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ABSTRACT

In this paper, the known point of bifurcation along the sequence of the Jacobi ellipsoids is isolated
by a new method based on equilibrium considerations only. The method consists in finding an integral
property (or, more generally, a functional) of the configuration which vanishes as a condition of equi-
librium. The first variation of such a functional will vanish at a point of bifurcation (and only at a point
of bifurcation) for a Lagrangian displacement which deforms the body from the shape it has along an
equilibrium sequence to the shape it will have in the sequence following bifurcation. For finding a func-
tional J with the requisite properties, an equation for the third-order virial (namely, /pou;x;x:dx) is
first established. And from an examination of the conditions, which follow from this equation, for equi-
librium, it is found that

J=fvp[x32313+x2%12+x1(%33—-%22)]dx

(where B,; is the tensor potential of the gravitational field) has all the necessary properties The first
variation of J, for the Lagrangian displacement which deforms a Jacobi ellipsoid into a pear-shaped
object, is then evaluated, and it is shown that its vanishing determines the point of bifurcation along the
Jacobian sequence, in agreement with Darwin’s result.

I. INTRODUCTION

It is well known from the classical investigations of Jacobi, Poincaré, and Darwin that
points of bifurcation occur as we follow the sequence of the possible forms of equilibrium
of rotating incompressible masses. The first of these points of bifurcation occurs along
the sequence of the Maclaurin spheroids when ellipsoids with three unequal axes (the
ellipsoids of Jacobi) first become possible as figures of equilibrium. A further point
of bifurcation (isolated by Darwin 1901) occurs along the sequence of the Jacobi
ellipsoids when pear-shaped configurations, similarly, become possible as figures of
equilibrium. The occurrence of these (and other) points of bifurcation was accounted
for by Poincaré in terms of an analytical theory of the stability of these configura-
tions (for an account of this theory see Lyttleton 1953). While Poincaré’s theory may
be considered as leaving nothing to be explained, it may yet be felt that the occur-
rence of the points of bifurcation should be made manifest by considerations pertain-
ing to the equilibrium itself (as distinct from considerations pertaining to their stability).
Thus Jacobt’s discovery, that ellipsoidal forms are possible as figures of equilibrium for
rotating incompressible masses, is described by Thomson and Tait in their Natural
Philosophy (1883, p. 330) as a ‘“‘curious theorem,” even though the bearing of this
“theorem’ on the stability of the Maclaurin spheroids was well known to them (:bid.,
pp- 332-333). And more recently it has been observed that *‘there is an element of sur-
prise about Jacobi’s result in view of the symmetry that might be expected to be as-
sociated with any form produced by a rotational field” (Lyttleton 1953, p. 1). Similar
comments might perhaps be made when a rotating body loses even its triplanar sym-
metry and allows a pear-shaped form (as it does at the point of bifurcation on the
Jacobian series).

It is in the spirit of the foregoing remarks that the criterion which has recently been
given (Chandrasekhar and Lebovitz 1962a; this paper will be referred to hereafter as
“Paper I"”) for the occurrence of the point of bifurcation, along the sequence of axisym-
metric forms (not necessarily spheroidal forms) which a rotating mass (not necessarily
an incompressible mass) can assume, has to be understood. The criterion in question
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(see Sec. IT below) was derived from certain general conditions which follow from the
second-order virial equations and which must obtain in equilibrium. However, the par-
ticular derivation given in Paper I left no room for accounting for the point of bifurca-
tion on the Jacobian series whose determination, according to Jeans (1919, 1929), is an
“arduous piece of work.” In this paper we shall isolate the point of bifurcation along the
Jacobian sequence by a method different from Darwin’s and based on equilibrium con-
siderations only. However, this new method requires us to consider the virial equations of
the third order; the reasons for this are stated in Section III after some preliminary
remarks in Section II pertaining to the first point of bifurcation.

II. THE POINT OF BIFURCATION ALONG THE MACLAURIN SEQUENCE

As we have stated in Section I, the occurrence of the first point of bifurcation along
the sequence of the Maclaurin spheroids was made manifest in Paper I from general
equilibrium considerations. We shall here review the arguments with some amplifica-
tions.

Now the tensor form of the virial theorem applied to a uniformly rotating mass (with
no restrictions as to its nature or its constitution) characterizes the state of equilibrium

by the equations
Wiy + Q2 1y = By + Q21 59 = Bss @m?

where 8;; and I,; are the potential-energy and the moment of inertia tensors and the
orientation of the co-ordinate axes is so chosen that the x;-axis is along the direction
of Q. An alternative form of equations (1) (which is equally general) is (Paper I, eq.

[79])
— Wigs1a+ 2T = — Wor;10+ Q2 Loy = Bsz — Wiyjo0 @
where 0%
B0 = _/;/ Py —g&f dx 3)

is the supermatrix which has been considered in detail in Paper I (Sec. IV).

