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ABSTRACT

The role which the second- and the third-order virial equations governing equilibrium can play in
isolating points of neutral stability along equilibrium sequences is discussed and clarified. It is shown
that a necessary condition for the occurrence of a neutral point is that a non-trivial Lagrangian displace-
ment exists for which the first variations of all of the integral relations (five in the second order and fifteen
in the third order), provided by the virial equations, vanish. By using this condition, it is possible, for
example, to isolate the point of bifurcation along the Jacobian sequence without eny prior specification
of the nature of the sequence which follows bifurcation. As further illustrations of the method, the known
points of neutral stability along the Maclaurin and the Jeans sequences are also derived.

I. INTRODUCTION

In an earlier paper (Chandrasekhar 1962; this paper! will be referred to hereafter as
“Paper 1”) the occurrence of points of bifurcation along the Maclaurin and the Jacobian
sequences was deduced from certain general integral relations provided by the second-
and third-order virial equations. The point of bifurcation along the Jacobian sequence
was deduced, for example, from the required invariance of an integral property (provided
by the third-order virial equations) to an infinitesimal Lagrangian displacement which
deforms the Jacobi ellipsoid into a pear-shaped configuration. However, the preoccupa-
tion with this matter of the exhibition and the isolation of the point of bifurcation along
the Jacobian sequence was allowed to obscure (and to some extent confuse) the entirely
general nature of the relations provided by the virial theorem and its extensions and the
role they can be called upon to play in distinguishing equilibrium configurations which
are neutrally stable along a given sequence. In this paper an attempt will be made to
clarify this entire matter. As an instance of the generality achieved in the interpretation,
it may be stated here that the point of bifurcation along the Jacobian sequence can be
isolated by four (apparently) independent relations which do not presuppose any knowl-
edge of the kind of equilibrium configurations which succeed the Jacobi ellipsoids beyond
the point of bifurcation.

II. SOME REMARKS ON THE TERMINOLOGY

In view of the diverse (and sometimes conflicting) terminology which is current in
the subject, it may be useful to clarify the different circumstances which must be dis-
tinguished and the particular terminology which will be adopted in the present discus-
sion.

First, there is the concept of the point of bifurcation itself. There is no ambiguity in
what can be meant by this term: a sequence of equilibrium configurations is given which
can be arranged “linearly” with respect to some parameter; as we follow the sequence,
we come to a point where a parting of the ways occurs; beyond such a point we can dis-
tinguish two equilibrium configurations where there was only one before the point was
reached. A point of bifurcation defined in this manner, clearly presupposes that the
existence of equilibrium configurations on both prongs of the fork has been established.

The occurrence of a point of bifurcation implies that a non-trivial infinitesimal La-
grangian displacement £ exists such that the deformation, by this displacement, of the

! The subsequent papers by Chandrasekhar and Lebovitz (1963a, b, and ¢) will be referred to as
“Papers II, III, and IV,” respectively.
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member of the sequence at the point of bifurcation will leave its equilibrium unaffected.
The Lagrangian displacement in question is, in fact, the one which will deform the con-
figuration from the “shape” it has in one of the branches to the shape it has in the branch
after bifurcation. From the existence of a displacement & which leaves the equilibrium
unaffected, we may draw two inferences: first, that at the point of bifurcation the equi-
librium configuration must have a definite non-trivial neutral mode of oscillation; and
second, that if J is any integral property (or, more generally, a functional) of the con-
figuration which vanishes as a condition of equilibrium, then its first variation due to
the displacement £ must also vanish at the point of bifurcation. More explicitly, the con-
tent of the second statement is the following. The functionals J with which we shall be
mostly concerned are of the general form

J=/;p(x)Q1(x)dx+fV fvpu)p(x')Qz(x, x')dxdx’, m

where Q1(x) and Qs(x, x’) are functions which are defined for all points x and pairs of
points (x, x’), respectively, and the integrations over x and x’ are effected over the vol-
ume V occupied by the fluid. And by the first variation of such a functional due to the
displacement & we mean

aJ=pr<x>sl<x>%% dx

(2

+ [ o) e [ Er(a)g+ £1(x) 505 ]@a(x, ¥V dxdx

The statement now is that, if

J = 0 as a condition of equilibrium , @)
then
6J = 0 at the point of bifurcation for some & . @

It seems to be generally assumed that, from the existence of a neutral mode of oscilla-
tion along an equilibrium sequence, we may, conversely, infer the occurrence of bifurca-
tion. It is not clear to what extent this converse statement is true. In any event, it would
appear that the concepts of a point of bifurcation and of a point of neutral stability are
logically distinct. On this account, we shall define a neutral point along an equilibrium
sequence as one at which the configuration has a definite non-trivial mode belonging to
a zero characteristic frequency in a proper analysis of the normal modes. Clearly, a
point of bifurcation is also a neutral point; but it would appear that a neutral point need
not necessarily be a point of bifurcation.

