
Molecular Mining of Alleles in Water Buffalo Bubalus
bubalis and Characterization of the TSPY1 and COL6A1
Genes
Sudeep Kumar1., Ruchi Gupta1., Sudhir Kumar2, Sher Ali1*

1 Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, Delhi, India, 2 Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh,

India

Abstract

Background: Minisatellites are an integral part of eukaryotic genomes and show variation in the complexity of their
organization. Besides their presence in non-coding regions, a small fraction of them are part of the transcriptome, possibly
participating in gene regulation, expression and silencing. We studied the minisatellite (TGG)n tagged transcriptome in the
water buffalo Bubalus bubalis across various tissues and the spermatozoa, and characterized the genes TSPY1 and COL6A1
discovered in the process.

Results: Minisatellite associated sequence amplification (MASA) conducted using cDNA and oligonucleotide primer (TGG)5

uncovered 38 different mRNA transcripts from somatic tissues and gonads and 15 from spermatozoa. These mRNA
transcripts corresponded to several known and novel genes. The majority of the transcripts showed the highest level of
expression either in the testes or spermatozoa with exception of a few showing higher expression levels in the lungs and
liver. Transcript SR1, which is expressed in all the somatic tissues and gonads, was found to be similar to the Bos taurus
collagen type VI alpha 1 gene (COL6A1). Similarly, SR29, a testis-specific transcript, was found to be similar to the Bos taurus
testis-specific Y-encoded protein-1 representing cancer/testis antigen 78 (CT78). Subsequently, full length coding sequences
(cds) of these two transcripts were obtained. Quantitative PCR (q-PCR) revealed 182-202 copies of theTSPY1 gene in water
buffalo, which localized to the Y chromosome.

Conclusions: The MASA approach enabled us to identify several genes, including two of clinical significance, without
screening an entire cDNA library. Genes identified with TGG repeats are not part of a specific family of proteins and instead
are distributed randomly throughout the genome. Genes showing elevated expression in the testes and spermatozoa may
prove to be potential candidates for in-depth characterization. Furthermore, their possible involvement in fertility or lack
thereof would augment animal biotechnology.
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Introduction

Satellite DNA, an integral part of eukaryotic genomes [1],

present as long uninterrupted arrays, often in genetically silent

heterochromatic regions [2]. These dynamic elements include

transposable elements, major satellites and simple sequence

repeats (SSRs) [2,3] and represent a fast-evolving part of the

genome conforming to the random processes of molecular drive

[4]. Satellite sequences are involved in both gene conversion and

unequal crossing over. These events are responsible for the rapid

horizontal spread of mutations [5], changes in copy number and

even the loss of satellite sequences from the genome. Owing to

these rearrangements, copy number variation is caused even

amongst the closely related species [6,7].

Usually, satellites are present in non-coding regions but a small

fraction can be found in the transcriptome [8,9] and this subset

participates in gene regulation and silencing [10,11]. In the

context of disease, pathogenic trimeric repeat expansion in

humans has been well established. Similar structures may act as

substrates for genome-wide pathogenic rearrangements [12]. The

expansion and contraction of these SSRs within the exonic regions

are reported to cause several diseases, such as Myotonic dystrophy,

Huntington’s disease and fragile X syndrome [13–15]. Further,

the presence of ITRs (internal tandem repeats) at exon-intron

boundaries may give rise to novel alternatively spliced transcripts

[16]. Notwithstanding these observations, the precise arrangement

of tandem repeats in a given species in the context of genomic

organization and gene expression still remains unclear.
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Another aspect of gene expression relates to germline genetics.

In the past, the spermatozoon was considered to be merely the

carrier of the paternal genome. However, this perception has

changed since it was discovered that spermatozoa contribute

(except in mice) a centriole [17] and a soluble factor that activates

the egg [18]. Despite being in a transcriptionally dormant state

[19], spermatozoa retain a pool of mRNAs. These messages are

transcribed long before nuclear shutdown [20–22] and encode the

proteins needed for the subsequent re-packaging of DNA and

micro-RNAs [23]. Approximately 3,000–5,000 mRNA transcripts

have been reported to be present in spermatozoa [21,23–27]. As

spermatozoon development results in the loss of rRNA, translation

in spermatozoa is not possible. The delivery of the spermatozoal

transcripts to the ooplasm is hypothesized to have biological

significance during fertilization, embryogenesis and subsequent

morphogenesis. However, the spermatozoon’s genomic organiza-

tion, cellular expression and association with regulatory elements

remain unexplored.

