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ABSTRACT

Modes of non-radial oscillation of gaseous masses belonging to spherical harmonics of orders / = 1
and 3 are considered on the basis of the first- and the third-order virial equations. For an assumed
Lagrangian displacement £ of the form

£ = (Lyxixs + Li)e™?

(where L;;;x and L; represent a total of twenty-one unspecified constants and ¢ is the characteristic fre-
quency to be determined), the theory predicts the occurrence of modes of oscillation of two different
types: modes (belonging to ! = 3) which are analogous to the Kelvin modes of an incompressible sphere
and modes (belonging to ! = 1) which are analogous to those discovered by Pekeris for a homogeneous

compressible sphere and which exhibit its convective instability. For the latter modes, the virial equa-

tions lead to a characteristic equation for o2 of degree 2 whose coefficients are integrals over the variables
of the unperturbed configuration, including its superpotential. The theory is applied to the polytropic
gas spheres, and it is shown that they are convectively unstable (for the modes belonging to I = 1) if
the ratio of the specific heats v is less than a certain critical value The critical values of v predicted by
the (approximate) theory differ from 1 -+ 1/x# (where # is the polytropic index) by less than 1 per cent
over the range of # (<3.5) considered; the extent of this agreement is a measure of the accuracy of the
method based on the virial equations and the assumed form of the Lagrangian displacement.

I. INTRODUCTION

As Cowling (1942) and Ledoux (cf. Ledoux and Walraven 1958) have emphasized, a
theory of the non-radial oscillations of gaseous masses is relevant in two different connec-
tions: in discovering modes of oscillation which may lead to “explosive instability’’ (par-
ticularly under external influences such as tidal action) and in establishing criteria for
convective stability on a sound theoretical basis. It is with the latter aspect of the theory
of non-radial oscillations that we shall be concerned in this paper.

The criterion for convective stability as commonly applied is that of Karl Schwarz-
schild, which requires the prevailing temperature gradient, at every point, not to exceed
the adiabatic gradient. The manner in which one generally establishes this criterion is to
examine how a small isolated element will react to a fluctuation which makes its physical
state slightly different from that of its immediate environment. While the arguments as
usually presented are reasonable, they are, really, no substitute for a proper treatment
of the stability of the system in terms of normal modes and initial conditions: a system
reacts to a perturbation iz fofo and is indivisible. From this strict point of view, the
qualitative arguments which are used to validate the Schwarzschild criterion are no
more than a suggestion that instability via modes of sufficiently high order (i.e., modes
belonging to spherical harmonics of high orders ! and radial functions with many nodes)
will arise if the criterion is violated in any small isolated region. On this account, Cowling
and Ledoux have attempted to establish the Schwarzschild criterion by exploring meth-
ods of approximation which may be suitable for treating these modes of non-radial
oscillation which have many nodes both in the transverse and in the radial directions.

The principal approximation underlying these treatments is the neglect of the change in

the gravitational potential caused by the perturbation. While this approximation may
be a good one! for treating modes of oscillations of high orders, it is hardly one which can

1 See, however, the remarks in the last Sec. VIL.
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be applied to modes belonging to / = 1; and these are the modes that are most relevant
for the discernment of convective instability in many important cases. Thus, Pekeris’
(1939) first exact treatment of the non-radial adiabatic oscillations revealed the instabil-
ity of a homogeneous compressible sphere for modes belonging to all I’s including / = 1.
The instability in this instance clearly derives from the fact that ¢ uniform density is
superadiabatic everywhere for any finite ratio of the specific heats v. That, under these cir-
cumstances, instability should arise already for / = 1 is entirely to be expected: it is, for
example, the mode by which convective instability first manifests itself in a wviscous
fluid sphere heated within (Chandrasekhar 1961). What is true of the homogeneous
sphere must be equally true of the polytropic gas spheres in the sense that when they
become convectively unstable, they must also do so for modes of oscillation belonging to

= 1. This is apparent when it is noted that a polytropic distribution in which the
pressure and the density are related by

$ = constant p*ti/» m

is superadiabatic everywhere if )
v<1i+_. @

Consequently, if 1 + 1/# should exceed v, the Schwarzschild criterion will be violated
simultaneously throughout the entire mass, and the instability can assert itself with the
largest permissible pattern of circulation, i.e., by a mode of oscillation belonging to ! = 1.
We may conclude, then, that a polytrope of index n will be convectively unstable for v <
1 4 1/n and that the instability will be manifested already by a mode of oscillation belonging
to 1 = 1. But this fundamental result has never been properly established.