Neutral points can be of two kinds. The distinction arises in this way. Let ¢ be a
parameter which labels the members of a branch of a sequence; and let ¢, be a neutral
point along that branch. By definition, we can infer the existence of a characteristic
frequency of oscillation ¢ such that

o(%) =0 when & =g, (5)
and ¢?1is real in a finite neighborhood of #¢. The two cases to be distinguished are

case (): a2(#) >0 for 4 < & and o*(3) <0 for &> o,
(6)
or a*(9) <0 for < & and o*(F) >0 for &> &,
and
case (ii): o%(¢#) > 0 for @& ¢, in a finite neighborhood of & . )
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The physical distinction between the two cases is that, while in case (i) the configurations
along the branch considered are definitely unstable on one or the other side of the neutral
point, in case (ii) the configurations are stable on both sides of the neutral point. We shall
call a neutral point as of the first kind in case (i) and as of the second kind in case (ii).
In the literature on the subject it is customary to distinguish the two cases by referring
to a point of ordinary instability in case (i) and to a point of secular instability in case (ii).
The reason for attributing instability in case (ii), as well, is the belief that we will, in
fact, find instability if any dissipative mechanism is operative and the presumption that
such mechanisms must be operative in any real physical system. What is implied by the
terminology is that if we were to investigate the stability of the system by the standard
methods of small oscillations, we will find in case (ii) that instability does, in fact, arise
when the limit set by & is transgressed and, further, that the growth rate of the insta-
bility depends directly on the magnitude of the dissipative mechanisms which are opera-
tive; whereas in case (i), when instability arises, the growth rate of the instability will be
comparable to the natural frequencies of oscillation of the system. While all this is im-
plicitly and generally understood, the attributes of stability and instability are often
ascribed without a detailed investigation of the stability of the system by the method of
small oscillations.?

The principal objection to the current terminology is, however, its ambiguity and its
inadequacy. For example, systems which are stable (in the absence of any dissipative
mechanisms) on both sides of a neutral point often become unstable at a subsequent
point & (say) by overstability (i.e., by oscillations of increasing amplitude). What gen-
erally happens in these cases is that the characteristic frequency which has the behavior
(7) at & becomes coincident with another characteristic frequency (belonging to another
mode) at #;, beyond which point the two frequencies become complex conjugates of one
another. Under these circumstances we should say that the system becomes “ordinarily
unstable” at ¢; (since the instability occurs in the absence of any dissipative mecha-
nisms); but such an “ordinary instability’”” has no bearing on the occurrence or otherwise
of a point of bifurcation.

Returning to the question of isolating neutral points and points of bifurcation, we
may recall that at these points we must necessarily have Lagrangian displacements
which will leave the equilibrium unaffected. Consequently, if J is any functional of the
configuration which vanishes as a condition of equilibrium, then @ necessary condition for
the occurrence of a neuiral point (and a fortiori for a point of bifurcation) is that a non-
trivial Lagrangian displacement exists for which 8J = 0. It is necessary to emphasize, how-
ever, that the location of a neutral point by considering the vanishing of the first varia-
tions of such functionals will not enable us to discriminate the kind of neutral point that
is located.

III. THE FIRST POINT OF BIFURCATION ALONG
THE MACLAURIN SEQUENCE

The origin of the first point of bifurcation along the Maclaurin sequence has been con-
sidered in Paper I (Sec. IT) on the basis of certain integral properties provided by the
second-order virial theorem; and the arguments given on page 1050 (Paper I) leading
to the condition for its occurrence are, of course, valid. But the arguments as given do
not depend on the invariance of the same integral properties to first variations at the
point of bifurcation. We shall now show how the point of bifurcation can also be deduced
from these invariance requirements. The demonstration illustrates in the simplest con-
text the essential elements of the present method.

2 For example, it has always been stated that the Maclaurin spheroid 4s ‘‘secularly unstable” at the
point of bifurcation where the Jacobi ellipsoids branch off. But only very recently has the problem of
the oscillations of a viscous Maclaurin spheroid been treated successfully by Roberts and Stewartson
(1963). And they do show that the viscous Maclaurin spheroid becomes unstable at the point of bifurca-
tion.
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After the elimination of II (= [pdx), the second-order virial equations governing
equilibrium are

W3 =W =0, I3=1Ius=0, Wi+ QU,=0, (8)
5&11 - 23322 -+ 92(111 - 122) =0 ’ 9
and
Wiy + Wi — 2Wss + Q2(L11+ I22) = 0, (10)
where
Bij = ‘%/;’P%ijdx and Iij=£,pxixjdx (11)

are the potential energy and the moment of inertia tensors. A @ neutral point (or @ point
of bifurcation) there must exist a non-trivial Lagrangian displacement € for which the first
variations of all of the foregoing equations must vanish.

The question might occur whether one is justified in treating Q as a constant in carry-
ing out the variations of equations (8)-(10). Actually the question is irrelevant, since &,
as we have seen, is the displacement belonging to a well-defined mode among the normal
modes of oscillations of the system; and in the analysis of such modes, the various param-
eters (such as Q) specifying the initial state of the system are certainly to be kept con-
stant. For the same reason, the Lagrangian displacement can be restricted by the as-
sumption (cf. Paper I, egs. [104] and [AII 2])

V.-=<pE,~>=pridx=0, (12)
14

since this assumption merely corresponds to keeping the center of mass stationary in
studying the oscillations of a system (cf. Paper 1I, Sec. II).
Returning to the first variations of equations (8)-(10), we first observe that

5]5,’ = Vij , (13)
where

Vij=LP<xi£j+ x;€)dx=Vji+ Vi (14)

is the symmetrized second-order virial. The corresponding first variations of the poten-
tial energy tensor of a homogeneous ellipsoid have been given in an earlier paper (Paper
1V, egs. [47] and [48]); they are

0W;; = —2Bi;iVij (1#7) s
and

dWii= — (2Byi—ald i) Vit aizzAilVll (16)

i1
(no summation over repeated indices in egs. [15] and [16]) ,

where the A4;;’s and the B,;’s are the two index symbols which have been defined in
earlier papers (Chandrasekhar and Lebovitz 1962a; also Paper 11, eq. [114]). A common
factor G paiasa3 has been suppressed in writing equations (15) and (16).