In exons, trinucleotide repeats are favored evolutionarily due to

selection against frame shift mutations [28]. These repeats could

serve as markers to discover novel genes [29]. The tandem repeat

length polymorphism of (CCA)n/(TGG)n resulting in conforma-

tional variability of the DNA sequence is well documented in the

human genome [30]. We have used (TGG)5 repeats to uncover

somatic, gonadal and spermatozoal transcripts in the water buffalo

Bubalus bubalis, which is an important livestock animal in the

Indian subcontinent. Thus far, this repeat has been studied in the

context of human genetic diseases but it has not been studied in a

non-human system. The unexplored status of the water buffalo

genome makes molecular mining of the alleles even more relevant.

The detailed insight into the repeat tagged mRNA transcripts

across the tissues including spermatozoa in the water buffalo

appears to be the first such study. This expression profile is

expected to increase our understanding of the involvement of

minisatellites in the regulation of gene expression in a tissue

specific manner.

Materials and Methods

Ethics statement
Tissue samples from both sexes of water buffalo were collected

from the Gazipur slaughter house, New Delhi, India, with the help

of an on-site veterinary officer. Fresh water buffalo semen samples

were procured from an in-vitro fertilization (IVF) center (Frozen

Semen Production Center, Chak Gajaria), in Lucknow (U.P), India.

These collections were performed in accordance with the guidelines

of the Institute’s Ethical and Bio-safety committees. There was no

additional requirement for use of these samples. Therefore, any

additional approvals were not applicable in this case.

Sperm purification and RNA isolation
Fresh water buffalo semen samples were procured from the IVF

center as described above and utmost care was taken to avoid

diploid cell contamination. Collected samples were subjected to

the percoll gradient method to select for motile sperm. RNA

isolation was performed using TRIzol reagent (Sigma-Aldrich)

following standard protocols [20,31,32]. Isolated RNA was

quantified using a spectrophotometer (Amersham Life Sciences)

and tested for the presence of residual DNA by PCR using primers

against beta-actin (ACTB; [GenBank: DQ661647]) and Prot-

amine-1 (PRM1; [GenBank: NM_174156]) following standard

procedures [20,32] (Table S1). Subsequently, cDNA synthesis was

performed using a high capacity cDNA reverse transcription kit

(ABI, USA). The absence of non-sperm cells in the processed

semen samples was confirmed by PCR using primers specific to

common leukocyte antigen (CD45) and epithelial E-cadherin

(CDH1) gene markers (Table S1) as described previously [33].

Total RNA isolation and cDNA synthesis from tissue
samples

Tissue samples from both sexes of water buffalo were collected

from the local slaughter house as described above. Total RNA was

isolated from cardiac, renal, hepatic, pulmonary, splenic, testicular

and ovarian tissue using TRIzol reagent (Sigma-Aldrich) following

standard protocols [20,31,32]. After quantification of the RNA by

spectrophotometry, each sample was tested for genomic DNA

contamination by PCR using primers specific to beta-actin (ACTB)

[GenBank: DQ661647]. Synthesis of cDNA was conducted using a

high capacity cDNA reverse transcription kit (ABI, USA). The

quality of the cDNA produced was confirmed by PCR amplification

using beta-actin primers.

Minisatellite associated sequence amplification (MASA)
To conduct MASA, a 15 bp oligo (5’ TGGTGGTGGT-

GGTGG 3’) was purchased from Sigma-Aldrich. MASA reactions

were performed using cDNA templates from different somatic and

gonadal tissues of two individuals and from spermatozoa of four

individuals following standard procedures [32,34]. Representative

gel pictures are shown in figure 1. The annealing temperature of

the repeat primer was 52uC. The resultant amplicons were

resolved on a 2% (w/v) agarose gel using 1x TAE buffer.

Cloning, sequencing and characterization of MASA
amplicons

After the MASA reactions, the amplicons resolved on the agarose

gel were excised. DNA was eluted (Qiagen Gel Extraction kit,

Germany), cloned into the pGEMT-easy vector (Promega, USA)

and used to transform DH5-alpha cells. The positive clones were

identified by EcoR1 digestion (New England Biolabs). All of the

sequencing reactions were performed on the Applied Biosystems

3130xl Genetic Analyzer. It used an initial cycle sequencing reaction

mixture of 10 ml with BigDyeHTerminator V3.1 cycle sequencing

RR-100. Subsequent product was purified by ethanol/EDTA/

sodium acetate precipitation as per the manufacturer’s instructions.