In this paper we shall develop a method based on the third-order virial equations (see
Chandrasekhar 1962; this paper will be referred to hereafter as “Paper 1’’) which will
enable us to treat modes of oscillation belonging to / = 1 and 3, taking full account of
the variations in the gravitational potential during the oscillations. The linearized form
of the virial equations permits exact and explicit solutions of problems associated with
homogeneous masses. Thus, the problem of the oscillations and the stability of the Jacobi
ellipsoids has recently been solved with their aid (Chandrasekhar and Lebovitz 1963a;
see also the further paper 19636 on the Maclaurin spheroids; these papers will be referred
to hereafter as “Papers II”’ and “III,”” respectively). And we shall see in Section ITI
below that the Pekeris instability of the homogeneous compressible sphere for / = 1 can
be derived equally with their aid. However, configurations which are not homogeneous
cannot be treated exactly with the virial equations only; but they do provide a basis for
an approximative treatment. And since the answer may be considered ‘“known” in the
case of the polytropes, the application of the method to them will provide a useful test
of the precision of the method.

II. THE VIRIAL EQUATIONS OF THE THIRD ORDER FOR THE TREATMENT OF
THE OSCILLATIONS OF A SPHERICAL DISTRIBUTION OF MASS

For departures from equilibrium described by a Lagrangian displacement of the form

E(x)et, @

where o denotes the characteristic frequency to be determined, the virial equations of
the third order give (cf. Paper I, eq. [25])

— Wi = 6Bijr + Wi, + 840IL; + 640115, @
where

Vi;jk=/T;P€ixjxkdx 6
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defines the third-order virial and 6%8;; and 61T, are the first variations (due to the dis-
placement &) of the quantities

Wi = — %f pBijxrdx and Hk=/pxkdx, (6)
v v

which have been defined in Paper 1.
We have (Paper 1, eq. {72])

— 2 6% = fp%uékdx-l-fpfl——— vedx +fpg, a@”kdx, @

where B;; is the tensor potential and D,;;, is the same tensor potential for the fictitious
density distribution pwk.

If the oscillations are assumed to take place adiabatically with a ratio of the specific
heats v, then

6(—9=-(7—1)%div§, ®)

and

s/ 2 — — (y— -
6Hk—6_/;/pxkpdx— (v 1)/;[3901c div¥ dx—l—/];pfkdx. )
An alternative form of 811, which we obtain after an integration by parts, is
M= (y—1 . grad . 10)
= (v )/;xki gra pdx+’y/‘:p£kdx (

In treating the eighteen equations represented by equation (4), we shall find it con-
venient to introduce the symmetrized virial,

Vit = Ve + Vigi + Vs an

and combine and group the equations into different non-combining sets. Such a grouping
was accomplished in Paper II for the more general system of equations governing a uni-
formly rotating configuration with no special symmetry (except that implied by the
rotation itself). In the present instance when there is no rotation and the unperturbed
configuration is spherically symmetric, the desired reduction is, of course, much simpler.
However, in writing the different equations, we shall refer to the equations in Papers II
and III and specialize them appropriately; but they can be derived quite readily, ab
initio, from equation (4).