For the Maclaurin spheroids, ¢; = a@; and this equality implies that the values of
A;;and B;; are unaltered if the index 1 (wherever it may occur) is replaced by the index 2
(and conversely).

Now, making use of equations (13), (15), and (16), we readily find that the vanishing
of the first variations of equations (8)—(10) requires

BisVi3 =0, ByVes=0, Viz="Vu=0, (17)
(92 —_ 2311)V12 =0 s (92 - 2311)(V11 —_ V22) =0 , (18)
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and
[—Z(Bu —a?An + 032A13) + 92](V11 + V22)

+ 2(2333 — as?4 33 + d12A13)V33 =0.

If the additional assumption that the Lagrangian displacement is divergence-free is
made, then the foregoing equations must be supplemented by the condition (Lebovitz
1961, eq. [83])

(19)

2
Vu+ Va= — %ﬁ; Vss. (20)
From equations (17) and (18) it follows that
Vis= V=0, (1)
and
V12 =0 and Vii= Vo if Q2 —2B11#0. (22)

And, finally, equations (19) and (20) give

[2 (Bu—oa?Au+a?d3) —QF
(23)

2
+2 %(2333— as?4 33+ 0121413)]( Vu+ V) =0.

An examination of the coefficient of (V11 + V2) in equation (23) shows that it does not
vanish along the Maclaurin sequence. Accordingly,

Vii+ V=0 and Vs =0, (24)

Hence, if Q% #£ 2By, all the six symmetrized virials must vanish; and this means that
there is no non-trivial £ belonging to the second harmonics which satisfies equations (8)-
(10). Therefore, a necessary condition for the occurrence of a neutral point (where a neu-
tral mode belonging to the second harmonics can exist) is

92
7er= 2012(13B11= 201203(141—' a12A 11); (25)8
and, moreover, the Lagrangian displacement must be such that
Vis=Vaa=Vs3=0 ’ Vii= —Va , and Vie#0. (26)

The condition is also a sufficient one, since there are, in fact, three linearly independent
Lagrangian displacements which satisfy the requirements (26); thus

1= ax1, &= —axy, £&=0,
and 27)

£1=Px2, & =yx, and §&=0,

where a, 8, and vy are arbitrary (non-zero) constants.
The condition (25) is exactly the one which determines the point along the Maclaurin
sequence where the Jacobi ellipsoids branch off.* It should be noted that, in deducing

3 The factor #Gpaia20; which had been suppressed in writing equations (15) and (16) has been restored
in this equation.

4 The condition

(Wi + Q2Uyp) = (—2B1a+ @YV, =0

is satisfied identically all along the Jacobian sequence, since Q2 = 2B, is the equation which determines
22 along this sequence (cf. Paper I, eq. [AL, 7]). Consequently, the mode which is neutral at the point
of bifurcation remains neutral along the entire Jacobian sequence.
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that a neutral point occurs when condition (25) is met, we do not need to demand that
the Lagrangian displacement be solenoidal. On this account, a neutral point will occur at
the same place along the sequence of compressible homogeneous Maclaurin spheroids
(as has, indeed, been found by Chandrasekhar and Lebovitz 19625).

IV. THE POINT OF BIFURCATION ALONG THE JACOBIAN SEQUENCE

The point of bifurcation along the Jacobian sequence, where the pearshaped configura-
tions first become possible as figures of equilibrium, was exhibited and isolated in Paper I
by considering the vanishing of the first variation of the functional

J = Wis;z + Wase + Wiy — Wi, (28)

where

Bj = —%f pBijxrd x (29)
v

for the particular Lagrangian displacement (defined in Paper I, egs. [10], [11], and [75]-
[77]) which deforms an ellipsoidal into a pear. However, the statement in Paper I (in
n. 3 on p. 1057) that (28) is the only functional “available for our present purposes” is
an error.’ It is clear now that the first variations of all of the fifteen equations in Paper I,
equations (57)-(65), must, in fact, vanish at the point of bifurcation for the Lagrangian
displacement considered.

The proper way of treating the fifteen third-order virial equations (obtained after the
elimination of the II;’s) will now be described.

First, we shall rewrite the fifteen equations in Paper I, equations (57)-(65), in four
non-combining groups into which they fall (in what sense they are non-combining will
be made clear presently):

A: Wiz = Was;r = V%193 + Wigy3 = 0 (30)

B: QU115 + Wirs — Wasiz = Q%aos + Wais — Was;z =0,
Wiz = Wazpe = 0 o

C: Q90 + 21952 = Q%133+ 2Wi3;3 = 0,
Q2131 — 2(BWas;1 — Wize — W) =0, (32)

Bizs + Wiz + Waszjn — W =0

D: Q112 + 28121 = Qo33 + 2Was3 = 0,
Q99 — 2(Wig;e — Wiz — W) = 0, 33)

Bz + Wio;r + Wagpo — Wiy;e = 0.

