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ABSTRACT

In this paper the problem of the small oscillations of the Jacobi ellipsoids is solved, and all the charac-
teristic frequencies belonging to the second and the third harmonics are found. In particular, the variation,
along the Jacobian sequence, of the characteristic frequency with respect to which the Jacobi ellipsoid
becomes unstable is exhibited.

I. INTRODUCTION

The question of the stability of the Jacobi ellipsoids, particularly at the point of bifur-
cation where the sequence of the pear-shaped configurations branches off, is central to
the theory of the equilibrium and the stability of rotating incompressible masses; it is
one to which Poincaré, Darwin, Liapounoff, and Jeans addressed themselves. And yet,
it was only in 1924 that it was finally established by Cartan (see Cartan 1928; a detailed
account of Cartan’s work will be found in Lyttleton 1953) that the Jacobi ellipsoids masst
become unstable at the point of bifurcation with respect to some mode of oscillation be-
longing to the third harmonics.

While Cartan’s investigation settled a basic question of the theory, it did not solve
(neither was it an attempt to solve) the problem of the small oscillations; and the prob-
lem of determining the characteristic frequencies of the fundamental modes of oscilla-
tion of the Jacobi ellipsoids has remained an open one. In this paper we solve this problem
and exhibit, in particular, the variation, along the Jacobian sequence, of the characteris-
tic frequency belonging to the mode with respect to which the Jacobi ellipsoid becomes
unstable at the point of bifurcation (see Figs. 1 and 2 in Sec. VII).

II. THE VIRIAL EQUATIONS OF THE FIRST ORDER AND THE CONDITIONS FOR
THE STATIONARY MAINTENANCE OF THE CENTER OF MASS

Since the instability of the Jacobi ellipsoids occurs via a mode belonging to the third
harmonics, greatest interest naturally attaches to these modes. We shall presently see
how the characteristic frequencies belonging to these modes can be determined by a
straightforward application of the virial equations of the third order which have recently
been derived (Chandrasekhar 1962; this paper will be referred to hereafter as “Paper I”).
However, it will be found that it is necessary to supplement these equations by the virial
equations of the first order which one obtains by a direct integration of the equations of
motion. Thus, by considering the equations of motion,

du,; aP 6%
ot L == (1)
Pt FySa o

written in an inertial frame of reference, and integrating over the entire volume V oc-
cupied by the fluid, we obtain

du,; o _6_2_ 6%
ﬁp 71 dx = ‘/;axidx—l—/‘;pax.dx. (2)
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The first of the two integrals on the right-hand side of equation (2) clearly vanishes; and
the second also vanishes:

fp——dx—G/I;de(x)';a;del_lf(f_E;)/l

(3)
——fop(x)p(x’) ,Isdxdx*O
The result of the integration is therefore!
g}fpuidx =0; (4)
14
in other words,
f pu;dx = Constant . (5)
v

Equation (5) is no more than the expression of the dynamical requirement that the cen-
ter of mass of a self-gravitating mass moves only with a constant velocity. For the dis-
cussion of the stability of such a system there is clearly no loss of generality in supposing
that the center of mass is at rest:
/ pridx=0. (6)
v

When the equations of motion are written in a frame of reference rotating with a uni-
form angular velocity Q, the foregoing remarks require some amplification. For, by inte-
grating in the same way the equation of motion,

d u,;
Par = "3 X

%lgxxl2)+zpeilmul9m, (7)

written in a rotating frame of reference, we shall obtain (in place of eq. [4])

d = 02
—(ﬁ/;’puidx—ﬂ I;—-Qiﬂlll-l-Ze.;lm/;’puldex, (8)
where
I;= xdx. (9)
S
If the direction of Q is chosen to lie along the x;-axis, equation (8) takes the form

d
- wdx =Q2(1;— 6431 2Q¢; dx. (10)
dt/;,p x ( sl3) + ezs/:,puzx

If no relative motions (in the rotating frame of reference) are present and hydrostatic
equilibrium prevails, it follows from equation (10) that

I1=1,=0. (11)

These conditions express the requirement that the axis of rotation pass through the cen-
ter of mass; and we must suppose that this has been so chosen.

1 The operation d/d¢t which occurs inside the integral sign in eq. (2) can be taken outside, since the
conservation of mass insures the constancy of pdx as we follow the element during its motion.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1963ApJ...137.1142C

1144 S. CHANDRASEKHAR AND NORMAN R. LEBOVITZ Vol. 137

Now let an initial state in which hydrostatic equilibrium prevails be slightly disturbed.
And let the ensuing motions be described in terms of a Lagrangian displacement, &, such
that

w, = at: (12)
1 dt *

The corresponding linearized form of equation (10) is

v, av
Iz =QN(V,—08iVs) + 2 _dt_l’ (13)
where
Vi= Adx. (14)
fVPS x
Explicitly, the equations governing the different components of V are
%_ dV2_. 2 d*V, dVl__ 2
e 2Q T =0V,, Pz +2Q a1 =0V,, (15)
and
d*Vs
= =0. (16)

The general solutions of equations (15) and (16) can be readily written down. But they
are not needed? (neither are they relevant) for a discussion of the stability of a rotating
system: equations (15) and (16) are in no way dependent on the construction or the con-
stitution of the particular system which may be under consideration. We can therefore
assume, without any loss of generality, that

Vi=0. (17

The meaning of this assumption is that we are considering the system in a frame of refer-
ence whose origin is permanently located at the center of mass of the system. Since the
only motion which the center of mass of a self-gravitating system is capable of is a uni-.
form one, no generality is lost by the assumption (17); and this assumption will be made
in our subsequent discussion (see Sec. VI; also Appendix II, where the matter is consid-
ered from a different point of view).