Finally, the precipitate was resuspended in 10 ml of Hi-DiTM

Formamide Genetic Analysis Grade. Gel electrophoresis was run on

a 36 cm capillary array with POP-7TM polymer. The raw data

obtained was analyzed with the Genetic Analyzer Data collection

Software v3.0. Multiple clones were sequenced to validate the

obtained sequences, which were then deposited in GenBank. A

database search was conducted to determine the homology of these

sequences with other entries in GenBank using the default server

[35] with the megablast ‘‘highly similar’’ and blastn ‘‘somewhat

similar’’ algorithms. Each sequence was first subjected to blast

search across the database of reference mRNA sequences

(refseq_mRNA), then against the nucleotide collection (nr/nt) of

all organisms, and finally to those of Bos taurus (Table S2).

RT-PCR and relative expressional studies using q-PCR
The expression status of the identified genes was determined in

the different tissues and spermatozoa by both RT-PCR and q-

PCR. For this, equal amounts of RNA from the different tissues

were reverse transcribed into cDNA. An expression profile was

ascertained by RT-PCR (Figure 2) using this cDNA and internal

primers (Table S3). These primers were designed from the

individual mRNA transcripts using Primer 3 Input (version

0.4.0). Beta-actin was used as an endogenous control.
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To compare the relative expression of different genes and gene

fragments, SYBR green assays were conducted using Real Time

PCR (Sequence Detection System, 7500, ABI) according to

established protocols [34,36]. GAPDH (Glyceraldehyde 3-phos-

phate dehydrogenase) was used as an endogenous control. Primers

for determining relative expression (Table S4) for each of the

transcripts were designed with ‘‘Primer Express Software’’ (ABI,

USA). The q-PCR assay was performed individually for all

transcripts by Real Time PCR using Power SYBRH green (Part

No. 4367659, ABI). For each transcript, a calibrator tissue that

showed basal expression level 1 was chosen. This calibrator was

selected based on the lowest expression of that transcript in the

tissues studied. Primer specificity and comparable PCR efficiencies

for all of the studied genes and the endogenous control (GAPDH)

were ensured. For this, standard and melting curves were

generated using ten-fold serial dilutions of the cDNA templates.

Standard curves with a slope ranging from 3.3 to 23.6, R2.0.99

(Regression coefficient) were considered to have acceptable PCR

efficiencies, and a single dissociation peak indicated primer

specificity (Figure 3). The expression level of the genes was

calculated using this formula: relative expression = (1+E)2 DDCt,

where E is the efficiency of the PCR and DDCt is the cycle

threshold normalized first with the endogenous control GAPDH

(Ct sample – Ct GAPDH = DCt) and then with the calibrator

sample (DCt Sample - DCt Calibrator = DDCt).

Amplification of the full length coding sequence of
identified transcripts

The amplicon SR1 [GenBank: GU433053] of Bubalus bubalis is

a partial cds showing .95% identity with Bos taurus collagen type

VI alpha 1 (COL6A1) mRNA. The full length SR1 transcript was

amplified using cDNA from a Bubalus bubalis ovary with primers

(Table S5) designed from the Bos taurusCOL6A1 coding sequence

[GenBank: NM_001143865.1]. The PCR amplicons were cloned

and subsequent sequencing detected four overlapping clones.

These sequences were aligned to obtain the full length cds of

COL6A1 of Bubalus bubalis.

The amplicon SR29 [GenBank: GU433091], a partial cds,

showed .95% identity with Bos taurus testis-specific Y-encoded

protein-1 representing cancer/testis antigen 78 (CT78) mRNA

[GenBank: XM_001254382.2]. The full length sequence of this

gene was obtained using the 39 RACE System for Rapid

Figure 1. Minisatellite associated sequence amplification conducted using decoy primer (TGG)5. Panel (A)shows bands uncovered by
MASA from different somatic tissues and gonads and (B) from spermatozoa. The corresponding tissues are indicated above.
doi:10.1371/journal.pone.0024958.g001

Figure 2. RT-PCR analysis of the (TGG)n tagged mRNA
transcripts using internal primers and cDNA from different
somatic tissues and the gonads. The quality and quantity of the
cDNA samples were assessed using beta-actin specific primers and are
shown at the bottom. The transcript IDs are indicated on the left and
the tissues IDs at the top of the panel. NTC denotes non-template
control.
doi:10.1371/journal.pone.0024958.g002
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Amplification of cDNA ends (Invitrogen) and with a gene specific

primer (Table S5) designed for the 59 start site of Bos taurus TSPY1-

like mRNA. The final product was ligated into the pJET1.2/blunt

cloning vector (Fermentas) and was used to transform DH5- alpha

E. coli cells. Sequencing of this fragment was done commercially

(Bioserve Biotechnologies Pvt. Ltd., India).

