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ABSTRACT

The pulsation frequencies of rotating, gaseous masses of uniform density, i.e., of the Maclaurin sphe-
roids, are found as functions of the angular momentum M and the ratio of the specific heats . Numerical
calculations for the pulsation frequencies and normal modes are given for v = 1.3, 4, 1.4, 1.5, 1.6, and §.
One finds that the value of ¥ at which dynamical instability sets in is reduced from v = $ by rotation.
One also finds that, when v = 1.6, the normal modes of oscillation one obtains in the limit A — 0 are
both very far from being radial.

I. INTRODUCTION

The theory of the radial pulsations of spherical, gaseous masses, in its simplest form,
predicts the following approximate formula for the frequency o of the fundamental mode
of pulsation:

o= (3y— 2L g

where I8 is the gravitational energy and I the moment of inertia of the spherical con-
figuration of equilibrium about which the pulsations (assumed small in amplitude) take
place; the ratio of the specific heats, v, appears because of the assumption that the pulsa-
tions take place adiabatically. This formula is known to be a good approximation if the
central condensation is not too high (Ledoux and Pekeris 1941); it becomes exact in the
limit in which the density is uniform.!

The assumption that the equilibrium configuration is spherical implies that rotation is
absent. We now wish to drop this assumption and to find the effect of rotation on the
pulsation frequency. For this purpose, one may ask whether there is a generalization of
equation (1), valid in the presence of rotation, that reduces to equation (1) in the limit
of vanishing rotation. The answer is in the affirmative (Chandrasekhar and Lebovitz
1962a, eq. [88]; this paper will be referred to as “Paper I”), and this result provides the
solution to the problem in principle.

In practice, however, it is necessary to know the distribution of mass throughout the
equilibrium configuration to find the pulsation frequencies, for only then can one evalu-
ate W, I, and the further coefficients that appear in the formulae of Paper I. Such infor-
mation is largely unavailable for rotating configurations, but there are exceptions: (1) the
mass distribution in slowly rotating polytropes has been worked out (Chandrasekhar
1933); and (2) if one assumes that the mass is distributed uniformly, the equilibrium con-
figurations are the well-known Maclaurin spheroids. This paper will be devoted to finding
the oscillation frequencies of the Maclaurin spheroids.? The oscillations of slowly rotating
polytropes are treated in the following paper (Chandrasekhar and Lebovitz 1962c¢).

II. THE VIRIAL EQUATIONS

Let the equilibrium figure, a Maclaurin spheroid, be rotating about the x;-axis, and let
the semiaxes in the directions of the x;-, 22-, and x3-co-ordinate axes be ai, a2 (= @¢1), and

1 A gaseous configuration of uniform density will be called a ‘“homogeneous, compressible model.”

2 The Maclaurin spheroids are not the only such models: for sufficiently large angular momentum the
Jacobi ellipsoids provide another.
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3. In order to find the oscillation frequencies, we shall use the tensor virial equations, as
adapted to treat small perturbations of the equilibrium configuration (Paper I, eq. [13]);
they may be written

a: d
75 ) pritidn = 20en 5 [ pactids+02 f p(wii ko) da
()
op 0B;
—Q25. , X (o — 9P g, — o
@0 [ p(astit o) detou(y—1) [ f5E dx— [ o8, 528 dx.
The results and equations of Paper I were obtained by replacing the Lagrangian dis-
placement £ appearing in equation (2) with the linear form
£ = Xjpxrert . ®)

The justification for the substitution (3) lies, in part, in that the results so obtained be-
come exact in the limit of uniform density and should therefore be good approximations
if the central condensation is not too high.

If the substitution (3) is used in equation (2), the result is (Paper I, eq. [17])

NX il = 203X imImi + Q2 Xl 1 + Xalyj)
— 020;3(Xslvs + Xalws) + TX 1055 — X1Brssi5

4

where

J=— (7—1)fvpdx= (v — 1)Ly ;

and the precise assertion is that the characteristic frequencies® determined by equation
(4) become exact if the coefficients (I, Wp,;45, and J) are taken to be those appropriate
to the homogeneous, compressible model. It is clearly important to prove this assertion
for two reasons: (1) to establish the validity of the results of Paper I and (2) to emphasize
that the results of the present paper, in which we use the equations of Paper I, are exact
(i.e., involve no assumption as to the nature of &, the Lagrangian displacement). We now
turn to this proof.