III. THE THIRD-ORDER VIRIAL EQUATIONS GOVERNING SMALL OSCILLATIONS
ABOUT EQUILIBRIUM OF A UNIFORMLY ROTATING SYSTEM

The general third-order virial equations governing the equilibrium of a rotating fluid
mass have been written down in Paper I, Section V. We shall now suppose that the sys-
tem is slightly disturbed; and that the ensuing motions are described by a Lagrangian
displacement of the form

E(x)eM as)

where \ is a parameter whose characteristic values are to be determined. To the first
order in &, the virial equation in Paper I, equation (25), gives

NVt — 2NeitmV ;0 m = 0Biji + dBa;;
(19)
+ Q201 — QiQi0l1j% + 84010 + 0115,

2 It may, however, be noted that egs. (15) allow solutions for V1 and V, which are periodic with a
frequency Q.
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where
Vi;jk=f péixixrdx, (20)
14
and 6 ;j;x, 6145, and 811 are the first variations of the quantities
Wi = —%Lp%ijxkdx, Iﬁk=fpx,~x,~xkdx, (21)
14
and
I, = fpxkdx, (22)
v

which have been defined in Paper I. (Note that an index after the semicolon indicates
that a moment with respect to the associated space co-ordinate is involved.)
With the direction of Q chosen along the xs-axis, equation (19) takes the form

MV — 2NQeasVin = 0BWujpn + 0Wan;; + Q2L i — 2830155
+ 6¢,~6Hk -+ 04,0115 .

The cases 2 = 3 and 7 # 3 are clearly distinguished. Thus, when ¢ = 3, equation
(23) gives

(23)

NMVain = 08y + 0Wan;j + 85501 + 6518115, (24)
while, when i =@ = 1 or 2,
MV — 2[m, &%, SINQVer 0 = 6Bojn + 6War;5 + Q26Iaj + 85,810k + dardIl;, (25

where @* (# @) = 2 or 1 (when @ = 1 or 2, respectively) and [m, @*, 3] is the sign of
the permutation (o, @*, 3).

Equations (24) and (25) together represent a total of eighteen equations. These eight-
een equations fall into two non-combining groups of ten and eight equations, respec-
tively, distinguished by their parity (i.e., even or odd) with respect to the index 3. It is
convenient to have these equations written out explicitly. The even equations are

MV — 6B1s;3 — 6Wss;n = 6114, (26)

NV 303 — 6%osss — 6%W3z;0 = 0115, (27)

NV i — AQ Vg — Q26111 — 2681y, = 2610, 28)

NVos00 + 2ANQ V100 — Q201290 — 26L3s;0 = 20105, (29)

NV — 2NQ Vg0 — Q20T10 — 2081952 = 0, (30)

NV + 2NQV ;11 — Q208031 — 26Whe;1 = 0, \ @1

MV — 202 Vaa — Q281115 — 6Wiy;0 — 6Whay1 = 611, (32)
MNVaie + 202 V12 — Q%110 — 0Wa2;1 — 6Wia;e = 0104, (33)
NV — 2ANQVg;33 — Q200133 — 26Wis;3 = 0, (34)

MNVass + 2AQ V1533 — Q200933 — 20Wg3;3 = 0. (35)
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And the odd equations are

MV — 2683, = 0, (36)

MVi00 — 20Was;e = 0, (37

AVs10 — 6Wis;e — 0Was;1 = 0, (38)

NV 353 — 208353 = 20105, (39)

AMVis — 2ANQ Vg5 — Q%01513 — 0Wyy58 — W31 = 611, (40)
ANVa03 + 2AQ V103 — Q2001505 — 6Wazjs — dWas;e = 6115, 1
NV — 2NQVg;03 — Q%1125 — 6Wigys — 6Wize = 0, (42)
MViz + 2NQ V1515 — Q%1193 — 6War; — 6Was;1 = 0. (43)

These equations must be further supplemented by the three equations (17) expressing
the stationariness of the center of mass. Thus we have, altogether, twenty-one equations
to consider.

IV. THE REDUCTION OF THE EQUATIONS

The use of equations (26)—(43) for the determination of the characteristic values of
A? will depend on our ability to express 61z, 683, and 8II, which occur in these
equations, in terms of the virials V;jz.

The expression of 6/, in terms of the virials is, of course, immediate:

61 ijn = 6fvpxz-xjxkdx =pr( Eixiwe+ Eixrxi+ Erwix;)dx

(44)
= Vit Vigi+ Vi .

It is convenient to have a symbol for the symmetric combination of the virials which oc-
curs in the expression for 6/,;;; we shall denote it by Vj (without the semicolon):

Viig = Ve + Vi + Vigas - (45)
We can then write
5Iijk = Vijk . (46)

Turning to 68 ;;;x and 811, we shall find that, for homogeneous ellipsoids (in which
we are presently interested), the 888 ;;;’s can also be expressed in terms of these sym-
metrized virials. The treatment of §II; will, however, depend on whether the fluid is
considered incompressible or compressible. In the former case, the 6IIx’s should be
eliminated from equations (26)-(43); and the remaining fifteen equations should be
supplemented by three further equations which express the incompressibility of the
fluid. These additional equations will be obtained in Section VI. But if the fluid should
be considered compressible, then the 6IIx’s must also be expressed in terms of the virials;
as to how one might accomplish this will be illustrated in another paper. In this paper,
we shall be concerned only with the incompressible case. Nevertheless, it will be useful
to eliminate the 8II’s from equations (26)—(43) and carry out the reduction of these
equations to minimal sets without making any restrictive assumptions.
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a) The Even Equations

As the dependent variables we shall choose Vs, Viss, Ve, and Vass besides
the six symmetric virials

V111 = 3V1,11 3 V122 = V1;22 + 2V2;12, V133 = V1;33 + 2V3;13 ;
and (a7
V222 = 3V2;22 5 V112 = V2;11 + 2Vl;lz ) V233 = V2;33 + 2V3;23 .

