transformation,
bands 2, 3. and 4 of the IRS-1!LISS-I data were
normalized using a Gaussialrl st_re;tgh.

Unsupervised classiﬁ]catioﬁ; was (:a;rried out
using all four IRS bands to obtain firsthad informa-
tion on classification possibilities. ' The classification
resulted in 40 classes, which w%:r‘e're'gmui)ed after
field checking to generate a Vegqmtion iraf) (Figure
1). From this map, nine classes frepresenf;ing rela-

tively pure vegetation claslses on the ground were

identified. In each of these classés, samp o windows
of 150 to 200 pixels were identif;ied. There was no
mixing of other classes on the gfré)und witﬁin these
windows. The windows were used to generate a
groundtruth mask and to comput‘c:fspectra'l ':statistics
‘using all four IRS bands, three IRS bandy (2, 3 and
4), all HSI bands and all PCA bands as input.

f

- b
The spectral statistics for various classes were

N ) 1
used to generate divergence matrices. - The diver-

gence matrices were convert ed to ;trgansfomne:d diver-

-gence ‘matrices, which scaled the!divergence values
|

~ between 0 and 2,000 (Kumar an_fdf Silva 9:77), A

transformed divergence value of 2,000 wasconsid-

ered to show excellent separabilityl;§1,900.to f<2,'000,

good separability; and 1,700 to {<§-1,900., m;oder_ate

separability. * Transformed dive'l’r’ge'ncc values ‘of

<1,700 were considered to show poor separa;ltion‘
4.0 Results and Discussion B }
4.1 Visual Interpretability | of -Viegretation ;Classés

: o | |
The false colour compo site'(f)f_ IRS bzm;ds 4 3

18

and 2 mainl)'} depicted 'two forest classes, i.e., closed
and open. In the FCC, tree savannas could not be
separated from open forests; degraded grass savannas
could not be: separated from nonforests; and mixed
forests, Shoiea-dominated forests (SDF) and Aca-
cia-dominated forests (ADF) could not be separated.

A colour composite generated by passing PCA
bands 1, 2 and 3 through red, green and blue planes
led to a somewhat better identification of classes. In
the PCA colour composite, mixed forest classes with
more than 50 per cent crown cover (M1) and with 40
to 50 per cent crown cover (M2).were separated in a
few areas. In some cases, tree savanna classes with
Holarrhena (TSH) and with Zizyphus (TSZ) were
merged with M2. Acacia- and Shorea-dominated
forests (ADF and SDF, respectively) could not be
separated from the mixed forest with 30 to 40 per

~ cent crown cover (M3). These three classes (ADF,

SDF and M3) were, however, collectively separated
from other classes. Grass savanna (GS) and de-
graded grass savanna (DGS) could not be identified
precisely.

The colour composite generated using HSI

transformation images indicated that TSH and M3

can be separated from each other, as well as from
other classes. Shorea- and Acacia-dominated forests
could not be separated from each other but were
collectively identified as a single class.

4.2 Statistical Analysis bf Sepafability

The spectral response of various vegetation

classes in different IRS-1A LISS-I bands is pre-
. sented in Figure 2. Three classes of mixed forest

(M1, M2 and M3) exhibited very close mean digital
number (DN) values in bands 1, 2 and 3, but they
could be separated from each other in band 4.
Shorea-dominatéd forests exhibited wide overlap
with mixed forest classes in the first three bands (1,
2 and 3). The two classes of mixed forest (M1 and
M2) with greater than 40 per cent crown cover were
discriminated in band 4. In the same band, the M3
class marginally overlapped the Shorea-dominated
forests class. Acacia-dominated forests exhibited
overlap with SDF as well as with TSH in band 1.

ADF was distinguished from TSH in bands 2 and 3
and from SDF in band 4.

The principal component analysis changed the
data structure through multidimensional axis rota-
tion. The first principal component represented
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Table 1.

. 4,"\/'2 13 per cent of the information (Table 1) and
~5rresponded with the soil brightness index of the

.
v Wyw

‘tasselled cap transformation (Kauth and Thomas
1976). The highest mean DN value in PCA 1 was
observed for degraded grass savanna (Figure 3),
which included a higher proportion of bare soil areas
than did other vegetation types.
DN values were recorded for M1 and M2. PCA 2
represented 25.41 per cent Of the information and

~exhibited a trend similar to the tasselled cap green- .

ness index. The general pattern of mean DN values

for various classes was similar to that of band 4 of
 the original IRS data, except for the M3 class, which -
~ overlapped with SDF and TSZ in band -4 but was

separated in PCA 2. PCA 3 represented only 2.46
per cent of the information. All the classes had high

- standard deviation values, which 1ndlcates a consid-

“erable overlapping of classes.