And as we have stated, at a neutral point (or a point of bifurcation) the first variations
of all of the foregoing equations must vanish.

5 This has already been pointed out in the ‘‘Note added in proof” (Paper I, p. 1068). But the qualifica-
tion in this note that Q2 can be considered as invariable for deformations belonging to the third harmon-
ic” is unnecessary: Q2 can be treated as a constant without any proviso.
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It is found that the first variations of all the quantities which occur in equations (30)-
(33) can be expressed as linear combinations of the symmetric third-order virials:®

Viig= [,P( Eixjxr+ Ejxpai+ Erxix;)dx

(34)

= Vit Vikit Vs .
Thus
5I¢jk = Vijk . (35

The expressions for the first variations of the ;;:’s have been derived in Paper II
(Sec. V); and the coefficients of the virials in the expansions of the 828 :;;’s have been
tabulated for all combinations of indices (Paper II, Table 1). It will be seen that the
expansion of a particular 628 ,;;x involves, at most, only three of the virials; and, more
particularly, that the variations of the 8;;;’s included in any of the groups 4, B, C,
and D involve only the same virials and are mutually exclusive. It is in this sense that
the four groups are non-combining. Designating by 84, 6B, 6C, and 6D the equations
which are obtained by taking the first variations of the equations in the respective
groups, we observe that the association of the groups and the virials is the following:

64: Vies; 6B: Vus, Vas, Vs
(36)

8C: Vin ’ Viee y Viss 3 8D: Vg y Vass ’ Vour .

We must now investigate whether a non-trivial Lagrangian displacement exists which
will satisfy all the variational equations included in 84, 8B, 6C, and éD.

The discussion of the group 64 is particularly simple: the equations belonging to this
system are (cf. Paper II, eq. [119])

84: (Q% — 2Big;3)Vies = —2Big;eViss = —2BagnViss =0, (37)

where
Bijx = Bij + ax*Bijx ; (38)

and these equations clearly demand that
Viss=0. (39)

The discussion of the groups 6B, 6C, and 8D is not so simple. Each of these groups
provides a system of four linear homogeneous equations for the three virials which they
involve. For the existence of a non-trivial solution of the variational equations, it is
clearly necessary that at least one of the three 4 X 3 rectangular matrices, representing
the linear systems of equations in the three groups, is of rank at most 2.

For the Jacobi ellipsoids as customarily defined (@, > @2 > a3 in a right-handed sys-
tem of co-ordinates), it can be directly verified (by the method to be described presently
in connection with the group 6C) that the equations of the groups 6B and 8D do not al-
low any non-trivial solution. Accordingly (cf. eq. [36]),

Vig=Vaz = Vasz = Ve = Vasa = V3o = 0. (40)
It remains to find out whether the group 6C allows a non-trivial solution.

8 A qualification is necessary: when 628;;; is evaluated for an arbitrary Lagrangian displacement §,
we find (cf. Paper II, eqs [120]-[122]) that it involves, in addition to the V;;x’s, the first-order virials V;
also; but, as we have seen earlier, all of these can be set equal to zero (cf eq. [12] and the remarks preced-
ing it).
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In discussing the equations of the group éC, it is convenient to choose the following
functionals instead of those listed under C (egs. [32]):

Ji= —QU,y — 2%12;2 ) Ja2 = —92[133 - 251313;3 )
Js = 92(1111 - 31122) + Sia2 ’ Js= 92(1111 - I133) + Siss ’

(41)

where
Siji = —'4%51‘;,' - ZQBJ']‘;{ + Z%ii;i (42)
(no summation over repeated indices) .

The functionals J; and J, are, apart from sign, the same as the first two listed under C;
and J; and J4 are certain specific linear combinations.?

Equilibrium requires that all the J’s vanish. Therefore, a necessary condition for the
occurrence of a neutral point along the Jacobian sequence is that a Lagrangian displace-
ment exists which will satisfy the requirements (39) and (40) and allow a non-trivial
solution for the variational equations

0J1 = — Q%W 99 — 23%12;2 =0 ’ (43)

0y = — QW53 — 25%13;3 = 0, (44)

6J3 = Q¥(Vin — 3V1a2) + 651022 = 0, (45)
and

0y = 92(V111 —_ V133) 4+ 6S153=0. (46)

The W ;;;’s and 65;;;’s which occur in equations (43)—(46) are expressible as linear
combinations of Vi1, Vi, and Viss with coefficients which are listed in Paper II,
Table 2. Accordingly, we may write

oT; = G UV + (122) Vi + G[133)Vies (G =1,2,3,4), &0

where (2| 111), etc., are certain matrix elements which are known.
If we should now require that the Lagrangian displacement be also solenoidal, then
we should supplement equation (47) by the further condition (cf. Paper I1, Sec. VII)
|4 vV V
w1y Vi 133 _

+-—2=9. (48)
a. ag as?