: (a) First, we have six equations of the form (cf. Paper II, eqs. [62], [76], [77], [96], and
971

where

0% (Viae — %‘Vm) = 05122, (12)
6122 = — 40Wa;0 — 26Was;1 + 20Wy;1 - (13)

The other five equations of this set can be written down by selecting other pairs of
indices (4, 7, 7 ¥ 7) besides (1, 2) to which equations (12) and (13) belong.
(b) Second, we have a set of three equations of the form (Paper II, egs. [30] and [34])

02(Viee — Viss) = — 20Wizye + 20Was;s . (19)

(c) Third, we have the three equations (Paper I1, eqgs. [38], [42], [43], and [93])
02V 123 = 6S1as, as)
0*(Vies — Vays) =0, and  o* (Vs — Vi) =0, (16)
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where
05103 = *25%12;3 — 26%23;1 - 2555331;2 = —65%12;3 . Qa7)

In writing equations (16) and (17) we have made use of the fact (which we shall verify
later; see eq. [S1] below) that, under circumstances of spherical symmetry,

oW 19;3 = 0Was;r = 6Wsy;e - (18)

(d) Fourth, we have three pairs of equations of the form (Paper I, eqs. [30], [34], [48],
[51], and [87])
%02V111 + 25%11;1 = — 2611, 19
and

a* (Vi + Vigas) = — 208ig;e — 26Wis;s - (20

It will be noticed that, among the four groups of equations, only those in the fourth
group (d) involve the 8II;’s.

III. THE MODES OF OSCILLATION OF A COMPRESSIBLE HOMOGENEOUS SPHERE
BELONGING TO THE HARMONICS OF ORDERS ONE AND THREE

For a homogeneous sphere, the equations of the preceding section can be solved
exactly and explicitly: for, in this case, the various 88;;;:’s, 6S:x’s and 8IIx’s can all be
expressed linearly in terms of the virials themselves with simple numerical coefficients.
The required coefficients for homogeneous ellipsoids and spheroids have been tabulated
in Paper II (Tables 1 and 2) and Paper III (Tables 1, 2, and 3). For a sphere, the co-
efficients are much simplified, since the symbols A;j... and Bij..., in terms of which
they are expressed, depend only on the number of the indices and not on what they are.
Thus, suppressing a common factor 1/a¢? and measuring length in units of the radius
(e) of the sphere, we have

Ai=41=%, Aijj=A4Au=%, Adiur=Am=3% @
and
Bi=B1=%, Biij=Bu=+1, Bij=DBu=zs. (22)
The subsidiary symbols 4;;;; and B;j;, (Paper 11, eq. [123]) have the values
Aijp=Au+Am=%% and Bgp= Bu-+ Bui= 5. (23)
With the coefficients listed in Paper III (Tables 1 and 3), we now find
4 85123 = 6(B11 + B11) (Vize — 3V11) = 22 (Viae — 5V1n1) (29
an
i 65128 = 6(Bu1 + Binn) = 32V 103, " (28)

where a common factor nGp has been suppressed.
In view of equations (24) and (25), the six equations of group (@) and equation (15)
of group (c) all lead to the same root,

o? = 187Gy, (26)

where the factor mGp has been restored. The root (26) is of multiplicity 7.

The characteristic root given by equation (26) coincides with the Kelvin frequency for
I = 3; its multiplicity 7 is in agreement with this identification.

In the equations of the remaining groups (8) and (d) we must set

Vi = Vigs = %an , etc., (27)

to exclude the root (26) and not to be inconsistent with the equations of group (a).
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In view of the equalities (27), we now have (cf. Paper III, Table 2)
— 20Wi9;0 = — 20Wh3;3 = $2Bu+ "TBu) Vi = Vi« (28)

The equations of group () and the two equations (16) of group (c) lead to the root

ot=0, (29)
with multiplicity 5.
Finally, considering the equations of the group (&), we first note (cf. Paper II, Table 1)

=208, = [2(311 + 2B11) — Au)Vin + (23111 — A11;1) (Vg2 + Viss)

(30)
=P2&E+ &) —F#+3E - FVu=0.
The equations to be considered are, therefore,
%O‘ZVH] = —26II; (31)
and
*(Vips + Viss) = £V, (32)2

where we have made use of equation (28).
It remains to determine 8II;. Now the pressure distribution in a homogeneous sphere
is given by

p=3p(1—1%, 33)

where the same factor 7Gp has been suppressed and 7 is measured in the unit a. For this
pressure distribution, equation (10) gives

oIl = -%(7—1)/;,p£jxjx1d —%Y/I-,pflxjxjdx+%/‘:p£1dx- (34)

The last term vanishes by the condition requiring the stationariness of the center of mass
(cf. Paper II, Sec. II); and the remaining terms can be combined to give

oI, = —3(y — VDV — $vVuij
= —2(y — DVyj — GV + Ve + Viza) 33
= —%(57 - 4)V111 - %(V1;22 + V1;33) .