Chromosomal localization of theTSPY1-like gene by
Fluorescence in situ hybridization (FISH)

Water buffalo metaphase chromosomes were prepared accord-

ing to the standard protocol [37]. FISH was conducted using Bos

taurus Y Chr CH240-127C20 BAC (bacterial artificial chromo-

some) [GenBank: AC234853.4] procured from BACPAC (Re-

source Centre, Oakland, California, USA). The BAC DNA was

verified with gene specific primers by end point PCR. The BAC

DNA was labeled with Fluorescein tagged dUTP (Invitrogen)

using the Nick Translation Kit from Abott Molecular Inc. (IL,

USA). FISH was subsequently conducted following established

protocols [38]. The slides were screened under an Olympus

fluorescence microscope (BX 51) fitted with a vertical fluorescence

illuminator U-LH100HG UV, excitation and barrier filters. The

images were captured and analyzed with Applied Imaging Systems

Cytovision 3.92. Chromosomal identification was performed in

accordance with ISCNDB 2000 (International system for

chromosome nomenclature of domestic bovids) [39].

Copy number calculation of theTSPY1-like gene in the
water buffalo genome

The copy number of the Bubalus bubalis TSPY1-like gene was

calculated using a SYBR green assay with the Real Time PCR

Sequence detection system 7500 (ABI, USA) as per the standard

protocol [40]. Briefly, a standard curve was generated using 10-fold

serial dilutions of the recombinant plasmids in the range of 3,000 to

3,00 million copies. The copy number of the gene in the water buffalo

genome was estimated by extrapolation from the standard curve.

Results

(TGG)n tagged mRNA transcripts include several known
and novel genes

MASA conducted with cDNA from somatic and gonadal tissues

of two individuals using a (TGG)5 repeat primer uncovered 41

amplicons, and the same primer yielded 28 amplicons from the

spermatozoa derived from 4 different animals. Cloning, sequenc-

ing and subsequent bioinformatics analysis of these amplicons

resulted in the identification of 38 distinct mRNA transcripts

corresponding to different genes from the somatic tissues and

gonads and an additional 15 from the spermatozoa. Based on RT-

PCR, SR1 was found to have similar expression levels in all the

somatic and gonadal tissues studied, while the other transcripts

showed varying expression across these tissues. Of the 15

spermatozoal transcripts, only one was detected in all the somatic

tissues. Thus, the expression of 14 mRNA transcripts was exclusive

to spermatozoa.

Of the 38 transcripts from somatic and gonadal tissues, 18 showed

significant identity with cDNA sequences from the refseq_mRNA

database. Of these, 14 had 90–99% query coverage (Table S6). The

remaining ones had regions lacking identity at either the 59/39 region

or the intervening sequences of the characterized genes. Surprisingly,

none of the spermatozoa-specific mRNA transcripts had significant

Figure 3. Representative standard and dissociation curves and amplification plots from Real Time PCR assays. Melting (dissociation)
curve showing a single peak corresponds to a single amplicon. (A) Representative curves for GAPDH, (B) RS3 and (C) RS5.
doi:10.1371/journal.pone.0024958.g003
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identity with any of the sequences in the database, suggesting that

these genes have yet to be characterized.

Differential expression of the (TGG)n tagged mRNA
transcripts

Significantly, of the 38 mRNA transcripts from somatic and

gonadal tissues, about ,90% showed the highest level of

expression in the testes and spermatozoa, while an additional

8% were most highly expressed in the lungs. One (SR2)

[GenBank: GU433054] showed the highest level of expression in

liver. Of all the transcripts first identified in the testes, only one

(SR29) [GenBank: GU433091] showed the highest level of

expression in the spermatozoa (5113.16-fold higher as compared

with samples from the heart, which was used as the calibrator

representing basal level 1), although the testes did show the second

highest level of expression (1052.8-fold) for this transcript. The

transcript was similar to that of the Bos taurus Testis-specific Y-

encoded protein 1 (Cancer/testis antigen 78) (CT78). Expression

Table 1. Relative expression for all the TGG tagged transcripts uncovered from somatic tissues and gonads of water buffalo
Bubalus bubalis.