The existence of a non-trivial neutral mode belonging to the third harmonic requires,
therefore, that, for some member of the Jacobian sequence, the 4 X 3 matrix represent-
ing equation (47) (or the 5 X 3 matrix if eq. [48] is also included) is at most of rank 2.
Instead of examining the problem in this entirely general way from the outset, we shall
find it instructive and useful to investigate Lagrangian displacements of progressively
increasing generality.

a) The Lagrangian Displacement Whick Deforms an Ellipsoid into a Pear

We may argue as in Paper I (Sec. ITI) that if a point of bifurcation occurs along the
Jacobian sequence, then the new figure of equilibrium must be one which can be obtained
by deforming an ellipsoid by the Lagrangian displacement

_ 9 %1% xo? X2 )
¢; = Constant 3%, X1 (a12+)\+022+)\+032+)\ 1), (49)

7 The functional (28) considered in Paper Iis $(Js + J3 — J4s — 3J1).
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where X is the numerically larger of the two roots of the equation
3 1 1 _ 0. (50)
af+ N al+ N a4

The components of this displacement can be written in the following forms (Paper I,
egs. [75] and [76]):
£1= (a+ B)xs® — ax? — B — 1,
(51)
£, = —2axivz, and & = —2Bx1%s,

where
a= —(a+ N7

The Lagrangian displacement defined by the foregoing equations is clearly divergence-
free; it satisfies the requirement (Paper I, eq. [104])

and B= —(e®+ N'. (52)

V,-=fvps,~dx=0; (53)

and, moreover, all the virials listed in equations (39) and (40) vanish. It would, in fact,
appear that the displacement, as defined, is the only one (apart from a constant factor)
which will satisfy all these requirements.

TABLE 1

VALUES OF 6J; IN THE NEIGHBORHOOD OF THE POINT OF BIFURCATION
FOR A LAGRANGIAN DISPLACEMENT WHICH DEFORMS
AN ELLIPSOID INTO A PEAR

cos™! aa/m 8J1 &J s J s 8J4
68° . —0 0763 —0 0343 -1 297 —1 092
69°. . . - 0277 — .0136 —0 534 -0 464
69°8166. . + 0001 + 0000 +0 002 +0 001
70°. . + 0051 + .0027 +0 112 +0 100
71° . +0 0262 +0 0149 +0.658 +0 599

For the Lagrangian displacement considered, it can be shown (by making use of Pa-
per I, egs. [103] and [104]) that

Vin = 6a’a:*(a + B) — 1], Vie = —2a2(2a:®+ aP)a+ 1],
and V133 = —2032[(2012 + a32)ﬁ + 1] .

Using these particular values for Vi1, Vi, and Viss, we can readily evaluate the 6J’s
for different members of the Jacobian sequence. The results of the calculations are given
in Table 1. It will be observed that the 6J.’s do seem to vanish simultaneously at one
point along the Jacobian sequence; and the accuracy of Darwin’s original determination
of the point of bifurcation would appear to be fully confirmed.

(54)

b) A Lagrangian Displacement Which Is Divergence-free

If we did not know that it is a sequence of pear-shaped configurations which branches
off from the Jacobian sequence, we might still wish to demand that the requisite La-
grangian displacement be divergence-free. In that case, the existence of a non-trivial
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solution will require that the 5 X 3 matrix representing equations (47) and (48) is (at
most) of rank 2. All six determinants of the form

GI111)  G]122)  <i]133)
a |GGGl G|
1 1 1
a,’ ay? a3z’

must, therefore, vanish simultaneously at the point of bifurcation. Table 2 shows that
this does happen.

TABLE 2

VALUES OF A;; IN THE NEIGHBORHOOD OF THE
POINT OF BIFURCATION

cos~! ag/m 69° 69°8166 70°
Arg +0 000882 —0 000003 —0 000177
A3 — .01365 + 00004 + .00309
Ass. + .2994 — 0010 — 0742
Ag . + 02148 — .00007 — .00473
Az -+ .00687 — 00002 — 00152
Az. . —0 00426 -0 00001 -+0 00097
TABLE 3
VALUES OF A; IN THE NEIGHBORHOOD OF THE POINT OF BIFURCATION
cos™1 a3/a1 Ay Az Az As
69°. +0 00236 -+0 00366 —0 000221 —0 000221
69°8166 — 00001 — 00001 + 000001 + 000001
70° —0 00048 —0 00073 -+0 000041 +0 000041

¢) A Lagrangian Displacement Which Is Completely Unspecified

And, finally, if we do not wish to impose any restrictions whatsoever on the Lagrangi-
an displacement, then the existence of a non-trivial solution will require that the 4 X 3
matrix representing equation (47) is (at most) of rank 2. All four determinants of order 3
which we can form from the 4 X 3 matrix must, therefore, vanish simultaneously’at the
point of bifurcation. Denoting by A, the determinant of order 3 obtained by omitting
the 7th row in equation (47), we list in Table 3 its values in the neighborhood of the point
of bifurcation. We observe that all the A;’s do vanish at the point of bifurcation, as re-
quired.

We can go even further. Suppose that we did not even wish to restrict the Lagrangian
displacement by the requirement that the first-order virials V; vanish. We should then
have found an equation of the form

87 = Gl Vi + (G[122) Vg + (6| 133) Vi + G Vi (= 1,2,3,4), 56°
8 From Paper I, eqs. (114)—(117) it is apparent that the groups which we have designated 6B, C,
and 8D involve (besides the third-order virials enumerated in [36]) the first-order virials V3, V3, and Vs,

respectively. And the consideration of the groups 6B and 8D would have led us (at an earlier stage)
to infer the vanishing of V3 and V; in addition to the requirements (39) and (40).
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in place of equation (47). And the existence of a non-trivial solution will now simply re-
quire that the determinant of this system of equations vanish. From the results of Sec-
tion IVa, b, and ¢, it is clear that we should now simply find that ¥, = 0. It appears,
then, that we can isolate the point of bifurcation along the Jacobian sequence almost
blindfolded!