In accordance with equation (46) we first write V;; in place of 8/4;. We then com-
bine the equations appropriately so that A occurs multiplied by the virials we are

presently considering as the dependent variables. In this manner we obtain the follow-
ing set of equations:

GN — Q)Viy — 2NQV g — 268y = 280,  ¢4®)

(N — 300 V192 + 4ANQ V10 — ENQV 09 — 4610 — 26Wypp1 = 2810, 49
A2 — Q) V133 — 2MQV g;35 — 401353 — 20Wais;n = 26I0;, (50

AN — Q) Ve + 2NQV ;00 — 26Wape = 261, (5D

(N — 309V — NQ Va2 + INQV iy — 46y — 26%Wyype = 201,  (52)
2 — Q) Vass + 2N V1555 — 46%Wass — 20%Wsgye = 26I0,,  (53)

NViee — ENQ Vo0 — QWVise — 20Wi2;2 = 0, (54)
NV — 2NQ Va3 — 2V i35 — 20Wis3 = 0, (55)
ANV + A0V — 9Wie — 26War; = 0, (56)
NV ois3 + 2AQ2V 1533 — Q?Wogs — 20833 = 0. (37)

Next, we eliminate 8II; from equations (49) and (50) by making use of equation (48);
and similarly we eliminate 8II, from equations (52) and (53) by making use of equation
(51). We write the resulting four equations in the forms:

A\ —3Q)(Viee — 3Vu1) + 2NQ (V12 — §V222) + 85122 = 0, (58)
(N —3Q0) (Vi — $Va20) — 2AQ (V122 — 3V 111) 4 8812 = 0, (59)
N2 — Q) Vi3 — BN — @)V — 20Q (Vs — V) + 65153 = 0, (60)
(A — Q) Va3 — BN — Q) Ve + 2NQ (V33 — Viges) + 65223 = 0, (61)
where we have introduced the abbreviation

8Sij; = —40Wj; — 20W 5 + 20Waiys (62)
(no summation over repeated indices).

Introducing the further abbreviation,
8Qij; = QW ij; + 208y, (63)
(no summation over repeated indices),
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we can rewrite the remaining four equations (54)-(57) more conveniently in the forms

MV 445 — NQ Va1 — 801 = 0, 6)
NV + 2NQV ;38 — 6Q233 = 0, (65)
NV — 3NQV g0 — 80122 = 0, (66)
MV + IAQViy — Q12 = 0. (67)

By subtracting equation (66) from equation (64) and similarly equation (67) from equa-
tion (65), we obtain

N(Vias — Viee) — 2MQ Va3 + 3AQVa20 — 60133 + 60122 = 0, (68)
)\2(V2;33 - Vz;n) + 270 Vl;gs - %)\Q V111 - 5Q233 + 5Q1]2 =0. (69)

Next, we eliminate (V33 — V1) and (Vi3 — Vijee) from equations (60) and (61) by
making use of equations (68) and (69) and obtain

M2 — Q) Vg3 — TN 4 Q) Vi + 6S13s] + 422NV ;88

— 29(8Q233 — 6Q112) = 0, 7o
M2 — Q) Va3 — (A2 + Q) Vage + 6S235] + 42NV g;53

+ 2Q(8Q133 — 8Q122) = 0. o

On the other hand, from equations (64) and (65) we have
A2+ 49 V133 — 2Q28Q23 — N6Qy33 = 0, (72)
A2 4 49 Va5 + 22060135 — N0Q233 = 0. (73)
It will be noticed that equations (72) and (73) (unlike egs. [64] and [65] from which
they were derived) are not linearly independent when N = —4Q% We shall return to

the consequences of this linear dependence presently; but meantime, using equations
(72) and (73) to eliminate Vy;33 and V35 from equations (70) and (71), we obtain

A2 4 4Q)[(N2 — Q) Vg — 32 + Q) V1 + 85133

+ 492429280233 + N6Q135) — 2Q (N + 4Q7) (8Q233 — Qu2) = 0,
A2 4 402) [\ — Q) Vs — 102 + Q) V90 + 8S033]

+ 4Q2(—2960155 + N6Q255) + 22 (N + 4Q2) (6Q133 — 6Q120) = 0.

Thus, after the elimination of 8II; and 8II;, the remaining eight even equations have
been reduced to the following four:

(74)

(75)

(N — 300 (Vise — 3V1n) + 2AQ (Vi — $Vas) + 85102 = 0, (76)

(N — 392 (Vis — 3Vam) — 202 (Vias — 3Vu1) + 8812 = 0, an
A+ 402) [\ — @)V ig5 — 302 + Q) Vars + 88139

+ 20 (A2 + 402) (Q2Vyz + 26%1z;1) — 2QN(Q2V 55 + 26%Bss;5) 8)

+ 492)\(Q?V133 + 25%13;3) =0 ’
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A2 4 402) [\ — Q) Va5 — (N + Q) Vage + 6Sas3)
— 20\ 4 4Q2) (W22 + 26W1g;0) + 22 N(Q2V 335 + 26L13;3) (79)

+ 4QN(Q2V 33 + 268a3;3) = 0.