Transcript ID Clone ID Accession nos Heart Kidney Liver Lung Spleen Testis Ovary Semen

SR1 pSRC1 GU433047 2.20 1.05 Cb 11.16 7.01 4.17 8 4.06

SR2 pSRC8 GU433054 Cb 8.75 145.01 9.78 7.62 10.20 14.72 56.10

SR3 pSRC13 GU433059 2.69 4.47 2.95 25.46 8 2.19 Cb 572.05

SR4 pSRC15 GU433061 1.87 2.39 3.71 Cb 1.34 1.61 - 396.18

SR5 pSRC16 GU433062 33.13 3.71 2.20 6.15 10.06 4.69 Cb 190.02

SR6 pSRC17 GU433063 5.90 9.45 5.94 46.21 39.67 34.30 6.63 Cb

SR7 pSRC18 GU433064 83.87 Cb - 2.99 4.47 3.23 - 1226.2

SR8 pSRC19 GU433065 1.07 2 1.88 6.96 6.96 2.97 Cb 580.04

SR9 pSRC20 GU433066 3.95 7.94 11.24 29.45 32.45 3.27 Cb 3213.6

SR10 pSRC22 GU433068 Cb 2.20 1.72 6.96 5.78 13.0 1.57 -

SR11 pSRC23 GU433069 Cb 2.03 2.11 8.88 11.47 11.88 2.81 70.03

SR12 pSRC24 GU433070 Cb 2.87 3.34 9.65 10.85 13.74 2.69 35.26

SR13 pSRC26 GU433072 Cb 2.50 1.47 6.41 2.43 1.24 1.06 37.27

SR14 pSRC27 GU433073 Cb 1.15 21.41 6.73 1.56 1.59 1.96 474.41

SR15 pSRC28 GU433074 Cb 4.92 3.46 7.89 6.28 14.72 2.17 8.34

SR16 pSRC30 GU433076 Cb 1.66 2.87 126.24 93.70 2.51 2.81 47.84

SR17 pSRC31 GU433077 Cb 1.15 2.60 9.92 11.63 5.13 - 572.05

SR18 pSRC32 GU433078 3.16 7.41 Cb 13.09 12.38 188.71 1.97 2105.58

SR19 pSRC34 GU433080 1.39 Cb 1.54 4.03 1.52 13.18 1.09 50.56

SR20 pSRC36 GU433082 1.82 3.76 Cb 18.77 23.92 1.78 1.79 24.42

SR21 pSRC37 GU433083 Cb 2.68 2.43 12.47 9.65 20.39 1.31 -

SR22 pSRC38 GU433084 Cb 2.81 15.14 12.21 12.21 51.27 11.71 471.14

SR23 pSRC39 GU433085 Cb 2.60 1.71 5.10 3.76 3.94 1.20 18.51

SR24 pSRC40 GU433086 2.69 2.79 Cb 7.89 30.27 7.62 10.20 537.45

SR25 pSRC41 GU433087 1.01 1.58 Cb 7.57 3.20 48.84 2.03 57.68

SR26 pSRC42 GU433088 1.93 1.85 Cb 3.14 5.98 22.47 3.63 11.79

SR27 pSRC43 GU433089 Cb 2.89 3.25 6.41 5.62 1.40 1 69.55

SR28 pSRC44 GU433090 1.87 1.64 1.34 5.94 2.91 3.56 Cb 174.85

SR29 pSRC45 GU433091 Cb 8.40 10.13 11.96 9.51 1052.8 15.24 5113.16

SR30 pSRC46 GU433092 Cb 2 3.58 7.06 5.82 4 1.71 137.19

SR31 pSRC47 GU433093 Cb 5.90 27.67 5.82 18.51 12.13 3.73 2538.92

SR32 pSRC48 GU433094 3.12 3.97 Cb 11.24 8 129.79 1.79 -

SR33 pSRC49 GU433095 1.25 2.60 1.89 4.47 6.45 2.19 Cb 1038.30

SR34 pSRC50 GU433096 1.85 Cb 2.44 10.37 7.29 6.60 8.18 54.66

SR35 pSRC51 GU433097 Cb 1.06 2.39 67.18 70.52 9.45 5.50 916.50

SR36 pSRC53 GU433099 1.18 2.34 1.81 7 4.23 3.43 Cb 621.43

SR37 pSRC54 GU433100 Cb 6.50 1.74 15.56 27.47 146.01 12.55 -

SR38 pSRC55 GU433101 1.06 3.61 - 2.55 2.97 29.86 Cb 147.03

In this table, Cb represents the calibrator tissue (expression value 1) showing least expression with which comparisons for the expression in other tissues was made. The
value in each row signifies the corresponding fold of expression which is higher as compared to the calibrator value.
doi:10.1371/journal.pone.0024958.t001
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of the transcript SR7 [GenBank: GU433064] was confined mainly

to the heart and spermatozoa. This transcript showing the highest

level of expression in the heart was found to be homologous with

the Equus caballus gene for beta-myosin heavy chain [GenBank:

D84227.1]. Details from the expression analysis of the transcripts

detected in tissue samples, their corresponding accession numbers

and relative expression (expressed in folds) are given in table 1.