Inserting this value of 8II; in equation (31), we obtain

30V = %0y — HViu + $(Viee + Viss) « (36)
Equations (32) and (36) now lead to the characteristic equation
ot — 205y —4)?—32=0. 37

The roots of this equation are
o* = 3(5y — 4) £ 3[(5y — 4+ 8 a®

and each of these roots is of multiplicity 3. The roots given by equation (38) agree with
those found by Pekeris for [ = 1.

% Actually, we can set Vi;ze = Vyssin this and in the subsequent equations for consistency with the
equations of group (b).
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One of the two roots given by equation (38) is clearly negative; and this implies in-
stability. We have thus derived the convective instability of the homogeneous sphere for
modes of oscillation belonging to 7 = 1.

IV. THE SUPERPOTENTIALS AND THE TENSOR POTENTIALS OF A
SPHERICAL DISTRIBUTION OF MASS

The quantities 88,;;x which occur in the virial equations of Section II are, as we
have seen, expressible as integrals over the tensor potentials B;; and Dyj;e. In this section
we shall assemble the necessary formulae.

The superpotentials x and ® are, in case of spherical symmetry, governed by the
differential equations

x"+—2;x’= —29 (39)
and
<b"+% ' = — 4y, (40)

where the primes denote differentiations with respect to 7. Once x and & have been de-
termined as solutions of these differential equations (satisfying the appropriate boundary
conditions), the required tensor potentials follow from the equations (Chandrasekhar
and Lebovitz 19620, egs. [6] and [33])

02x
g = it —— 41)
LB %5’+axiaxj (
and
Dij = —“(9—3(2——"1'&“’( Xi0jk+ x50kt X6 045) + 2xLBs. (42)
’ 6xiaxjaxk r

Inserting the foregoing expressions in equation (7), we obtain

_ - y 9B o
208 = Zj;,p%wékdx—}- er-ngl dx; xkdx+pr£; 0x1020;0%;0 %k dx
B x’
—/I;Pszz(xﬁjk‘Fx15k¢+xk5w‘) 2 5+375) dx 3)

14
4+ (81054 0150k + 5zk54j)fpfz X gx.
14 4

The derivatives of x and ® which occur in equations (41)—(43) can all be expressed,
in view of the spherical symmetry of these functions, in terms of the derivatives with
respect to 7; and in the resulting expressions all derivatives of x and & of orders second
and higher can be reduced to the first by successive use of the defining equations (39)
and (40). We thus find

92 ' B
axgx-:Z(r— 8iih 25 wisi, (49
0%y
d3x _B Sirt %8 i +£ ) 5
Bziaxjaxk“ﬁ(xi ik Xj ki'l" Xk iJ) 2 XiXiXr,
03® D
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___o'® — =C (08105t 8106+ dudis) + Xi%iXrd 1
0%;0%;0X,0%,;

47)
+'r22 (%1200 6+ 212508+ 202080 55+ x5 %60 1+ XX 60+ X2 081)
where we have introduced the abbreviations
4 xl
4=8+X, = —(sc+47),
r r
’ 14
B=—(2§B+3X7>, E=858+35C—l—40x7, 48)
1 ®’ 1 ,
_'ﬁ(4X+3 r), = —— (5B+2%').
In terms of these abbreviations, we can now write
%"—A&”—I— xX:%5, (49)
and )
%—'Z—Q% x15u+ (28514 20,5+ 2,0 w)"’ 5 Xi%i%. (50)
!

Returning to equation (43) and inserting for the various quantities in accordance with
equations (47), (49), and (50), we obtain, after some further regrouping of the terms,

— 20%Wuip = Zaif[,PA fedx+204 [ o (%7,+%) £ e x
+f (ZB D)(ngxk+£,xkx+zkx ;) dx
+ [ o (545) tumiCwisnt vt mbi) dx o
+ [0 (CH+E) (tout tont tr0m)ds

F E
+[,p(2 -I'E_I_F) £lxlxixjxkdx.