It is not easy to see a priori why the different ways of looking at the problem are all
consistent with one another; and, in particular, why the solenoidal character of the La-
grangian displacement and the vanishing of the first-order virials are deducible as neces-
sary conditions for the occurrence of a neutral point. But a self-consistent way of look-
ing at the problem is the following. Suppose it has been established (as it has been es-
tablished by Darwin) that a pear-shaped configuration is a possible figure of equilibrium.
Since the virial equations (30)-(33) are consequences of the same equations governing
equilibrium, it is clearly necessary that the first variations of the virial equations vanish
at the point of bifurcation for the particular Lagrangian displacement, considered in
Section IVa, which deforms an ellipsoid into a pear; and this we simply verify.

V. THE SECOND AND THE THIRD NEUTRAL POINTS ALONG THE MACLAURIN SEQUENCE

We return once more to the Maclaurin sequence, but this time to isolate further neu-
tral points, beyond the first, where neutral modes of oscillation belonging to the third
harmonics may occur. For the exhibition and the isolation of these further neutral
points, we may use the same functionals as those we considered in the discussion of the
Jacobian sequence in Section IV.

When we consider the first variations of the equations listed under groups 4 and B
(egs. [30] and [31]), we find that these equations do not allow any non-trivial solution.
Therefore, at a neutral point, we must necessarily have

Vies = Vs = Vau = Ve = 0. (57)

In view of the equality of a;, and as, the variations of the equations in groups C and D
will lead to identical equations governing the respective sets of virials; this is apparent
from the fact that the coefficients in the expansions of the relevant quantities in terms
of the two sets of virials are the same (see Paper III, Table 1). It will, therefore, suffice
to consider equations (43)—(46) derived from group C.

Using the coefficients of the virials in the expansion of 8512, given in Paper III,
Table 2, we find that, at a neutral point,

8J3 = [Q* — 2(Bu + a:*B11)|(V 11 — 3Vi2) = 0. (58)

Hence a Lagrangian displacement for which

Vin # 3V # 0 (59)

and all the remaining virials vanish will belong to a neutral mode, where
Q% = 2(Bu + a®Bun) . (60)
This is the same neutral point as that isolated in Paper III (eq. [8]) from a direct investi-

gation of the problem of small oscillations; and, as we have shown, the condition (60) is
met along the Maclaurin sequence where

e = 0.89926 . (61)
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The Lagrangian displacement which belongs to the neutral mode of stability at e =
0.89926 is given by

&; = Constant 5%— 21 (2,2 — 34x,2), (62)
i

or
fl = a(x12 - x22) , 52 = —2ax1x2, and }::3 =0 y (63)

where a is a constant. It can be readily verified that the foregoing displacement satisfies
all of the conditions (57) and (59).°

Turning to the consideration of the functionals J,, J2, and J4, we should set in their
variations

Vi = 3V1e, (64)
TABLE 4
VALUES OF A;; IN THE NEIGHBORHOOD OF THE NEUTRAL POINT
e Az A1z Aa
0 9... +0 015737 +0 0052456 +0 13906
.969373... + 000001 + .0000003 + .00001
0 98..... . —0 009929 —0.0033097 —0 17047

in order that we may not be inconsistent with equation (58). The coefficients of the virials
V122 and V33 which then occur in the expansions of the relevant 628.;;’s and 8S5;;’s are
those listed in Paper III, Table 2; and, using those coefficients, we find

6J1 — 0?42 (B + 3a,%Bu)
0, | = 4a32By;3
80J, 302+ 4(2a,24 as?)Byys— 18a4?Byy;1 — 6By,
(65)
a.*B13
Ve
2B3+ 3a92By33s — Q2 =
Viss

— 2+ 3 [Bys+ B3+ (a2 + 2a3?)Big; — a12B113]

For the existence of a non-trivial solution for this system of equations, it is necessary that
the rank of the 3 X 2 matrix on the right-hand side is 1. All three determinants of order 2
which can be formed from the 3 X 2 matrix must, therefore, vanish simultaneously for
some member of the Maclaurin sequence; and this happens when (cf. Paper I, eq. [AIL
10))

e = 0.969373, (66)

as is clear from Table 4, which gives the values of the determinant A;; formed out of the
ith and the jth rows of the matrix on the right-hand side of equation (65).

% The consideration of the functional Q2(Vass — 3Ven) + Sus (in group D) would have led to the same
condition (60), but with the associated displacement

¢; = Constant ;')_Qx— x9( 292 — 3242).
J
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In deriving the conditions for the occurrence of neutral points based on equations (58)
and (65), no demands were made on the Lagrangian displacement that it be solenoidal.
If the solenoidal requirement were made, then equation (65) should be supplemented
by the further condition

012
= ——0= (67)
Vi 4oy Viss,
which is the form that the general condition
012
Viat Vi = rE Viss (68)

takes when relation (64) obtains.
When the equations requiring 6J; = 8J, = 0 are supplemented by the condition (67),
they lead to the equations

Q2 = Z(Bu + 3(112B111) — 4032.3113 (69)

and
Q% = 2By3 + 3a4’B1ss — ¢:°Bus . (70

These two conditions are not independent, since it can be shown that the quantities on
the right-hand sides of the equations are identically the same!® and, moreover, determine
the same value (66) for ¢; the value (66) was, in fact, determined with the aid of equa-
tions (69) and (70).