We have already remarked that equations (72) and (73) are not linearly independent
when \? = —4Q2 Specifically, when \? = —4Q? equations (72) and (73) reduce to a pair
of identical equations:

00133 :0Q033 = — 22 : A= N:2Q. (80)

Therefore, the characteristic determinant of a system of equations, which includes equa-
tions (72) and (73), will vanish when A2 = —4Q2, In other words, the roots A = +2:Q
will appear spuriously among the characteristic roots.

An alternative manner of reduction which will avoid introducing spurious roots is the
following. Let

Vass = Visgs+1Vass;  8Qwss = 8Q133 + 26Qss3 ,
Voss = Vi + 1V ; 00us*s = 6Q122 + 60112, @81)
Vagss = Vias + iVess;  0Smss = 05133 + 05233 .

In terms of these variables, equations (64) and (65) and equations (70) and (71) can
be combined to give, respectively,

)\()\ + ZiQ)Va;:;z — BQEBS =0 (82)
and
MO — Q) Vaszs — 3N + Q@) Vaos + 6Sw3s] + 422\ V53
(83)
+ 219(6@5}33 - 6Qm*m*) =0.
The elimination of Va;3; from equations (82) and (83) gives
MM+ 25Q) [(A2 — Q) Vass — 2 (N + Q@) Vaws + 6Swss)]
(84)

+ 21:9()\ + ZiQ) (5Q033 - 6Q5;m*w*) + 4926(25;33 =0,

In place of equations (74) and (75), we now have equation (84) and its “conjugate” (ob-
tained by writing —4 wherever 7 occurs explicitly in eq. [84] and in the definitions [81]).
It is clear that a system of equations which includes equation (84) and its “conjugate’
will lead to a characteristic equation for A? that is two degrees lower than the one which
will be obtained from a system which includes equations (74) and (75) (or egs. [78] and
[79]) in their place. The roots N = +2iQ, which will spuriously occur by the inclusion
of the latter pair of equations, can thus be avoided.

b) The Odd Equations
As the dependent variables we now choose

Vis = Vs — Vois, Va4 Ve, and Vi — Ve (85)
besides the four odd symmetric virials

Vis, Vis, Ve, and Vi, (86)
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By making use of equation (46) and suitably combining equations (36)-(43), we readily
obtain the following equivalent set of eight equations:

INV 555 — 26853, = 2615, 87)
NV + Viee) = 26Bis;1 + 262Was;e (88)
NV — Vi) = 20BWis;1 — 26Was;s 89)

NV = 0Ws1;e + 6Wsa;1 (90)

(N2 — 290V — 22 (Vigs — Viies — Viue) — 20Wiy;s — 46Wis; = 28I, O
(A — 29 Vs + 2AQ (Vies + Viies — Vo) — 20%Was;s — 46Was;e = 26105, (92)
(N2 — 2Q%)Vigs + NQ[Viuz — Vass — (Vg — Vgee)] + 65125 = 0, 93)
NVt — AQViz + Vass — (Vau + Vies)] — 6Bs;e + 6Was;1 = 0, ©4)

where (cf. eq. [62])
0S12s = — 20815 — 26Was; — 26Way;e . (95)

We first eliminate 8II; from equations (91) and (92) by making use of equation (87)
to obtain the pair of equations

(A —2Q%) V3 — INV3s5 — 2AQ (Vies — Viies — Vi) + 8515 = 0, (96)
(N2 — 2Q%) V93 — 3N V333 + 202 (Vias + Viias — Viae) + 65223 =0, 97

where 85115 and 85225 have meanings in accordance with the general definition (62); and
then combine the two equations to give

(A2 — 29?) (Vs + Vaes) — INV 333 + ANQV 1125 + 85113 + 85225 = 0, (98)
()\2 —_ 292) (V113 - V223) — ANQV 123 + 4NQ V3;12 + 85113 — 65203 = 0. (99)

We now eliminate V3;;; and V3 from equations (93) and (94) by making use of
equations (88) and (89); and we obtain

AV t12s — NQ (Vs + Vazs) — M0B13;2 — 0Was;n) + 22 (6Wis;1 + 6Was;e) = 0, (100)
)\()\2 - 292)V123 + )\2Q(V113 - V223) + )\55123 - 29(5%13;1 — 3%23;2) = (., (101)

Finally, we eliminate V{193 and V312 from equations (98) and (99) by making use of
equations (100) and (90), respectively. We are then left with

N(Vias + Vazs — 2Visss) + N[2Q2(Viss + Vags) + 8115 + 852
+ INQ(6B152 — 6BWaz;1) — 822(6Wys;1 + 6Wass) = 0,
N (Vs — Vags) — 4N2QV 15 + N—222(Viss — Vass) + 0S11s — 8Sa24]
+ 4Q (6815, + 6%ss,1) = 0.

Thus, after the elimination of 615, the remaining seven odd equations have been re-
duced to the three equations (101)—(103).