III. THE EXACTNESS OF THE RESULTS FOR THE HOMOGENEOUS, COMPRESSIBLE MODEL

If a tensor NV;; is defined by the equation (cf. Lebovitz 1961, eq. [65]; this paper will be
referred to as “Paper 117)

Nij=fpxi£:idx: ©)
14

then all the terms of equation (2), with the exception of the last two, manifestly involve
the tensor NV;; linearly. Further, if dp/dx; and d%;;/dx; should be linear in the co-ordi-
nates, the last two terms would also be linear combinations of the N;’s. But, for the
homogeneous, compressible model, these quantities are, in fact, linear in the co-ordinates:
the equilibrium pressure gradient is

9P _

] 1 .
I — 5 _— +1 (6)
ax; ”ax,[% 2| QXx[],

where (cf. Chandrasekhar and Lebovitz 1962, eq. [47]; this paper will be referred to as
“Paper I11”)
B = 7Gpalas[I — A1(a? 4+ x3) — Al (M4

8 The frequencies are given by ¢ = 7\, where 7 = + —1.

¢In this and subsequent formulae, the constants 4; and 4; appearing in the expressions for 8 and
LB;; are those defined in Paper IIT; this represents a departure from the notation of Paper II.
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No. 3, 1962 ROTATING GASEOUS MASSES 1071
and for B.;; we have the formula (Paper III, eq. [51])

3
LBij = erafag,[Z %2 (A;— a2A i) + a’ g (A i— E A ,-,aﬁ)] . (8)
=1

In equation (8) and in the rest of this paper the summation convention is suspended.
If the foregoing formulae are used in equation (2), the result is

aN;
SN Zzge,lg it Q (Wt Nio) — 02635 (Nast V)

— 84 (v = 1) [ (N1~ Nu) (27Gpatasd: — @°) + 27Gpalas Nl @
3

—[2(45= 634) (Nis+ N3o) =265 Y a4 alu | (aGpalas) .
1=1

Equation (9), which is exact (1 e., o assumption concernlng the nature of & has been
made) represents a system of nine linear differential equations with constant coefficients
in nine unknowns; its solutions are therefore of the form

N(t) = Ny (0)er . (10)

The substitution (10) reduces equation (9) to a system whose characteristic equation
determines the frequencies; these frequencies are unaltered by the linear transformation

3
Ni;(0) = ZijImi=inIii° (11)
m=1

This substitution puts all but the last two terms of equation (9) in manifest agreement
with the corresponding terms of equation (4). We wish to show that the last two terms
agree also.

The fourth term on the right-hand side of equation (9) becomes

— 8si(y — D[(X11 + Xa2)2nGpatasdy — Q)11 4+ 27GpadasAslss] ; (12)
and, since for the Maclaurin spheroid (Paper II1, eq. [75])
(27Gpaias; A, — Q)11 = 27GpalazAslss (13)
expression (12) becomes (Paper I1I, eq. [57] and Paper I, eq. [20])

3 3 3
— 8 (y— 1)(TGP0303)2A3[332X11= 8 (y— 1)%332}(11': 5UJZXU- (14)
=1 =1 =1

This is the same as the fourth term on the right-hand side of equation (4).
To verify that the final terms of equations (4) and (9) agree, we note that, according to
equation (60) of Paper III together with equation (8) above,

3 3
— 2D X By = — wGpa“{aa[z (4;— 34 )T X i+ 15 X0)
r=1 =1
(15)

3
— 20%%1‘2 A ilIllXil] .
=1
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1072 S. CHANDRASEKHAR AND NORMAN R. LEBOVITZ Vol. 136

This shows that the exact equation (9) is equivalent to the “approximate” equation
(4).

IV. THE TRANSVERSE SHEAR MODES

The nine equations represented by equation (4) separate into smaller sets of equations.
One such set consists of four equations for Xy3, Xs1, Xes, and X3e (Paper I, Sec. V), the
other X;;’s being set equal to zero to satisfy the remaining five equations. The corre-
sponding normal modes represent a relative shearing of the northern and southern
hemispheres and are therefore called “transverse shear modes.” The equations governing
them (Paper I, eq. [46]) can be shown, with the aid of the explicit formulae for the super-
matrix elements (Paper 111, egs. [62]-[65]), to be the same as those already discussed in
the incompressible case (Paper 11, egs. [141]-[144]). The oscillation frequencies have been
tabulated (Paper II, Table 1) and have been found to correspond to stable oscillations.