V. THE VIRIAL EQUATIONS FOR AN ASSUMED LAGRANGIAN
DISPLACEMENT OF THE FORM §; = L xx;wr + L;

In using the virial equations of Section II in conjunction with the formulae of Section
IV, we shall suppose that it will suffice to consider a Lagrangian displacement of the
form

&= Li'jkxjxlc + L; y (52)

where Ly and L; represent a total of twenty-one unspecxﬁed constants. The form (52)
for & is, in the present context of the third-order virial equations, the proper generaliza-
tion of the form

§i = Li;x; 53

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1963ApJ...138..185C

9T T TI3BI CIBBC!

A,

[3e]]
£,
[=h

192 S. CHANDRASEKHAR AND NORMAN R. LEBOVITZ Vol. 138

assumed in an earlier paper (Chandrasekhar and Lebovitz 1962a) in the context of the
second-order virial equations.? And the justification for assuming the form (52) is that
it conforms to the exact solution for a homogeneous sphere and that we may, therefore,
expect it to be adequate as a first ““trial function” for configurations with not excessive
degrees of central concentrations. We shall verify that this expectation is borne out by
applications to the polytropes.

As has been pointed out in Paper IT (Sec. II), the virial equations of the third order
must be considered together with the equations of the first order which require

V¢=_/;p£idx =0 (54)

as a condition for the stationariness of the center of mass. For the form of the Lagrangian
displacement assumed, condition (54) gives

%Li;ﬁfpﬂdx —I—Lif pdx =0, (55)
or 14 v
fpr2dx
L;= -———V——L,-;,-j. (56)
3/ pdx
v

Relations (56) reduce the number of unspecified constants in (52) to eighteen: the same
as the number of the virial equations of the third order.
a) The Kelvin Modes

We shall first consider equations (12) and (15) in groups (¢) and (¢) (in Sec. II).
We find, by direct calculation,

Vig— §Vin = E& (L — %Lul)/;l”"‘dx (87)
and
Vi = ng Lma_/t; pridx, (58)

where L;j;, without the semicolon (like the symmetrized virial Vi) is defined in the
manner

Lijx = Lk + Lijwi + Lisij . (59)
3 It should be noted that greater generality is not achieved by an assumption of the form
& = Lijxsxr + Lijx; + L,

since the terms in L;;; will vanish identically in all the equations provided by the third-order virial equa-
tions. On the other hand, if one went to the virial equations of the fourth order, the form for the Lagran-
gian displacement one would assume is

& = Limxinxs + Lijx; s

and the second- and the fourth-order virial equations will together provide a number of equations equal
to the number of the constants L;;;x and L;;; even as the first- and the third-order virial equations pro-
vide a number of equations equal to the number of the constants L;;;x and L;. And, in general, the con-
sideration of the virial equations of increasing (even or odd) orders corresponds to solving the exact
problem with ““trial functions” for £ which are polynomials in the co-ordinates of increasing (odd or
even) orders,
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The reduction of the expressions for the required 628;;;x’s and 8S;;’s, in accordance
with equation (51) for the assumed form of §, to integrals over flll’lCthIlS only of 7 is
long but straightforward. We shall omit all the details of the reduction and quote only
the final results.

We find

05122 = — = (Lipe— %Lul)fVP%'fsdx : T | (60).
and . .
08193 = “‘%Lm:i_/vp%'radx- : (61)

From equations (57), (58), (60), and (61) it is apparent that the equations of group ()
and equation (15) all lead to the same root:

(62)

This root is of multiplicity 7 and belongs to / = 3; it represents the analogue of the
corresponding Kelvin mode for the homogeneous sphere.