(102)

(103)
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V. THE EXPANSION OF 68 ;j;x IN TERMS OF THE VIRIALS Vj

First, we recall that the variation in $8,;;, due to a general Lagrangian displacement,
£, is given by (Paper I, eq. [72])

~25%ij;k=ﬁp%ij£kdx+ﬂpfl

08B 9D sk
—_— (l04
o mdxt f ot T2 ax, )

where D;;;, denotes the tensor

- — I¢ + — ’. I
@ij;k=GfP(xl) (x4 ixl?;)(x;,lsxy)xkdx,. (105)
v —

Now we have shown in another paper (Chandrasekhar and Lebovitz 1962a) that the
tensor Dsj;x can be deduced from a knowledge of the Newtonian potentials ‘O and Dy
due to the fictitious “density distributions” px and pxxi, thus

Oip= — i —+—F—. (106)

The foregoing equations, as well as the analysis in the preceding sections, are quite
general: they do not depend on any restrictive assumptions on the equation of state or
otherwise. But from now on the analysis will be restricted to homogeneous ellipsoids.

In an earlier paper (Chandrasekhar and Lebovitz 1962b; this paper will be referred
to hereafter as “Paper II”) explicit expressions are given for the various potentials
and superpotentials of homogeneous ellipsoids. The expressions for ©;, B.;, and Dy;
given in that paper (Paper II, eqgs. [49], [51], [68], and [70]) all contain #Gpaiasas as a
common factor. For brevity, this common factor will be suppressed in the remainder of
this section. And the summation convention will also be suspended: summation over a
repeated index is not to be understood unless it is so explicitly indicated. With these under-
standings, we can write

3
f®¢=a¢2xa(A i~ EAuxﬁ), (107)
=1

3
Bij=2Bijxixi+aldi (Ai— EAusz), (108)
=1
3
Dij=elajxx; (A i ZA u‘zxf) (5 7), (109)
=1

and

3
Dii=atal (A ¥ EA mxz2)
=1
3 3 3
+1ai (Bim 2 X Bast+ X D Bunsitaat),
=1 =1 m=1

where, in transcribing the formulae given in Paper II, we have introduced the further
symbols

(110)

B;=1—a24;, Biy=A4;—ald;;=4:— aj’4;, (11
and
Bim = Aty — a4 itm = Ami — 02A i = Aa — aw?Ama . (112)
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The new symbols Bz . . ., like the symbols 4. introduced in Paper II, are com-
pletely symmetric in their indices and are, moreover, related to 4;; .. by

Bijr...=Aj...— a4 ... (113)
The symmetry of the symbol B as well as the existence of the relation (113) are ap-
parent from the alternative definition,
udu

‘=fo Aaz+w(ap+u) (e Fu)...

Now inserting the expressions for Dy and D in equation (106), we find (distinguish-
ing the different cases)

Disjse = 205> Byjrn 2% %% T (1#£ jF# k), (1)
Dij;; = a%( — By +Biiyjxd + 3Bijja® +Bijnwn?)  (65# 7 # k), (116)

(114)

Bijk .

3
Diij = a,-2xj[ZB,;,~,-x,-2 +a (A i— 2 4 mx12>] (3#7), @D
=1

Dissi= ai2xi[(ai2A i~ 2By) + (4Bisi— 0?4 iis)
(118)

+ 2 (2Big— a4 ) xzz] .

U1

With the explicit expressions for B;; and Di;x which we now have, it is a straight-
forward matter to evaluate 6¥8;;; in accordance with equation (104); and we find
(again distinguishing the different cases and letting ¢ # j # k)

=268k = 2BsjuVije (119)
=268, = a*BiijViii + 2Bi; + 3a2Bij)Viji + a?BiViw — BV, (120)
—26Wii;; = —aldiiViii — alAiiViw + 2Buii; — alAi) Vi
+ a#(4:+ a4V, .
—20W.si = [2(Bii + 2a2Bisi) — aldAiiilVii
4+ a*(2Biij — Aij;0)Viji + QB — Aid) Virk (122)
+ a(4;+ a4 — 2BV,

where, for brevity, we have introduced the further abbreviations
Aije = Asj + a?4ipp and  Bijp = Bij + ai*Bij (123)

(121)

If the Lagrangian displacement is referred in a frame in which the center of mass
is at rest, then we can set (as we have seen in Sec. II)

Vi=0 (124)

in equations (119)—-(122). The result is that in all cases the 628 4;’s are expressible in
terms of the symmetric virials only. Equations (76)-(79) and (101)—(103), therefore, in-
volve only these virials.
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In working with formulae (119)-(122) it is convenient to have in an explicit form the
coefficients of the virials in the expansions of the different 688 ;;4’s. Table 1 provides
these coefficients.

Now equations (76)-(79) and (101)-(103) involve, in addition to particular 688 ;;;4’s,
certain linear combinations of them which we have denoted by 8S:;; (see eq. [62]). It
will therefore be convenient to have explicitly the coefficients of the virials in the expan-
sions of these 855;;’s also. The required coefficients can be obtained by suitably combin-
ing the ones given in Table 1. Thus, considering 85511, we have