The vanishing of 6J 4, together with equation (67), leads to a further condition for the
occurrence of a neutral point. In writing this last condition, it is more convenient to con-

sider &8s+ 3871 = {— Q2+ 3[Bis + Bss + (ar® + 2a5*)Biss}} Viss o
+ 4(2a.* + a3?)B113V122 = 0
or, making use of equation (67), we have
0= 3 1Bt Bus-t (a4 20) Bus] = 25( 2.2+ 0) Bus. a2

It is found that this condition is also satisfied" at the same value of ¢, but the right-hand

side of equation (72) is not identically the same as those of equations (69) and (70).
Again it is remarkable that the solenoidal character of the Lagrangian displacement

should be deducible as a necessary condition for the occurrence of a neutral point.

10 To prove the identity of the two sides, we first rewrite the equations in terms of the symbols 4.
We have
Q2 = 2A1 - a12A 11 — 403214 13 + 50120'3214 113
and

Q%= 241 — a4+ as?413 + 0:%a:?A 115 — 3a5*4133 ;
and the equality of the right-hand sides now requires that

3ag2d133 = —4a2A13+ 5413

This last equality can be readily established by making use of the relations which express the symbols
of a certain order in terms of those of the lower order. In the same way it can be shown that the condition
obtained in Paper I, eq (AIL, 9) is identical with (69) and (70).

1 Thus 02 (in the unit #Gp) given by the right-hand side of eq. (72), for ¢ given by (66) is 0.41419,
whereas the value found otherwise is 0.41413.
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And, finally, we may note that the Lagrangian displacement which belongs to the
third neutral point at e = 0.96937 is (cf. Paper I, egs. [AIL, 1]-[AII, 3])

a
Ej = Constant 'a—x X[ 22 %92 — 42— %-( a2 — az?) ]. (73)
)
VI. THE NEUTRAL POINTS ALONG THE JEANS SEQUENCE

The equilibrium and stability of homogeneous masses under the action of a tidal po-
tential of the form

Br = —jul@’ + 2 + x5 + Juas’ (74)

was first studied by Jeans (1917) and more recently by Chandrasekhar and Lebovitz
(Paper IV). In equation (74),
GM’

u= —-——Ra , (75)

where M’ is the mass of the tidally distorting secondary and R is the distance between
the centers of mass of the two objects.

It is known that prolate spheroidal forms are consistent with the equations of hydro-
static equilibrium so long as u is less than a certain maximum value,

pmax = 0.125536 7Gp , 76)

which it attains when the eccentricity of the spheroid takes the value
e = 0.883026 . (77

In this section we shall isolate the neutral points along the Jeans sequence which belong
to the second and the third harmonics.

a) The Neutral Point at pmax
The second-order virial equations governing equilibrium are (Paper IV, egs. [§]

and [9])
W= W3 =0, Was = pulss, (78)
Loy — %333 - #(122 - 133) =0 , (79)
and
Wi — Woe + p2In+ 1) =0. (80)

At a neutral point the first variations of all of these equations must vanish for a non-trivi-
al Lagrangian displacement.
Combined with equation (15), the first variations of equations (78) give

B1oVie = BisVis=0 and (2Bys+ w)Vas=0. (81)
Since the B,,’s are non-zero positive constants, it follows that
Vie=Viz=Vau=0 (82)

at a neutral point.
Considering next the first variation of equation (79) and making use of equation (16)
(remembering that in the present context a; = a3), we find

(2B + pw)(Vas — Vs3) = 0. (83)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1963ApJ...137.1185C

T D -I37-I185C!

pJ

(10834

No. 4, 1963 POINTS OF BIFURCATION 1199
Hence the Lagrangiardl displacement at a neutral point must satisfy the further condition
Voo = V3. 84)
Finally, the variation of equation (80), namely,
. oW — 0Wse + u(2Vu+ V) =0, @85)
gives
—(2B1 — a:*411 + a?42)V 11 + 2(Bas — as?4 s + 0:12419) Ve .
+ u@Vu+ V) =0. (
By supplementing equation (86) by the further condition
V= ———( Vot Vis) = —2— Vs, (87)

which must be satisfied if the displacement is to be solenoidal, we obtain the necessary
condition for the occurrence of a neutral point. The condition which we obtain in this
manner is the same as that found in Paper IV (eq. [67]) by a direct solution of the prob-
lem of small oscillations.