V. THE TOROIDAL MODES

A second set, comprising two equations, yields the “toroidal modes,” in which the
motions are restricted to planes parallel to the equatorial plane. The equations, which
involve only the combinations (X1, — Xse) and (X12 + Xa1), yield characteristic roots
(Paper 1, eq. [76]) that can once again be shown to be identical with those found in the
incompressible case (Paper II, eq. [189]). These are the modes that lead to neutral stabil-
ity at the point of bifurcation where the Jacobi ellipsoids branch off from the Maclaurin
spheroids (at an eccentricity e = 0.8127) and to instability when e = 0.9529. That these
modes are unchanged in the homogeneous, compressible model means that the occur-
rence of neutral and unstable points along the sequence of Maclaurin spheroids is inde-
pendent of the assumption that the fluid is intrinsically incompressible.

VI. THE PULSATION MODES

The transverse shear modes and the toroidal modes account for six of the nine modes
and the associated characteristic values of the root A2 for six of the nine characteristic
values that satisfy equation (4). Further, one of the equations represented by equation
(4) is

)\2(X21 — X12) = "‘2}\9(X11 + X22) y (16)

which can be satisfied by taking A? = 0, X;3 = — Xy # 0, and setting the remaining
X.js equal to zero (Paper I, egs. [79] and [82]).

Seven modes are now accounted for. The remaining two are called “pulsation modes”
because they represent the generalization to the case when rotation is present of the
radial pulsation. They satisfy the equations (Paper I, eq. [87])

N2l + (1 — a — B)](X11 + Xoe) — 2aX33 =0 an
and
—a(X1u+ Xoo) + N33 — ) X33 =0, (18)
where
a=(y—DWss — Wsz;n  and B = (v — 1)Wss — Wasss. 9

Equations (17) and (18) are different from any of the equations in Paper II. Only in
these equations does the effect of compressibility appear (in particular, through the co-
efficients a and B). They lead to (Paper I, eq. [88])

I3\ — [Bln 4 (B4 o — QL) 55\ — QT+ (B+ 2)(B—a) = 0. @0

Let the roots of equation (20) be A2 and Aj. There will be associated with these roots cer-
tain normal modes, which can be specified by the ratio of Xi; + Xa to Xss. Let

=21 A2 _ o5 4l (since X1; = Xgp) (21)
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be this ratio; then two numbers, R; and R, specify the normal modes that correspond to
A and M. There is a simple identity relating R; and Rs, which we shall now derive.
In view of equations (17) and (18) and the foregoing definitions, we may write

[)\%Iu + (92.[11 —a— ﬁ)]R]_ = 2a (22)
and
aRy = O\%Iaa — B) . (23)
Multiplication of each side of equation (22) by R, leads to
A+ (@ — o — B)]RiR: = 2(Nel33 — B), 29
where equation (23) has been used. On account of equation (20), the roots A} and A} must
satisfy
— Q2
}\2 )\2 — _E_ B + a_ 11
11+ Ay Ton + i
or
1
7\5111+(92111—a—3)="I—:;()\gfaa—ﬂ)- (25)
We infer from equations (24) and (25) that
R1R2 = - 2 -‘EE, (26)5
Iy

which is the required identity.

a) The Case W hen Rotation Is Absent

If Q% = 0and the equilibrium configuration is spherical, the roots A} and A} are (Paper
I, eq. [93]) i
2 _

. o ,
)\1—-(3”)/—4)7 and )\g—gT- (27

These roots are distinct if v # §, and the normal modes can then be found. They are
Ry =2 and Ry=—1. (28)

It is easy to see that, for a spherically symmetrical disturbance, Xi; = Xs2 = X33, and
therefore R = 2. Hence the root A\ corresponds to a radial pulsation. The root A can be
shown to belong to that second-order spherical harmonic which is symmetric about the
¥s-axis. Such a mode is volume-conserving; this is reflected in R = —1, which, accord-
ing to the substitution (3), implies that div £ = 0.

If v = £, then A} = M}, and the normal modes are consequently unspecified.