08311 = —46Ws1;1 — 26Wiy;s + 20Wss;s 5 (125)
and expressing this in the form
80S31y = <311[113>V113 -+ (311|223>V223 + (311 |333>V333 s (126)
we find
(311 I 1135 = 3[Bui + Bz + (2012 + 032)3113 — a3?Biss] ’
<311 | 223) = ((112 + 2032)B123 - 3(1323233 ’ (127)
<311|333> = (012 + 2032)3133 — 5a35’B3ss — 2Bs; .
TABLE 1
THE COEFFICIENTS OF THE VIRIALS IN THE EXPANSIONS OF 62.;;x
Element Vin Vi Viss
—232311;1 ------ Z(Bll‘l‘ 20123111) —a,24 11;1 012(23112—14 12;1) 012(23113—"14 13;1)
— 268 22,1 —a2?A 125 2Bgs;1—ag?A 921 —as’A 9351
— 208 33:1 —a32A 1351 —a3?A 9351 2Bs3;1—a3? A 331
—-2523312;2 +a9?B112 2B12+30:’B1ss a92Bigs
—20W13;3 +a32B1s a3’ B3 2B13+3a5?Biss
Element Vaos Vou Vass
—268as... ... 2(Bag+2092Bage) —as?A 59;5 | a9?(2B1g2— A 19;2) @52 (2B 293 — A 93;9)
—25%11;2 ....... —‘(11214 12;2 2311;2—01214 11;2 —012A 13;2
—26%W3z0. ... ... —as’Asa;e —a3?413;2 2B33;5— a3t A 33,2
—268Bg1. ... +a,®B12; 2B121+3a:*B11s a,’Bi1ss
—26L82s;3. . . . . +a3’Bass a3’ B1gs 2B3s+3a3’Bass
Element Vs Vs Vaas
—‘25%11;3- ce —012A13;3 2311;3—012/1 11;3 —a,24 12;3
—20Bs0;5. . - . —a92A 9353 — 2?4 193 2B3s;3— a9t A 29;3
—-25%33;3 e 2(333+20323333)—032A33;3 032(23331—1‘131;3) 032(23332—A32;3)
—268Wi3;1. . . . +a,%Bis3 2B15+30,2B3n @12 B3
—26Wa3;0 ... +as’Bass a9*Biss 2Bss+3a5?Bsses
—-25%”';70. PEPE ZBij;kVijk ('L;ﬁ]?fk)
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The coefficients in the expansions of the other 85;;;’s can be obtained by cyclically per-
muting the indices in equations (127).
We may also note here that, according to equations (95), (98), and (119),

65123 = 2[B1s + Bas + Ba1 + (a2 + a2? + a5®)Bigs] Viss . (128)

Again, for convenience in use, we list in Table 2 the coefficients of the virials in the
expansions of the different 65:;’s and 628 .;’s which occur in equations (76)-(79)
and (101)-(103).

VI. THE DIVERGENCE CONDITION

Equations (76)—-(79) provide four relations among the six even virials; and equations
(101)-(103) provide three relations among the four odd virials. Clearly, we need to supple-
ment equations (76)—(79) by two additional relations and equations (101)-(103) by one
additional relation among the respective sets of virials. These additional relations can
be obtained by making use of the solenoidal character of the Lagrangian displacement
required by the incompressibility of the fluid. Thus, consider

I/7111 V122 V133

a? ag as?

+12y

= [0 [25 tmt 4o B+ 2 famws) + 5 b+ 2 ) [dx a2

212 | x| xg?
= . d[ —4+—=4— ] dx .
LPE grat| #1 a?  a?  ai? x
By an integration by parts, the last integral becomes (since p is a constant)

%2 | 2g2 x?) 22 x| xs?\ ..
X X Xy .ds_f O - S ) dx
fspxl a® a? ag? 3 Vp Ne?2 " a2 " a2 v g

| =£Px1§’dsa

since x1%/a:? + x22/as® + x5%/as® = 1 on the surface (S) of the ellipsoid and div £ = 0
in the interior. On transforming the last surface integral back into a volume integral by
Gauss’s theorem, we obtain

V111 +

a 12 (122

=fp£1dx+fpx1div dx=V,.
14 14

(130)

V122+ Viss
a32

f pdiv(x E)dx
v

(131)

But we have seen in Section IT that we can set V; = 0. Accordingly,
Vlll V122 V133 —

a? + ag + ag? 0.
Similarly,
V222+ V233+ Vo _ 0
aq? a3 a2 —
and
V3:3+ V3;1+ Vs;zz ) (134)
as a; as

Equations (132)-(134) provide the three needed additional relations.
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VII. THE CHARACTERISTIC FREQUENCIES OF OSCILLATION OF THE
JACOBI ELLIPSOIDS BELONGING TO THE THIRD HARMONICS

Equations (76)—(79), supplemented by the two divergence conditions (132) and (133),
provide a system of six linear homogeneous equations for the six even virials; and the
vanishing of the determinant of the system leads (as can be verified) to a characteristic
equation of degree seven in A2, For reasons which have been explained in Section IVa, the
characteristic equation obtained in the manner described will allow a spurious root A\ =
—40? (since the system considered includes eqs. [78] and [79]).2 The occurrence of the
spurious root can be avoided by using equation (84) and its “conjugate” (obtained by
writing —i wherever ¢ occurs explicitly) in place of equations (78) and (79) (in which