The integral in the numerator of the expression for ¢2 can be transformed in this
manner:

% - ap - _ Agy— — 2
Ap I, r3dx—47rfdr r’dr = 201/[)1’ dr= vapr dx. (63)

We may accordingly write
f pridx
14

—60"V
x .
fpr“dx

v

For polytropes, we find, on expressing 7, p, and p in terms of the usual Emden vari-
ables (cf. Chandrasekhar and Lebovitz 1962¢, eq. [8]), that

&
52 ~ 60 ./(; 0"+1§4d$
4nGp, T(n+1) p&__ "
fo orESd E

o2 (64)

(65)

The integrals‘occurring in this expression for ¢% are among those reduced and tabulated
in the appendix (Table 1). And using the results given in the appendix, we obtain the
values listed in the accompanying tabulation (eq. [66]).

n 02/ (4xGp) ' n o2/ (4nGpc)
0 0 57143 20 0 16609 (66)
10 0 29866 30 0 084302
15 0 22328 35 0 054834
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b) The Characteristic Equation for the Modes of Oscillation Belonging tol = 1

We turn now to a consideration of equations (19) and (20). In considering them in
the framework of the assumption (52), we must set

Lyse = Lyss = $Lyu1, etc., (67)

to be consistent with the equations of group () and exclude the root (62).
We find, by direct calculation, that

Vin=3%(Lyu+ %M1)/;pr4dx+ %Llji;pr?dx (68)
and

=_2 . 4 2 2
V1;22+ V1;33 15(L1,11+ 2M1)£’P7 dx+3L1‘/;pr dx, (69)

where we have introduced the abbreviation
M= L9+ Lyss . (70)4

From equation (51) we similarly find (after some lengthy reductions) that, for the
assumed form for & (with the additional restrictions [67}]),

— 20— 20Bua = — 7 [ p(Lyur+L)(B+28'r) dx
\4

(71)
’
22— M) [ p (4845 %) ridx
and
=208 =7 f p(Lunr'+L) (2B~ B'r)dx
(72)
/
5 2Ln =) f o (2845 %) rax.

The coefficients of L; in equations (71) and (72) can be simplified by making use of
the relations

= 1 - —
B = zfvp%dx 3/;17dx (73)
and
a8 - P sgy— — 20y —
/;rpdr rdx—4r£,drr3dr— 121r/;prdr—%3. (79
Thus,
2Q'r)dx =0, d 2 2B —B'r)dx=2 dx; (%)
/I;p(%—l—%r)xO an Tg/;p(% LB'r)dx ﬁﬁx

and we can write

— 206Wya;0 — 20Wy3;3 =L Lun f

14

7
p(3%—22§'r+5 X7) r2dx
(76)

_%Mlﬁp(4%+5 x7) ridx

4 In this equation we can set Li;e = Li;ss to be consistent with eq. (14) and exclude the zero root.
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and
/
—20Wu; =7 Lyn P (4% - R'r+5 x7) rdx
(77
1A
X
—.l.lngpr (2%+5 7) rdx+ 2L f pdx.

It remains to determine 811, in accordance with equation (9). For the assumed form
of & (with the additional restrictions [67]), we find

ST = — 2 (v —1)Lyn fV pridx + 3Ly fV pridx+Ly f pdx

(78)

[—%(47—5>L1;u+%yMllprrﬂdxﬂlprdx-

Now substituting from equations (68), (69), (76), (77), and (78) in equations (19)
and (20), we obtain

— o3 (Laut 340 [ pridx+ 3L, f prida]
’ !’
5 Lo f o (48— 9 r+55) pax— ity [ 5 (28+5%) riax

=2[~(4y— 5)L1;11+7M1]fP72dx
v

and

—'02[——-(L1 11‘|‘2M1)f P"4dx+2L1/P7’2dx]

(80)

+5Luu f o (sg—20/rs5 %) rdx—2 M f o (4$+5 X) riax=o.

We notice that in these final equations the “super-superpotential” ® does not appear:
the terms in it canceled at an earlier stage.
Equations (79) and (80) must be supplemented by the further equation (cf. eq. [56])

fpr2dx

L= (Ll u+Mi). (81)

3fpdx

With the aid of this last equation, L; can be eliminated from equations (79) and (80).
After the elimination of L;, we shall be left with a system of two linear homogeneous
equations for Ly;;; and My; and the requirement that the determinant of the system
vanish will lead to the desired characteristic equation of ¢2 It is to be particularly noted
that the coefficients of the characteristic equation for ¢? are integrals which involve, in
addition to the usual quantities, the superpotential x explicitly.