Graphical representation of the expression of a few of the

transcripts is shown in figure 4.

Of the 15 transcripts identified in the spermatozoa, expression

studies (Table 2) were performed on only 12 because one had

already been identified in the tissues sampled and the other two

Figure 4. Quantification of mRNA transcripts originating from different tissues. The bar represents the expression level of the transcripts,
which are labeled at the top left. The tissue IDs are displayed at the bottom. Maximum expression observed in a tissue is shown in green. To obtain a
comparative profile, subsequent q-PCR using internal primers was conducted on all cDNA samples including that from semen. Note the highest
expression level of most of the fragments occurs in the testes or spermatozoa.
doi:10.1371/journal.pone.0024958.g004

Table 2. Relative quantitative expression of TGG tagged transcripts uncovered from the spermatozoa of Buffalo Bubalus bubalis.

Transcript
ID Clone ID Accession nos Heart Kidney Liver Lung Spleen Testis Ovary Semen

RS1 pRSC1 GU391953 Cb 1.75 1.79 6.96 4.96 6.28 1.19 1845.76

RS2 pRSC3 GU391955 Cb 2.83 7.89 9.46 7.98 10.95 4.98 122.12

RS3 pRSC4 GU391956 Cb 2.11 1.29 5.17 6.19 7.36 1.32 2702.35

RS4 pRSC5 GU391957 Cb 2.50 5.78 10.56 4.86 4.38 4.11 5113.16

RS5 pRSC6 GU391958 Cb 3.07 5.21 6.73 6.11 35.51 3.78 152.22

RS6 pRSC7 GU391959 Cb 1.88 25.99 22.16 5.50 31.34 5.24 1370.04

RS7 pRSC8 GU391960 Cb 18.13 16.45 1.18 155.42 137.19 28.44 2194.99

RS8 pRSC10 GU391962 Cb 14.72 10.27 17.63 17.39 21.56 1.13 317.37

RS9 pRSC11 GU391963 Cb 1.15 1.25 2.14 3.97 - - 2817.11

RS10 pRSC12 GU391964 Cb 22.63 68.59 68.12 69.07 92.41 33.36 4705.07

RS11 pRSC13 GU391965 Cb 35.26 280.14 284.05 44.63 560.28 227.54 410.15

RS12 pRSC14 GU391966 Cb 7.84 29.04 168.90 259.57 24.08 11.16 916.51

The Cb represents the calibrator tissue showing least expression (expression value 1) with which the comparisons for the expression in other tissues were made. The
value in each row signifies the corresponding fold of expression which is higher as compared to the calibrator value.
doi:10.1371/journal.pone.0024958.t002
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did not have significant ct values ($40) to be considered for further

study. RS11 was most highly expressed in the testes, whereas the

remaining 11 showed the greatest level of expression in the

spermatozoa. Details from the expression analysis of these 12

spermatozoal mRNA transcripts are shown in figure 5. Notably,

80% of these transcripts were found to have negligible expression

in the ovaries, which supports our hypothesis that these transcripts

have male-specific functions.

Full length CDS of theTSPY1-like and COL6A1 genes
Using 39 RACE, we obtained the 1222 bp cDNA sequence of

the TSPY1-like gene [GenBank: HQ104923], which has 975 bp of

protein coding sequence. The amino acid sequence of the TSPY1-

like protein was derived in silico from the Transeq Nucleotide to

Protein Sequence Conversion/EMBOSSES Transeq/EBI [41]. A

nucleotide blast of the water buffalo TSPY1-like gene found that it

had.90% identity with Bos taurus TSPY1, which is consistent with

the results from a protein blast (Figure S1). However, the water

buffalo cDNA sequence of TSPY1 showed approximately 40–60%

identity with other mammalian species.

Full length 3154 bp cds of the COL6A1 gene [GenBank:

HQ104922] was obtained from the assembly of four clones

(Figure 6). The COL6A1 gene of Bubalus bubalis has 3084 bp of

protein coding sequence. The amino acid sequence of the

COL6A1 protein was derived in silico. This gene seems to be

conserved across the mammalian species showing a very high

percent identity between cattle and water buffalo (98% with Bos

taurus COL6A1). However, the water buffalo COL6A1 gene showed

Figure 5. Quantification of mRNA transcripts originating from semen samples. Except forRS11, all mRNA transcripts were most highly
expressed in the semen samples (green). To obtain a comparative profile, subsequent q-PCR using internal primers was conducted on all cDNA
samples.
doi:10.1371/journal.pone.0024958.g005

Figure 6. Schematic illustration showing the cloning strategy for the water buffalo COL6A1 gene. Different overlapping clones of the
water buffalo COL6A1 gene were generated to obtain the full length cds. Shown here are the nucleotide boundaries and positions of start and stop
codons.
doi:10.1371/journal.pone.0024958.g006
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sequence identity in the range of 73–90% with other mammals

(Figure S2).