If 2 and I are evaluated for the homogeneous, compressible model, equation (27)
becomes

M=—Q@y—44rGp and N = —181Gp. 29)

b) The Case W hen Rotation Is Present

With the exception of equation (29), the equations and remarks of this section have
been general, applying to centrally condensed, as well as to uniform, mass distributions.
We now want to restrict our attention to the homogeneous, compressible model. For this
purpose it is convenient to make the followings definitions:

* = (4nGp)™'\?, f= —(4nGplu)(a + B — ),

(30)
g = —(4nGpl3;3)'B, and k= —(4rGplss)ta .

5 In deriving this identity we have benefited by a discussion with Dr. Alar Toomre.
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Equations (17) and (18) now become

(l2 +f)(N11 -+ sz) + 2kN3;3 =0 @31
and
(1 - ez)k(Nn + N22) + (l2 + g>N33 =0, (32)

where we have used equation (11), suppressing the argument, and have introduced the
eccentricity e through the formula

2
ZE=9—3=1—e2. (33)
Ill df
The characteristic equation now becomes
P+ (F+ o + g — 200 — MF] = 0, (34)
with roots
P=—%5(+g +3(f— g+ 801 — NP, 35

Let 4 be that root which in the limit ©? — 0 approaches —(y — %), and /3 the root that
approaches —% (cf. eq. [29]). The normal modes will be specified by the ratios r; and 7.,
where 7 = (N11 + N22)/N3s. The identity (26) becomes

2
¥y = 1= o2’ (36)
since
RIy; R
133 1 — e2

The quantities f, g, and & introduced in equation (30) can be written in terms of 4
and 4;; by means of the formulae of Paper III. The results are

f = %a%aa{fh + G§A13 + (1 - 62)[2(7 — 1D4; — 2A3]} ) 37
g = %d%ag,[ZAg i 3(1%1433 + (’Y —_ I)Ag] ,

and

k = 3alas[—alA;s + (v — 1)A4s] .
Since the constants A; and A, can be written in terms of the eccentricity e (Paper III,
eqgs. [18], [19], [34], and [35]), these equations give f, g, and % as functions of e.

VII. THE LIMIT OF VANISHING ANGULAR MOMENTUM

If the rotation is slow, so that the equilibrium configuration is only slightly oblate, the
coefficients f, g, and £ may be approximated by expansions in the eccentricity e. To terms
of second order in e the results are

f = [+ 3y — DI+ 8% = v — D2,
£ = [ + 30y — DI+ [ + Ay — DI,

(38)

and
E= =%+ 30— DI+ [~ + &0 — Dl
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The expressions f 4+ gand (f — g)? + 8(1 — €?)k? appearing in equation (34) become, to
the same order,

fHg=I1-+ - DI+ §E - &0 - e (39)
and

(f = g7+ 8(1 — A = 9~} + 4y — D
+ [—% + §(v — Dllg§s — &(v — Dle*.

Note that the right-hand side of equation (40) vanishes identically if ¥ = £; this case
must therefore be treated separately.

(40)

a) The Case When v = &

In this case formulae (39) and (40) are correct to second order in ¢, and one finds from
equation (35) that the roots are

B=—33y—4)+ AQBy— e @1
and
L= —15— 3¢ @2

It is clear from equation (41) that the effect of a small rotation is to stabilize the con-
figuration with ¥ = %. In other words, the critical value of v, 7., at which dynamic in-
stability sets in, is reduced from the value 4. The amount of the reduction for a given
value of e is obtained by setting /2 = 0 in equation (41). The result is

vo=% — A, (43)

With the aid of equations (41) and (42) we can find the normal modes 7, and 7,. They
are

4
= —_ 2
71 2—|—3(8_5ﬁy)e (44)
and
e 1+3}?58%2‘27 ¢ “s

That 7, is no longer precisely —1 means that this mode is no longer volume-preserving
and hence is no longer a deformation involving only a second-order surface harmonic:
rotation has “mixed” the modes.