VI. THE CONVECTIVE INSTABILITY OF THE POLYTROPES FOR v < 14 1/n

The characteristic equation for ¢2 which follows from equations (79)-(81) has been
obtained in an explicit form for a few polytropes. Before we write down the characteristic
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equations which were obtained, we may note that when 7, p, p, B, and x are expressed
in terms of the Emden variables £ and 9 equatlons (79)- (81) take the forms

~ ot[ (3L, u+M1>/ red + 5L1f e"wz]

g]ws le 0”[2(0+Co)+5?]54d£ o

[— (4v—5)Ly 11+7M11f g,

(Ly; 11+M1);

n—l—-l
—62[(L111+2M1)f o 6d§+5Lf 0"$4d£] | | | (83)
+2L1nf0 9”[3(04'60)—2954'5)2]54615
—-le en[4(e+co)+s g]ws— |
and :
f grgid & @)

L= e ey T

where a prime denotes d1fferent1atlon with respect to ., £ris the first zero of the Lane-
Emden function, and ¢? is measured in the unit 4xGp,; also in the chosen units (cf.
Chandrasekhar and Lebovitz 1962¢)

LB =0+ ¢y, where o 1;‘1 ( : 85)
df El
and

X"‘+%X'=—2(0+Co) S e

The various integrals occurring in equations (82)—(84) are reduced and tabulated in
the appendlx (Table 1). And we finally obtain o ;

— 0.76513 (y — 0.91079) o* + 0.029036 (y — 1 9955) =0 (n =1.0),
ot — 0.55037 (y — 0.94660) o> + 0.018768 (y — 1.6609) = 0 (n = 1.5),
ot — 0.39698 (y — 0.97624) o® + 0.011071 (y — 1.4931) = 0 (n = 2.0),
ot — 0.19192 (y — 1.02493) o2 + 0.0029138 (y — 1.3258) = 0 (n = 3.0),
ot — 0.12241 (v — 1.04520) o* + 0.0012184 (y — 1.2784) = 0 (n = 3.5).

(87

From these equations it is apparent that the polytropes are unstable when
v < 1.995 for » = 1.0, whereas 1 4+ 1/# = 2.000,
v < 1.661 for n = 1.5, whereas 1 + 1/ = 1.667 ,
v < 1.493 for » = 2.0, whereas 1 + 1/# = 1.500, (88)
v < 1.326 for » = 3.0, whereas 1 + 1/ = 1.333,
v < 1,278 for n = 3.5, whereas 1 + 1/% = 1,286 .
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The accuracy with which the critical values of v are predicted is remarkable: even for
n = 3.5 (when p. = 153p), the error does not exceed 0.7 per cent; and this is indeed
gratifying.

VII. CONCLUDING REMARKS

As we have remarked in the introductory section, the fact that the convective in-
stability of polytropes asserts itself already for a mode of oscillation belonging to 7 = 1
should not cause any surprise: it is very much to be expected. However, in cases where,
as in Cowling’s point-source model for a star, the effective polytropic index decreases
from a relatively high value in the exterior to a subcritical value in the interior, the
circumstances are, of course, different. But even in these cases it would seem that the
most relevant modes are again those which belong to spherical harmonics of low orders
(including ! = 1) and radial functions having one or more nodes. If this presumption is
valid, then the modes of oscillation belonging to really high values of / are not as basic
to the theory of convective instability as one might be inclined to suppose.

A further aspect of the analysis of the preceding sections that is noteworthy is the
following. Apart from the fact that the virial equations of the third order appear to
provide an adequate basis for treating non-radial oscillations belonging to / = 1 and 3,
an important feature of the equations is the role of the superpotential x. By virtue of its
relationship to the tensor potential B;;, the superpotential x expresses, even more than
the Newtonian potential L does, the co-operative aspects of the gravitational interaction
between the different parts of a body. The dependence of the characteristic frequencies
of non-radial oscillations on the superpotential x may be considered, then, as an indica-
tion of their dependence in some significant way on a delicate balance in the co-operative
aspects of the gravitational interactions. It is indeed clear from the point of view of the
virial equations that the higher modes of non-radial oscillations will depend on the
superpotentials of still higher orders such as ®, etc. It would not, therefore, seem that,
when dealing with compressible masses, the usual assumption (derived from a knowledge
of the reactions of incompressible masses) that the variations in the gravitational
potential can be neglected in the treatment of a// manner of modes of oscillation (be-
longing to a given /) is necessarily a valid one. An examination of the modes of oscillation
belonging to / = 4 from the point of view of the virial equations of the fourth order may
contribute to a clarification of these issues; and this examination is now under con-
sideration.