TABLE 3

THE SQUARES OF THE CHARACTERISTIC FREQUENCIES
BELONGING TO THE SiX EVEN MODES

(¢? Is Listed in the Unit #Gp)

cos™! az/m o012 o2? os? 042 os? o6?
5423576 . +0 005994 0 10863 11148 2 0844 2 4120 2 8523
56 . . + 005949 .10743 1 1119 2 0784 2 3968 2 8681
57 .. + 005873 10553 1 1076 2 0657 2 3783 2 8908
58. + 005764 10271 1 1010 2 0492 2 3517 2 9212
59 4+ 005621 09901 1 0921 2 0276 2 3194 2 9584
60 . + 005441 09442 1 0812 1 9983 2 2884 2 9984
61 4 005228 08898 1 0679 1 9533 2 2684 3 0380
62 . + .004979 .08271 1 0524 1 9042 2 2464 3 0805
63 . 4+ 004694 07566 1 0346 1 8455 2 2298 3 1229
64 + 004373 06788 1 0146 1 7824 2 2138 3 1662
65 . -+ 004009 05943 0 9920 1 7107 2 2025 3 2087
66 . + 003593 05039 0 9673 1 6384 2 1888 3 2519
67 + .003100 04087 0 9404 1 5615 2 1774 3 2944
68 . 4+ 002468 03102 0 9110 1 4812 2 1666 3 3365
69 . .. 4+ 001504 02115 0 8794 1 3992 2 1559 3 3782
69 8166 0 01360 0 8519 1 3306 2 1474 3 4118
70 . — 000548 01211 0 8456 1 3151 2 1456 3 4192
71 — 006002 00634 0 8096 1 2295 2 1355 3 4598
72 . — .01500 00415 0 7713 1 1437 2 1252 3 4997
75 .. — 04471 00205 0 6446 0 8854 2 0953 3 6144
7. —0 06172 0 00133 0 5517 0 7178 2 0763 3 6882

case the resulting characteristic equation will only be of degree six in A?). However, it
is more convenient to use equations (78) and (79), since they avoid manipulation with
complex numbers. In all cases, it is clear that there are exactly six even modes of oscilla-
tion belonging to six different characteristic roots.

With the constants of the Jacobi ellipsoids given in Paper I (Appendix I, Table 2) the
characteristic equation for A? which follows from equations (76)—(79), (132), and (133)
was solved for all of its roots, for twenty-one different members of the Jacobian sequence
(including the first member, which is a Maclaurin spheroid). The results of the calcula-
tions are given in Table 3.

Equations (101)~(103), supplemented by the divergence condition (134), provide a
system of four linear homogeneous equations for the four odd virials; and the vanishing
of the determinant of the system leads (as can be verified) to a characteristic equation
of degree five in A2 There are thus five odd modes. The characteristic roots belonging to

31t can be shown that all the others are genuine roots.
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these odd modes were also calculated for the same twenty-one members of the Jacobian
sequence. And the results of the calculations are given in Table 4.

In Figures 1, 2, and 3 the variation of the squares of the different characteristic fre-
quencies along the Jacobian sequence is illustrated. Particular interest attaches to the
“lowest” mode which we have designated by ‘“1”;it is the one with respect to which the

TABLE 4

THE SQUARES OF THE CHARACTERISTIC FREQUENCIES
BELONGING TO THE FIVE ODD MODES

(o2 Is Listed in the Unit #Gp)

cos™! az/ar o7? os? 092 o102 o112
54°3576 0 33494 0 44920 1 1288 2 6389 2 9145
56 . .33444 44811 1 1254 2 6260 2 9287
57. . .33365 44637 1 1198 2 6075 2 9492
58 33247 44382 1 1116 2 5838 2 9758
59 . . . .33087 44043 1 1007 2 5570 3 0066
60 . 32883 43621 1 0871 2 5283 3 0402
61 R .32632 43119 1 0707 2 4987 3 0759
62 . .32331 42535 1 0516 2 4687 3 1129
63 . .31976 41873 1 0298 2 4388 3 1510
64 . . ... 31561 41134 1 0052 2 4093 3 1896
65 . .. 31082 40321 0 9780 2 3804 3 2288
66 . .30533 39439 0 9482 2 3523 3 2682
67 . 29906 38491 0 9158 2 3250 3 3078
68 29198 37479 0 8810 2 2987 3 3474
69 .. 28397 36412 0 8440 2 2734 3 3869
69 8166 27674 35498 0 8121 2 2535 3 4190
70 27508 35285 0 8048 2 2491 3 4262
71. . 26513 34103 0 7636 2 2259 3 4652
72 25417 32872 0 7207 2 2038 3 5040
75 . 21546 28797 0 5835 2 1439 3 6178
77 e 0.18531 0 25704 0.4875 2 1093 3 6887

[T d
0.005F
0.004}
a;:
0.003 -
0.002}
000/
54° ;6‘ 5‘&' 6‘0' 6‘2' 6‘4' 6‘6’ 6‘8' %0' 7‘2'
cos™ ay/a,

F1e. 1.—The square of the characteristic frequency belonging to the mode with respect to which the
Jacobi ellipsoid becomes unstable at the point of bifurcation.
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cos~ta, /a,

-0.02

-0061~

-008

F16. 2.—The square of the characteristic frequencies belonging to the two lowest modes

cos~a,/a,

F16. 3.—The square of the characteristic frequencies of the remaining nine modes. The curves are la-
beled to correspond with the enumeration in Tables 3 and 4, and the curves belonging to the odd modes
are dashed.
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Jacobi ellipsoids become unstable at the point of bifurcation. There is, however, nothing
“‘spectacular” about its behavior prior to instability; its behavior, after instability, rela-
tive to the mode which we have designated by “2” is more noteworthy (see Fig. 2).

We are greatly indebted to Miss Donna Elbert for having carried out the numerical
solution of all the characteristic equations. By her efforts the problem at which so many
have labored for so long is finally completed.

The work of the first author was supported in part by the Office of Naval Research
under contract Nonr-2121(24) with the University of Chicago. The work of the second
author was supported in part by the United States Air Force under contract AF-49(638)-
42 monitored by the Air Force Office of Scientific Research of the Air Research and De-
velopment Command.