From a comparison of equations (80) and (85) it is apparent that the neutral point
must occur where u attains its maximum value. While the present method cannot dis-
criminate the kind of neutral point which occurs at pmax, we know from the analysis of
Paper IV that it is, in fact, of the first kind.

b) The Second Neutral Point along the Jeans Sequence

For the isolation of the second neutral point along the Jeans sequence, we must make
use of the third-order virial equations which allows for the action of the tidal field (74).
The required equation is readily obtained. We have (cf. Paper I, eq. [24])

(88)

%/;Puixjxkdx= 2(T i+ Tinss) +Wajsr + Wanss

— pul e+ 36 il i+ 05X+ 805,

where the various symbols have their standard meanings.
When no relative motions are present and hydrostatic equilibrium prevails, equa-
tion (88) gives
Wijr + Wy — wlije + 3udal1je = — 810 — Sa11; . 89)

Writing out explicitly the different components of equation (89), we obtain the follow-
ing eighteen equations:

Wiy + wlin = —1I, (90)

BWaoy1 + Warze — plioe = —1y, (o1)

Wiz + Warys — wlizs = —10, (92)

%12;2 + wulize = 23313;3 + wuli53=10 ’ (93)
Wos;1 + Wayys = Wizge + Wes; = wliss, (94)
%12;3 + 53313;2 = —2ul13, (95)
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Biye + Wiz + 2pl112 = —11e, (96)
%333;2 + %32;3 — plos = —1ls, (97)
28Wog;2 — plze = —210,, (98)

2%12;1 = #1112, 2%23;3 = uls33 y (99)
Bz + Wiz + 2uls = — 103, (100)
%22;3 + %32;2 — ulas = —1IIs, (1o1)
28ss;3 — ulzes = —2103, (102)

2%13;1 = MIns , 2%23;2 = #1223 . (103)

We next eliminate the II’s from equations (90)-(103). After their elimination we shall
be left with fifteen equations; and, by suitably combining these remaining equations,
we can arrange them in the following four “non-combining” groups:

A: Bias =
B: 2W19;1 =
Siye =
C: 2W 131 =
Siis =
D: Wige =
S1oz =

Bz = —ulios, Bos;y = 2ul 93 ; (104)
NInz y 2%23;3 = Mlzsa ’

(105)
M(Izzz + 31112) y Sz = #(1222 - 3I233) ;
MIns ’ 2%23;2 = ,Ulzzs ’

(106)
M(Isaa + 31113) y Soos = #(1333 - 31223) y
—#1122 y %13;3 = '—MI133 )

(107)

S133 = —zﬂllll .

In the foregoing equations, .S;;; has the same meaning as in equation (42).

At a neutral point a non-trivial Lagrangian displacement must exist such that the
first variations of all of the equations in the groups 4, B, C, and D vanish. When the
variations are carried out, we find (as in the discussion of the Jacobi ellipsoids in Sec. IV)
that the equations derived from the different groups involve different virials and are
mutually exclusive. If 64, 8B, 6C, and 6D denote the equations which are obtained by
taking the first variations of the equations in the respective groups, then the association
of the groups and the virials is the following:

04: Vis; 6B: Vae, Vas, Vou;

(108)

oC: Vs, V311, V322; éD: V111, V122, Viss .

The coefficients of the virials in the expansions of the 8%;x’s and 8S;;;’s which
occur in the varied forms of the equations (104)-(107) can be read off from Table 2 in
Paper IIL. (There are some obvious simplifications arising from the present equality of

az and a;.)

We readily find that the equations in the groups 64, éB, and 6C do not allow any
non-trivial solution. Therefore, at a neutral point, we must necessarily have

Vies = Vase = Voss = Varn = Visg = Vann = Ve =0. (109)
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The occurrence of a neutral point now depends on whether the remaining group 6D
allows a non-trivial solution. The equations to be considered can be written in the forms
(cf. eq. [107])

—6Wiz;e + 6Wiss — u(Vise — Viss) =0, (110)
6S12e — 8S133 =0, (111)
’"(5%12;2 + 6B13;3) — u(Viee + Viss) = 0, (112)
and
3(8S122 + 8S133) + 2uV11 = 0. (113)

Making use of the results of Paper II, Table 2, we find that equations (110) and (111)
give
(Bm + 0223122 - M)(sz — V133) =0 (114)
and
[3(Baz + Biz) + (Sas? + a1%)Bi2a](Vize — Viss) = 0 (115)

and these equations clearly require that

Vige = Viss. (116)
Using this last result in equations (112) and (113), we find

a2’ B112V 111 + 2(Biz + 2a:*B1ge — u)Viee = 0 (117)
and

[ZM + (2l112 + 022)3112 — 5a:2B11 — 2311]V111
(118)

+ [3(322 ~+ Bl2) + (5012 + 7(122)3122 - 60123112]V122 =0.

For the existence of a non-trivial solution, the determinant of equations (117) and (118)
must vanish; and we find that this happens when

e=094774 and u = 0.10913 #Gp . (119)

These values agree with those derived by Jeans (1917) by a different argument.

In deriving the condition for the neutral point based on equations (117) and (118),
no demands were made on the Lagrangian displacement that it be solenoidal. If the
solenoidal requirement were made, then equations (117) and (118) should be supple-
mented by the further condition

Vin= —ﬁ( Viee+ Vi) = — 2 2 Vi (120
2 2

With this additional condition, equations (117) and (118) give
g = Bia + 2a:*B12s — a:*Bus (121)

and
[3(Bag+Biz) + (5a2 4 7a,2) By — 6a42B11]

(122)

2
-2 5‘13[2#4‘ (2a:*+ a9?)Byyp — 5a,2By — 2By =0.
2
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We find that these two conditions are, in fact, satisfied at e = 0.94774. Thus the solenoi-
dal character of the Lagrangian displacement is again deducible as a necessary condition
for the occurrence of a neutral point.

And, finally, we may note that the Lagrangian displacement which belongs to this
second neutral point at ¢ = 0.94774 is

£; = Constant E%xl (202 — (2 + x3?) —2(aP—ar?)]. (123)
7
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