We are greatly indebted to Miss Donna D. Elbert for her assistance with all the
numerical work in connection with obtaining the characteristic equations (87).
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the second author was supported in part by the United States Air Force under contract
No. AF-49(638)-42, monitored by the Air Force Office of Scientific Research of the Air
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APPENDIX

TrE REDUCTION OF CERTAIN INTEGRALS IN THE THEORY OF POLYTROPES
Equations (82)—(84) involve the following integrals:

fl E1 £1
n &4 . n &6 . n+1 &4 .
I. fo grgtde: 1L _[0 rgsdy;  TIIL fo grrigade -

(A.1)

51 El.
Iv.f0 0r0'g5dg;  and V. fo Oy £3dE .
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We shall reduce these integrals to simpler forms:
& 3
1. rEtdg = — £140,/— 6 6¢2d¢, (A.2)
S oretag = g —6 [ oeag

where a subscript 1 to a quantity indicates that its value at £ (the first zero of 6) is meant. The
reduction (A. 2) was effected in an earlier paper (Chandrasekhar and Lebovitz 1962¢, Appendix
I). In an exactly similar way we find

& , G,

II. f0 oresdE = — £,56, +4f0 0'E5d ; a3
51 71-*— 1 El

ntlegd g — 5(0,)2 — 2¢2 .

1T, fo grigsd g n+11[51(01) 3/0 ot . a9

Equation (A.4) is a special case of the following general formula due to Milne (1929, eq. [53]):

N
(n(s—3)+3s— 1]f0 GrHigad s = (n+1)[£1‘+1(01')2

—%(s—3)(s—2)(s—l)ﬂglé"202d£](8>1); -

IV. f g0 £5d$———— 0510"+1$4d£. A.6)
This is equivalent to the general relation (63) established in the text.
R A TG T
-- &%'01’% Yo gt (D) o

= — a0 = e G200+ e+ ] ae N

= — a0y — e o+ e - [0 T (2 95) e
13 1
= = b0 = Ede 3 B0+ c0)tdg _zf0‘ 600+ co) £2d

El El
= — o8 F oo f opdE+ [ e,
0 0
where, in the reductions, use has been made (at two different times) of the equation (cf. eq [86])

X'+ = =200+ co) (o= — £:10y) &)

3
governing x.
Thus the five integrals listed in (A. 1) can be expressed in terms of the following three:

5; s; E;
0¢2dE, "esdE, d 62£2d ¢ . (A.9)
f0 g2dg f0 6’854,  an f0 g2dt
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Of these three integrals, the first has already been evaluated in a different connection (Chan-
drasekhar and Lebovitz 1962¢, Appendix I and Table 5). The remaining two integrals have now
been evaluated; and their values, along with the others are listed in Table 1.

TABLE 1
A TABLE OF INTEGRALS

n=10% n=13§ n=20 7n=30 n=35
WAL 3 14159 4 18545 5 84540 14 1915 26 6943
—SOEds. 60 7836 104 6806 198 4622 1114 165 3868.37
Sredt 1 57080 1 91883 2 41105 4 32705 6 45430
SorEds 12 15672 11 1197 10 6110 10 8516 11 7455
SO EdE. 62 8853 64 9770 71 7372 109 7484 158 689
Sorgde 4 38231 4 23148 4 17018 4 31761 4 56828
— S0 x £%d¢ 12 8169 9 8058 7 9827 6 0957 5 6829

* The values of the integrals down this column are =, 5x% — 30, 7/2, 78 — 6x, =% — 2073 + 120r, (a3 — 3m)/6, and
§m8 — 2 5w, respectively
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