Chromosomal localization and copy number status of the
TSPY1-like gene

FISH of the TSPY1-like gene using the bovine BAC probe

CH240-127C20 [GenBank: AC234853.4] resulted in signals on

the water buffalo Y chromosome (Figure 7). Based on the Q-PCR,

the copy number of this gene was found to vary from 182–202 per

genome (Figure 8).

Discussion

Satellite sequences have attracted a great deal of attention due

to their involvement in gene regulation and genomic imprinting

[11,42–45]. We identified 53 transcripts tagged with the trimeric

repeat (TGG)n in the water buffalo genome, which seems to be the

first such study in any animal system. This is significant because

TGG repeats, owing to their shrinkage and expansion, affect gene

expression and are implicated in human diseases [12,46].

Differential expression of these transcripts across the tissues

sampled and dramatically high expression of 11 in the sperma-

tozoa suggests that a set of these genes are reserved for testicular

functions. It was not possible for us to molecularly characterize all

53 genes in this study; we therefore focused on two genes, TSPY1

and COL6A1. TSPY1 was found to be testis-specific by RT-PCR

corroborating earlier studies [47,48], whereas COL6A1 showed

ubiquitous expression. In the present study, we did not depend on

RT-PCR data for assessing the level of expression of a gene and

instead conducted q-PCR. Thus, the expression levels detected by

q-PCR could be used to support a tissue-specific function of a

gene.

The TSPY1-like sequence amplified from Bubalus bubalis showed

.95% identity with that of Bos taurus [GenBank: XM_001254382.2]

and the BAC clone of Bos taurus Y Chromosome CH240-127C20

[GenBank: AC234853.4]. In other species, this gene showed

approximately 50% identity and a high level of heterogeneity.

Invariably, this gene is referred to as TSPY1-like gene. We propose

that the same may be referred to as TSPY1 because we have detected

its high level of expression in testes and localized it to the water buffalo

Y chromosome. There is a remarkable degree of variation in the copy

number of this gene among different mammalian species. The rat has

one pseudo and one functional copy while the mouse has only one

pseudo gene [49,50]. Recent study of the different breeds of Bos taurus

confirms gross variation in the copy number of this gene [51].

Significantly, an increase in copy number of tspy in humans is linked

with male infertility [52], while a decrease is associated with prostate

cancer [53]. The copy number of tspy ranges 20–60 in human males

and 50–200 in bovid males [54,55], which is consistent with our

present study. More copies are associated with an enhanced level of

protein synthesis [56]. However, it is not clear if more copies of this

gene protect a human male from prostate cancer. Even if they do, a

high copy number of this gene in humans is associated with infertility

[52]. Taken together, we purpose that a critical balance of the copy

number of TSPY1 is maintained across the mammalian species.

Arguably, the high copy number may act as a compensatory strategy

against the decay or loss of other genes involved in fertility [57]. It

would be of relevance to undertake a detailed study on the copy

number variation of this gene amongst different categories of

infertility in both human and animal males to resolve this issue. This

would determine if a greater number of copies are indeed associated

with infertility.

The transcripts (having significant identity of up to .90%)

uncovered by MASA were studied further to determine the family

of proteins to which they belong using the conserved domain

database of NCBI [58]. The results suggest that these repeats are

not specific to genes belonging to a particular protein family and

are instead distributed throughout the coding genome.

TSPY (Testis specific protein, Y-encoded), a member of the greater

SET (Su(var)3–9, Enhancer-of-zeste, Trithorax)/NAP (Nucleosome

assembly protein) family of molecules, has been implicated in the

regulation of gene expression, malignant development of gonado-

blastoma and testicular and prostate cancer [59,60]. These proteins

are involved in nucleosome assembly, chromatin fluidity and

trafficking histones into the nucleus [61–63].