APPENDIX 1

THE OSCILLATIONS OF THE JACOBI ELLIPSOIDS BELONGING TO THE SECOND HARMONICS

The characteristic frequencies of oscillation of the Jacobi ellipsoid belonging to the second
harmonics have been derived in an earlier paper (Lebovitz 1961, Sec. VIII, egs. [253] and [269]);
but the information on the constants of the Jacobi ellipsoid available at that time was insufficient
to permit their evaluation. With the data given in Paper I (Appendix I, Tables 1 and 2) the
frequencies can now be calculated and their variation along the Jacobian sequence ascertained.

Of the five principal modes of oscillation belonging to the second harmonics, there is one which
is neutral throughout the sequence; this is the same one that starts as a neutral mode at the
point of bifurcation with the Maclaurin sequence. The characteristic roots belonging to the
remaining four modes occur in pairs as roots of quadratic equations. The equation determining
the first pair is, in our present notation,

0'2(0'2 + Q2 — 4313) (0’2 + Q% — 4323) — 492(0’2 — 2B13) (0’2 — 2323) =0, AL 1
Besides the root ¢2 = (2, which the equation clearly allows, we have
g2 = 2B13 + 2By + %—92 + [(2313 + 2Bjs + %92)2 - 16313323]1/2 . (AL, 2)

The equation determining the second pair of roots is

9?4 3By —Biz—3a? By — Bgs Q%+ 3 (B — Bss) +Bia — Bas
Bl2_Bl3 Q2+3322—323—%02 92+3(322“B33) +312—B13 =0
1 1 4,1, 1
a2 ay? a? a2 ag? (AL, 3)

The roots determined in accordance with equations (AI, 2) and AI, 3) are listed in Table 5.

APPENDIX II

THE INDEPENDENCE OF THE NORMAL MODES ON THE FIRST-ORDER VIRIALS

In Section IT, physical arguments were presented for putting the first-order virials equal to
zero. The independence of the derived characteristic roots on the choice of the first-order virials
can be established more formally.

The eighteen equations (26)—(43) which are provided by the third-order virial equation are
eighteen linear homogenous equations for the eighteen third-order virials V. and the three
first-order virials V;. The equations are of the forms

DGk mn) Vit X, <55k s>V, =0. @1, 1)

limn
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Actually, equations (26)-(43) involve the 6IIx’s. In the incompressible case, these 6II’s are
eliminated; but the remaining fifteen equations are supplemented by three divergence conditions
which are again linear equations of the same form. In the more general case, when the gas laws
appropriate to adiabatic changes are applicable, the relation (cf. Chandrasekhar and Lebovitz
1963)

81T, = (v—1)fvs,-%xkdx+yfvpskdx (AL 2)

(where vy denotes the ratio of the specific heats and p is the pressure in the unperturbed configura-
tion) enables its expression in terms of the virials; so that in all cases we have eighteen equations
of the form (AII, 1).

TABLE 5

THE SQUARES OF THE CHARACTERISTIC FREQUENCIES BELONGING
TO THE SECOND HARMONICS*

(o2 Is Listed in the Unit #Gp)

cos! as/ar o1? 022 o3 042
54935762. ... 1.99799 0 64281 1 54602 1.49206
55.. ... 1 99786 .64263 1 55090 1 48638
56 ..... 1 99780 .64146 1 57474 1 45946
57 ..... 1.99753 .63925 1 60278 1.42528
58..... .. 1 99712 .63600 1 63264 1 38634
59 . 1.99659 .63166 1 66013 1 34683
60. 1 99595 62622 1 68259 1 30945
61.. 1 99520 61964 1 70699 1 26726
62 1 99436 61189 1 72918 1 22445
63 1 99345 .60296 1 75219 1 17808
64.. .... 1 99248 59281 1 77302 1 13123
65 ..... 1 99149 .58141 1 79270 1 08300
66 ..... 1 99048 .56875 1 81124 1 03348
67........ 1 98947 55479 1 82866 0 98282
68 .. 1 98850 .53951 1 84503 0 93110
69 . ..... 1 98759 .52289 1 86036 0 87852
69 8166 1 98691 50832 1 87213 0 83505
70..... .. 1 98677 50493 1 87468 0 82523
7 . 1 98606 48560 1 88805 0 77140
72..... .. 1 98548 46492 1 90047 0 71723
75..... 1 98481 .39488 1 93250 0 55482
7 ... ... 1 98526 34190 1 94999 0 44906
80..... 1.98765 25466 1 97076 0 29955
83 .... ... 1 99167 0 16219 2 02252 0 13164

* The roots 612 and o322 are those derived from eq (Al 2), while the roots o3? and a4 are
derived from eq (Al 3)

The eighteen equations (AII, 1) must be supplemented by the three equations (15) and (16)
governing the first-order virials. These equations are of the form

E(z’]s)V,=0. (AL, 3)

The secular equation for the complete set of equations provided by (AII, 1) and (AII, 3) is
given by
[1<3; k| Limm || -

G| =0. (AL 4)
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The required characteristic roots are, therefore, the roots of the two independent secular
equations

I<i; 7k |Iymny]| = 0  and  |[2]s)]| = 0. (AL 5)

The first of these two secular equations is the same as one would obtain by setting the V,’s
equal to zero (as we have done); and the roots of the second equation (namely, o2 = 0 and
o2 = Q%) can be ignored, since they are in no way dependent on the construction or the constitu-
tion of the particular system which may be under consideration.
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