The hue saturation intensity image indicated
“overlapping digital numbers for all the forest and tree
'savanna classes (Figure 4). Grass savanna (GS) and

degraded grass savanna (DGS) overlapped each

other. The lower values for forest and tree savanna
classes reflect their position in the red portion of the

spectrum in the FCC of raw IRS bands, -and the
intermediate values for GS and DGS represent the
yellow region of the spectrum. Colour saturation

was, in general, higher for mixed forests, Shorea-

dominated forests and tree savanna with Zizyphus. -

The lowest saturation was observed for the GS and -
- DGS classes.
.- photosynthetic parts of the vegetation and the result-

ing lower DN values in the original IRS band 3

“mainly serve to regulate the saturation of vegetatlon. -
~ classes. "The higher the absorption in the red band

The absorption of red light by the

The lowest mean

|

| : ' _
(band 3), the higher the saturation. The trend. of-
saturation can thus be considered as an indicator of
“the - productive potential of the vegetation.classes.
The lughest intensity values were recorded for M3,

followed | by the degraded grass savanna. The lowest

intensity was exhibited by M1 and M2.

o . . . ~
Parnwrse transformed divergence matrices were

generated for the raw IRS bands and for the en-

hanced 1data The transformed divergence matrices
for all four IRS bands, for three IRS bands (bands 2,
3 and 4) for the HSI transformation and for the PCA

-_,are presented in Tables 2, 3, 4 and 5, respectlvely .

The fourg raw bands of IRS-1A LISS-I exhibited
poor separablhty only for one class pair, i.e., M1 and
M2, whgle the three IRS bands, which are commonly, .
used for the generation of FCCs (bands 2, 3 and 4),
showed‘ poor spectral separability between the fol-
lowing classes: M1 and M2, MI and T52, M2 and
T52, M3 and T52, and M3 and SDF. The HSI
images | generated from IRS bands 2, 3 and 4
exhibited| results comparable to those from the four
raw IRS bands. However the class pairs ADF and
-TSH, and GS and DGS “which represented moderate
separablllty in four IRS bands, were poorly sepa-.
‘rated in the HSI transformation. Among these two -
classes, the former had a moderate separablhty in the
three IRS bands (2, 3 and 4).

tion. The class pairs DGS and GS;-and ADF and -

. TSZ did, however, show better separability in the
~ PCA bands than in the HSI transformation. On the
" other hand, HSI exhibited a better separability per- .

"formance for the class pairs M1 and SF, M3 and .
TSZ, M3_ and GS, SF and GS, and AF and GS. - .

-The principal .
' component analysis output bands (3 bands) exhibited
a performance similar to that of the HSI transforma-

. Statistics for principal componeht analysis
Correlatiojn Matrix
Bal Ba2 1 Ba3: Bad
Bal - : ' 1000 0944 0.879. 0.317
"Ba2 _ : - 0944 1.000 -0.952 0.103
. Ba3 S v 0.879 10.952 1.000 0.023
Ba4 : 0.317 0.103 -0.023 1.000-
PCA 0utput I}ands
-Ontput bands- Coefficients of eigen vectors Pcrccnt'agc -
i Eigen values of information -
Bal Ba2 . Ba3 - Ba4 . '
1 0.57484 0.57906 : 0562]2 0.351390 2.885320 72,133
.2 0.10585 -0.12484 -0.21130 0.963619- 1.016402 25410 A
3 . 0.62052 0.15151 . -0.73997 L(.210790 0.009438 1.859 °

Volume 6, Number 1, July 1993 v » 19




i

|

" ' ' i : L i
Pairwise class dl\'ergence and transformed divergence (in parentheses) for four raw IRS LISS-1

suited for vegetation identiﬁ?atior in the study area
if only three bands are to be tak
cially when HSI i s to replace the n

‘The first three prmc1pal co
the normal FCC bands.

could provide better- separab
raw IRS b_ands were used. . L

.20

T;I‘onents can also

°n as 1nput, espe-
ormal F( C bands.
yreplace

e selectlon of HSI or
PCA'is dependent on the classes that are to be- given
priority for higher accuracy. ‘ Neither HSI nor PCA