The COL6A1 gene encodes the alpha-1 subunit of type VI

collagen and belongs to the vWFA (von Willebrand factor (vWF)

type A) superfamily. Collagens are involved in the formation of the

fibrillar and microfibrillar networks of the extracellular matrix,

basement membranes and other structures of the extracellular

matrix. Some collagens contain approximately 15–18 vWA

domains. The vWA domains of extracellular eukaryotic proteins

Figure 7. Chromosomal localization of TSPY1-like gene. TheTSPY1-like gene probe (arrows) localized to the water buffalo metaphase
chromosome Y (A) (i and ii) and interphase nuclei (B) (i–iv).
doi:10.1371/journal.pone.0024958.g007
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mediate adhesion via metal ion-dependent adhesion sites (MIDAS)

[64]. Mutations in any one of these genes that code for collagen VI

subunits results in the autosomal dominant disorder Bethlem

myopathy and Ullrich scleroatonic muscular dystrophy [65]. Our

MASA-based approach enabled us to identify genes in animal

systems that are known to have clinical significance.

Earlier, using decoy oligo primers based on GACA/GATA

[37], with a consensus of 33.15 [35] and 33.6 repeat loci [40], we

demonstrated an association between a large number of mRNA

transcripts and these repeat elements in water buffalo. The genes

tagged with these STRs are likely favored evolutionarily.

Accordingly, we also studied satellite tagged mRNA transcripts

in spermatozoa. A number of signaling molecules and transcrip-

tion factors have been reported to be both present in spermatozoa

and transported into the zygotic cytoplasm [23,25,27]. The

presence of TGG tagged transcripts that are most highly expressed

in spermatozoa and the testes adds to this finding.

Conclusion
The water buffalo has several recognized and undocumented

breeds of which a few are considered to be superior livestock and

belong to elite categories. However, the genetic basis of their

superiority is not yet established. Present work demonstrates that

the trimeric repeats (TGG) is present in a number of functional

genes of the water buffalo that show tissue-specific expression.

Genes showing high levels of expression in the testes and

spermatozoa are potential candidates for in-depth characterization

in both normal and genetically infertile animals. In-depth analysis

of such genes is hoped to focus the search for the elusive ones that

confer desired characteristics to livestock. This would add a new

dimension to genome analysis and augment animal biotechnology.

Supporting Information

Figure S1 Nucleotide sequence alignment (i) and amino
acid sequence (ii) of theTSPY1-like gene of water buffalo
and cattle. Water buffalo and cattle show ,95% identity at the

nucleotide level.

(DOC)

Figure S2 Multiple alignment of theCOL6A1 gene (i),
phylogenetic tree based on nucleotide sequence (ii),
multiple alignment of amino acid sequence of the
COL6A1 protein (iii) and phylogenetic tree based on
amino acid sequence (iv) of different species. Note the

close relationship between cattle and water buffalo in the

phylogenetic tree. Horse, as expected, has a distant relationship

with water buffalo and cattle, whereas mouse and rat group

together.

(DOC)

Table S1 List of primers used to test for genomic DNA
contamination in the samples. The primers for ACTB were

designed in our lab, while those for CD45 and CDH1 genes were

based on an earlier report [31]. Primers corresponding to CD45

and CDH1 span several introns but their positions were not

defined.

(DOC)

Table S2 Detailed analysis of MASA identified somatic,
gonadal and spermatozoal mRNA transcripts tagged

Figure 8. Copy number assessment of TSPY1-like gene by q-PCR. q-PCR amplification plot from a 10-fold serial dilution of the plasmid for
copy number calculation. (A) Standard curve, (B) Dissociation curve showing single peak, which indicates primer specificity with the target DNA. (C)
Delta Rn vs Cycle showing amplification plots of the standard plasmid and water buffalo genomic DNA.
doi:10.1371/journal.pone.0024958.g008
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with the TGG repeat from the water buffalo Bubalus
bubalis. (i), Transcripts identified from the somatic and gonadal

tissues. (ii), Transcripts identified from spermatozoa. All tran-

scripts, their accession number and their homology status are listed

in this table.

(DOC)

Table S3 List of primers used for RT-PCR on cDNA
from different tissues (i) and semen (ii). The primer IDs

and corresponding gene accession number of the amplified

transcripts are given in the table.

(DOC)

Table S4 List of primers used for q-PCR on cDNA from
different tissues (i) and semen samples (ii).
(DOC)

Table S5 List of primers used for obtaining full length
CDS of the COL6A1 gene (i) and TSPY1-like gene (ii).
(DOC)

Table S6 Details of the clones corresponding to differ-
ent mRNA transcripts uncovered by MASA showing

significant homologies with the cDNA sequences in the
Database. This table shows details of only 14 mRNA transcripts

of the 38 identified from different somatic tissues and gonads.

Significantly, all the query sequences, irrespective of their size,

showed .95% identity with the sequences in the GenBank.

(DOC)
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