If, in equations (41) and (42), the factor 4wGp is restored, Q2(= 8wGpe?/15) is used

instead of €2, and ¢ = — A2, these equations become

o} = 3y — 4)%nGp — 2(3y — 5)2? (46)
and

oy = 18xGp - 2802 47)

Equation (46) agrees with a formula found by Ledoux (1945, eq. [54]). (For a somewhat
more general comparison, see Chandrasekhar and Lebovitz 1962¢, Sec. VIII, ¢).
b) The Case When v = 8

If v = £, equation (40) is not adequate for finding the frequencies correctly to second
order in e, and it is necessary to return to equations (38), which, for the present case,
become

—4 | 4 2 — 4 | 92 ,2 — —_6_p2. 8
f=F+s5z¢% =15t 555¢" and k 175 °¢ (48)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1962ApJ...136.1069C

2

£,

Ta\sN B &

oy
£9,
[=h

1076 S. CHANDRASEKHAR AND NORMAN R. LEBOVITZ Vol. 136

The roots are easily found to be

= — —% _ e? (49)
and

e2. (50)

If these results are used together with equations (31) and (32), the normal modes,
which were unspecified in the absence of rotation, may be found, now that rotation has
“lifted the degeneracy” in the characteristic roots, but not to the same order in e: the
normal modes are found in the limit as e— 0. They are

36

n=— i /7580 5.2685 (approximately) 6D
and 36
ry= — YRRV = —0.3796 (approximately). (52)

Since r = 2 for a spherically symmetric perturbation, it is clear that neither mode is
even approximately spherically symmetric. This last fact is not peculiar to the homoge-
neous compressible case: it is found for distorted polytropes in general (see Table 4B in
Chandrasekhar and Lebovitz 1962a).

VIII. THE LIMIT OF LARGE ANGULAR MOMENTUM

When the angular momentum becomes large, the Maclaurin spheroid becomes highly
flattened, and e — 1. It is convenient in this case to expand the coefficients f, g, and £ in
powers, not of e, but of # = (/2 — sin™! ¢), which becomes small in the limit under con-
sideration. Expansions of f, g, and & must be taken to the second order in 5. The results
are

f = %7”7 - 2(2 - 7)7’27

(53)
g=7— (v + Dn+2(v+ 2)7*,
and
k= (y—2)+ 35 — 2v)n — 2G — v)n*.
The characteristic roots and normal modes are easily found to be
B=—y and B=—%m (54)
and
_ _2(2—v) - v 1
Y, = — —‘—:y———'— and Vo= T:; ;)-E . (55)

These equations are helpful in interpreting the tables and graphs of Section IX.

IX. NUMERICAL RESULTS

When the angular momentum M is neither very small nor very large, the only satisfac-
tory way of finding the behavior of the pulsation frequencies and normal modes is
numerically.

Equation (43) shows that, at least for small values of e, the critical value of v, 7.,
below which dynamical instability occurs, is reduced by rotation. Table 1 shows that
this is a trend that is maintained for all values of e: v, is a monotonically decreasing
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No. 3, 1962 ROTATING GASEOUS MASSES 1077

function of e. In addition, Q2 (in the unit 47Gp) and M (in the unit [GINala;]'/2, where I
is the mass of the spheroid) are given in Table 1. In Figure 1, 7. is plotted against M.

The frequencies of those modes that start, when e = 0, as radial pulsations are given
in Table 24, and their corresponding normal modes in terms of the ratio 7, in Table 2B,
for several values of v. The frequencies are plotted against M in Figure 2. The frequency
o (= 1l) is in the unit (47Gp)'’2.

TABLE 1

THE CRITICAL VALUE OF v, 2, AND M,
AS FUNCTIONS OF ¢

e Q2 M Ye e Q2 M Ye
0 0 0 1 3333 038 0 1816 0 2934 1 2318
01 0 0027 0 0255 1 3324 09 2203 0 4000 1 1535
02 0107 0 0514 1 3297 095 2213 0 5008 1 0578
03 0243 0 0787 1 3249 0 99. 1552 0 7120 0 7828
04 0436 0 1085 1 3176 0 995 1219 0 7968 0 6551
05 0690 0 1417 1 3071 0 999. 0627 0 9928 0 3879
06 1007 0 1804 1 2920 0 9999 0 0214 1 2198 0 1495
07 0 1387 0 2283 1 2693 1 0000 0 ® 0
32—
|  —
%
/72—
I A I AN O B
ol 02 03 04 05 06 07 08 09 {0

M

F16. 1.—The critical value of v, v., as a function of the angular momentum M (the unit of M is
{GIMa2as]/2, where M is the mass of the spheroid).

In the same way, the frequencies of those modes that start, when e = 0, as second-
order harmonics, are given in Table 34, and their corresponding values of 7, in Table 3B.
The frequencies are also plotted against M in Figure 3.