N

111ty than when all four

Table 2. , '
ban(ls ay .
- - : ,
Class M1 M2 . M3 ! - SDF ADF TSH TSZ GS
: - ,
M2 s - 00 ;
’ (1,525.0) . i :
M3 490 o 389 1 T 00
: (1,995.6) .- . (1,984.5) ] _ - ,
SDF '~ S 641 569 't 229 00
' $(1.9993) T (1.9984) PYosssyy
ADF. 752 TUS70 . 626 - v 1511 0.0
1,9998)  (19984).  (19992)  (2,000.0)
TSH 284 182 f o6l . 1373 17.0 0.0
: (1,942.6) (17942) 1 (1,999.1) - (2,000.0) (1,761.1) ‘
TSZ 240 o419 l‘ 24.1 783 58l 41.1 0.0 -
GS So29 10001 67 . . 91 55.9 110.7 143.7 0.0
7 (2.000.0) - (2 000. 0)|' (1,999.3)" - . (2,000.0) (1,998.2) (2,000.0) (2,000.0)
DGS - 27097 234 1200 1403 1787 276.4 2513 17.0
. (2,000.0) " (2,000.0) ‘;; (2.000.0) . © (2,0000) ~ (20000)  (20000) (2.000.0) (1.761.1)
. l b ’ l ol - : . - :
Table 3. Parrwnse class dlvelrgence and tr ansfo‘rmed divergence (in parentheses) for three raw IRS LISS-I
bands (bands 2; 3 and 4)\ i ,
: _ . !
Class ML M2, M3 | SDF ADF TSH TSZ GS
: Moo L | -
M2 03 . 0.0 ;. '
. (73.6) ¥ !
M3 33 133 ] , 0
(1,3240) . (1,3|24.0).; L _
SDF 476 . 323 14.5 ©00
(1,994.8) - (1,964.7) ' (1,673.5) '
ADF 637 569 11 309 11300 0.0
(1.999.3) . (1,998. 4). 0 (1,958.0)° (20000
TSH 197 <173 ) 4 . 976 16.5 0.0
A (1.829.6) (1,769.9) 1  (1,300.1) © (2,000.0)  (1,745.7)
TSZ CoL121 0.8 44 73.3 20.6 16 . 0.0
: Y (1,559.0) (1481:5) | (846.1) , (1,999.8) (1,847.7) (362.5) ‘
GS 1214 932 sld 46.7. 539 105.4 99.2 0.0
‘ *(2.000.0) @ o’oo 0) ' (1,996.8) (1.9942)  (1,997.6) (2,000.0) (2.000.0)
DGS - 2543 203.4. 1237 103.1 1685 254.7 2329 11.3
+(2,000.0) (20000) (2,000.0) * (2,000.0) (2,000.0) (2.000.0) (2,000.0) (1.512.9)
A study of the transformation divergenceé ma- 5.0 Conclusions
trices suggests that the HSI transfonnatlclyn| is best b : ‘
The study indicated that the four raw IRS

bands produce the best spectral ‘separability for
vegetation classification. However, 'if the number of

~ bands is to be restricted to, three, HSI and PCA
" provide results closer to those from the four IRS

bands. However the performance of HSI and PCA
is far better in companson to the three IRS bands (2,

-3 and 4) that are commonly used for the generation

of a standard F CC.
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Table 4. Panrwnse class divergence and transformed dlvergence (m parentheses) for the first three prmcnpal

RRLE components : ) ]
© Class M1 M2 M3 © SDF ‘ADF  TSH TSZ - GS
M2 LS 0.0
(1,525.0)
M3 488 39.9 0.0 o i
: S (19955)  (1,985.8) I N
SDF 514 53.1 174 00 b
- (1,996.8)  (1,9974)  (1,732.8) ' - o
ADF -7 745 58.2 604 .. 1281 100
; : Lo (1,999.8) (1,9986)  (1,9989)  (2,000.0) ; ,
Lo TSH - 211 17.1 608 1065 Cher 0.0
P S (1,937.4) (1,764.1) (1,999.0) (2,000.0)° (1 752.0) ,
TSZ . 23.0 478 233 - 535 56.6 41.1 0.0
o - (1,389.2) (1,994.9) (1,891.3)  (1,997.5) (19983) . (1,9883) , :
UGS 1325 1001 . 534 786 s3.1 . - 996 1253 00
BETA (2,000.0) (2,0000) . (1,997.5) (1,999.9) (1,997‘5) (2,000.0) (2,000.0) -
- DGS 2484 2199 . '108.4, 1180 - 17001 . 2680 212.5 534 .

(2,000.0) (2.000.0) (2,000.0) (2,0000)  (2,000.0)  (2,000.0) (2,000.0) (1,997.5)

- Table §, Pail‘wise class divergence ah‘dltransformed divcfgence (in p'arenih_gsés)’ for HSI transformcd’bands' :

Class . M Mz M3 - - SDF  ADF . TSH SZ ~  GS'
M2 125 0.0 o [
o (1,553.7) T o
CoM3 T 463 374 Yoo |
' T (1,993.9) (1,980.4) R T ?
" SDF 1056 46.4 264 0.0 ;
‘ : . (20000)  (1,9939)  (1,9262) !
: ADF - 648 483 455 1232 L 100
B LUl 9994 (19952)  (19932) - (2,000.0) » _
: TSHS . 264 16.0 554 1169 - v 142 © 00
; coo LT 9262 (1,7293)  (1,9980)  (20000)  (1,661.0) - :
SZ 24.8 482 247 C 1057 | 578 422 0.0
S (19099)  (1,9952)  (1,909.9) (2,000.0) - .(1‘998 5)  (1,989.7) '
Gs . 391.5 128.1 1248 1329 . | 819 11559 3095 00"
.+ (2000.0) (2,000.0) (2,000.0) . +(2,000.0) " (li,9?9.9_) ~(2,000.0) (2,000.0) e
DGS . 4003 1385 . 1189 - - 987 11368 - . 2237 3443 - 86

(2,000.0) (2,000.0) (2,0000) ' (2,000.0) - (2!,0?0.0) ©(2,000.0) (2,0000)  (1,3134)
o

-
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Unsupervnscd classifi catlon output The colour sequence in the bottom of the image from left to right
shows M1, M2, M3, SD‘F‘, ADE, TSH and TSZ classes and GS and DGS classes. Other colours
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