Tables 2B and 3B for the normal modes are, in a sense, incomplete, for N1; + Nzsand
N33 are not sufficient to specify the normal modes: Nis — Ny, is also needed (cf. Paper I,
eq. [79]). It can, however, be determined from the information given in the tables through
the equation

)\2<N12 — N‘zl) = 2)\Q(Nu + N22) . (56)
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TABLE 24
THE FREQUENCIES OF THE MODE THAT STARTS AS A PURELY RADIAL PULSATION*
13 % 14 15 16 3
0 70 1825 0 0 2583 0 4083 0 5164 0 5773
01 70 1800 0 0300 2596 4088 5163 0 5773
02 30 1715 0600 2636 4104 5161 0 5775
03 30 1559 0906 2706 4130 5157 0 5783
04 70 1296 1225 2804 4167 5147 0 5816
05 10 0812 1559 2929 4210 5128 0 5923
06 0 0843 1931 3084 4256 5092 0 6155
07 0 1594 2298 3268 4292 5023 0 6540
08 0 2238 2718 3464 4290 4881 0 7143
09 0 2855 3137 3604 4141 4538 0 8198
0 95 0 3068 3233 3517 3854 4111 0 9184
0 99 0.2722 2798 2855 2963 3051 1 0941
0 995 0 2433 2462 2512 2577 2632 1 1457
0 999 0 1761 1769 1786 1806 1822 1 2219
0 9999 0 1034 0 1034 0 1039 0 1039 0 1044 1 2685
1 0000 0 0 0 0 0 1 2910

* The factors of i(= +/—1) appearing in the first column indicate that the corresponding mode is unstable; the numerical
values of these entries therefore represent the growth rate

TABLE 2B

THE VALUES OF 7 (= [Ny + Na|/N33) FOR THE MODE THAT

STARTS AS A PURELY RADIAL PULSATION

€
13 % 14 15 16 3
0 2 0000 2 0000 2 0000 2 0000 -+2 0000
01 2 0090 2 0101 2 0135 2 0270 5 30 -+1 9589
02 2 0378 2 0425 2 0454 2 1117 548 +1 8201
03 2 0918 2 1031 2 1366 2 2664 575 +1 5538
04 2 1828 2 2050 2 2704 2 5172 6 21 +1 1111
035 2 3334* 2 3732 2 4899 2 9148 6 91 +0 5852
06 2 5911* 2 6820 2 8627 3 5634 8 02 +0 2051
07 30714 3 1963 3 5529 4 7142 9 92 —0 0090
08 41371 4 3845 5 0728 7 1142 1372 X10 —0 1384
09 772713 8 3751 1 0088X10! | 1 4515X10! [ 2 500 X10! —0 2356
0 95 1 5615X 10! | 1 7074X10t [ 2 0766X 10t | 2 9465X 10t | 4 669 X10t | —0 2866
099 8 455610 | 1 0880102 | 1 1047102 | 1 4943102 | 2 1434X102 { —0 3486
0 995 1 7358102 [ 1 8864X 102 | 2 2454X10% | 2 9942X10? | 4 1995X10% | —O0 3634
0 999 9 0344X102 | 9 7438X102 | 1 1470%X103 | 1 4994X10% | 2 0419X10% | —O0 3834
0 9999 9 1956X10% | 9 9442X10% | 1 1604X10% | 1 4999X10* | 2 0029X10* | —0 3947
1 0000 ® ® © © LS —0 4000

* Between ¢ = 05 and ¢ = 0 6 the “frequency” vanishes (see Table 24) One can show that at this T
limiting ratio 7 is finite, Nu1 + N22 = N33 = 0, and only N1z — Na1 7 0 (cf eq [56)) Theinterpretation of thisis that the mode
of neutral stability is one of pure rotation.
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Fic. 2.—The frequencies of the modes that are radial pulsations when M = 0 When v = 1.3, the
radial pulsation starts out being unstable with growth rate ». Stabilization occurs at M = 0.165; for

M > 0 165, the curve labeled ““y = 1 3” gives the pulsation frequency.
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Fi¢ 3 —The frequencies of the modes that correspond to second-order harmonics when M = 0. The
curves for v = 4,14, and 1 5 lie between those for v = 1.3 and v = 1.6 and are similar in appearance;
they are therefore not shown The curve labeled ‘“y = «”’ is that for the incompressible case (cf. Paper
II, Fig 1, the curve labeled ‘“o5”).
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TABLE 34

THE FREQUENCIES OF THE MODE THAT STARTS AS A SECOND-ORDER
HARMONIC DEFORMATION

Y
€
13 % 14 15 16 3
0 . 0 5164 0 5164 0 5164 0 5164 0 5164 0 5164
01 0 5180 0 5180 0 5180 0 5180 0 5183 5180
02 0 5229 0 5229 0 5229 0 5229 0 5238 5227
03 0 5312 0 5312 0 5312 0 5314 0 5336 5303
04 0 5432 0 5433 0 5435 0 5441 0 5480 5392
05 0 5597 0 5599 0 5604 0 5619 0 5683 5453
06 . 0 5816 0 5821 0 5833 0 5867 0.5966 .5443
07 . 0 o111 0 6123 0 6151 0 6221 0 6365 .5358
038 0 6537 0 6563 0 6626 0 6760 0 6962 5170
09 0 7279 0 7341 0 7479 0 7719 0 7996 4744
095 0 8029 0 8125 0 8324 0 8637 0 8963 .4252
099 0 9537 0 9670 0 9933 1 0319 1 0696 3102
0 995 1 0012 1 0151 1 0423 1 0820 1 1206 2665
0 999. 1 0734 1 0877 1 1158 1 1567 1 1963 1833
0 9999 11182 1 1327 1 1611 1 2025 1 2424 0 1044
1 0000 1 1402 1 1547 1 1832 1 2247 1 2649 0
TABLE 3B
THE VALUES OF 7 (= [Ny + N2]/Ns;) FOR THE MODE THAT STARTS
AS A SECOND-ORDER HARMONIC DEFORMATION
€

1.3 % 14 15 16 %
0 —1 0000 —1 0000 —1 0000 —1 0000 R —1 0000
01 —1 0056 —1 0050 —1 0033 —0 9966 —0 380 —1 0313
02 —1 0223 —1 0200 —1 0130 —0 9866 380 —1 1428
03 —1 0507 —1 0450 —1 0293 —0 9698 — 382 —1 4145
04 —1 0908 —1 0798 —1 0487 —0 9459 — 383 —2 1429
05 —1 1428 —1.1237 —1 0710 —0 9149 — 386 —4 5559
06 —1 2060 —1 1745 —1 0916 -0 8769 — 390 —1 5234X10*
07 —1 2768 —1 2269 —1 1038 —0 8319 — 395 +4 3536X102*
08 .. —1 3428 —1 2671 —1 0951 —0 7809 — 405 -+4 0137 X10!
009. —1 3622 —1 2568 —1 0435 —0 7252 — 423 +4 4685X10!
095 . —1 3137 —1 2014 —0 9878 —0 6962 — 439 +7 153710t
099.. —1 1886 —1 0905 —0 9098 —0 6726 — 469 +2 8829102
0 995 —1 1551 —1 0629 —0 8930 —0 6696 — 477 +5 5181 %102
0 999, —1 1245 —1 0266 —0 8723 —0 6673 — 489 +2 6098103
0 9999, —1 0875 —1 0084 —0 8618 —0 6667 497 +2 5338 X10*
1 0000 —1 0769 —1 0000 —0 8571 —0 6667 —0 500 + o

* Between ¢ = 0 6 and ¢ = 0 7, the quantity 1/7 changes continuously from negative to positive values
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X. CONCLUDING REMARKS

Perhaps the only unexpected result of this work is that, when v = 1.6, none of the
normal modes becomes spherically symmetric as M — 0. Even this might have been
foreseen because the occurrence of the degeneracy was known (Paper I, Sec. IV), so
there was no reason to believe that the normal modes when v = 1.6 bear any resemblance
to those when v % 1.6.

This result is not, of course, restricted to the homogeneous model (cf. Chandrasekhar
and Lebovitz 1962a, Sec. VIII). It is expressed in a more general way in another paper in
this series (Chandrasekhar and Lebovitz 1962d), where it is applied to the question of
double periods in the light- and velocity-curves of the 8 Canis Majoris stars.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago. The work of
the second author was supported in part by the United States Air Force under contract
No. AF-49(638)-42, monitored by the Air Force Office of Scientific Research of the Air
Research and Development Command.
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