The first thing to observe about equations (1) and (2) is that they provide no sub-
stance to the common expectation that symmetry about the rotational axis should be
““associated with any form produced by a rotational field.” However, when Q> — 0 and
the configuration becomes spherical, the terms on either side of the first equality in equa-
tions (2) are both negative; and an obvious way in which the equality can be satisfied
identically is by requiring axisymmetry, in which case

%12;12 = %21;12 and 111 = 122 . 4)
As Q? increases and the configuration departs from sphericity, —%:2;12 + Q%[1; will in-
crease; and if a point should be reached when the quantity vanishes, then it would be-
come possible for the first time to satisfy the equations without the assumption of axi-

symmetry. The general condition, then, for the occurrence of a point of bifurcation along
the sequence of the axisymmetric configurations is

215 = Bus;ia - &)

A detailed consideration of the stability of rotating gaseous masses (Chandrasekhar and
Lebovitz 19625) establishes the same condition for the occurrence of a neutral mode of
oscillation, again implying that we have arrived, here, at a point of bifurcation.

1 The viral theorem also gives

%13 = %23 =0 and %12“{"92[12 =0. 1"

For objects with triplanar symmetry, these equations are trivially satisfied.
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The foregoing considerations are quite general. If the assumption that the configura-
tions are homogeneous ellipsoids is now made (an assumption which will be valid only
for incompressible masses), then the origin of the point of bifurcation along the Mac-
laurin sequence can be made even more explicit. For, if we should seek to satisfy the
conditions expressed in equations (2) without the assumption of axisymmetry, then we
should infer that

Q2 =""20e  PEELIE (6)

But for a homogeneous ellipsoid, we have the identity

Wiass _ Bassuo

2308 _TTenss (7
Iy Iy,

(cf. Chandrasekhar and Lebovitz 19624, eq. [66]; this paper will be referred to hereafter
as “Paper III”). From equations (6) and (7) it follows that the only way in whick the first
equality in equations (2) can be satisfied, without the assumption of axisymmelry, is for each
side of the equality to vanish separately. But as Q2 — 0, this cannot be. Hence, as 22— 0,
the first equality in equations (2) can be satisfied only identically, under conditions of axi-
symmelry, when equations (4) obtain. And, finally, af the point of bifurcation and beyond,
along the sequence of the triaxial ellipsoids, Q2 is determined by

Q2 =""1%12 72 ; 8)

and we must also have

Wss = Bii;es - )

Equation (9) provides a single-valued relation between as/a, and as/a,; and equation (8)
determines the value of Q2 which is to be associated with each pair (az/a1, as/a1) con-
sistent with equation (9). The configurations we so obtain are, indeed, the ellipsoids of
Jacobi. (See Appendix I for a further enumeration of the properties of these Jacobi
ellipsoids.)

III. THE POINT OF BIFURCATION ALONG THE JACOBIAN SEQUENCE;
HOW IT MIGHT BE ISOLATED

Now turning to the question of the occurrence of the point of bifurcation along the se-
quence of the Jacobi ellipsoids, we seek its exhibition and isolation along the following
lines.

First, we remark that we should conclude, without any previous knowledge, that if a
point of bifurcation occurs along the Jacobian sequence, then at such a point the figure
of equilibrium must depart from the triplanar symmetry which it has preserved until
then. And such a departure from triplanar symmetry can be achieved, in the first in-
stance, only by a third harmonic deformation of the Jacobi ellipsoid. Since we are here
concerned with ellipsoidal harmonics, it is in fact clear that the required deformation
should be accomplished by a Lagrangian displacement of the form? (see Darwin 1901, p.
297; also Lyttleton 1953, p. 109)

Jp— —_— 10)
S; = constant ; X1 ( % I X 'I" g I Y + g | by 1 ’ (

2 T am much indebted to Dr. Paul H. Roberts for clarifying discussions relative to these considerations.
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where a1, a9, and a; are the semiaxes of the Jacobi ellipsoid and N is the numerically
larger of the two roots of the equation

3 1 1

g tamxTae an

Now if an arbitrary member of the Jacobian sequence is deformed by the application
of the Lagrangian displacement (10), then the deformed configuration will not be one of
equilibrium. Only at the point of bifurcation (and nowhere else) will the deformation of a
Jacobi ellipsoid by the application of the Lagrangian displacement (10) leave its equilibrium
unaffected; and, in the same way, any integral property describing the equilibrium state will
be unaffected by such o deformation only if it takes place at the point of bifurcation (and
nowhere else).

What we need, then, is some integral property or, more generally, some functional J
of the configuration, which will vanish in the equilibrium state:

J =0 in equilibrium . a2

If £ now denotes a Lagrangian displacement which deforms a member of an equilibrium
sequence into a shape appropriate to the sequence which might follow a point of bifurca-
tion, then the first variation of J caused by such a deformation will vanish at the point
of bifurcation (and nowhere else):

6J = 0 at the point of bifurcation . 13)

Clearly, if 6J vanishes identically for all members of a given sequence, then the functional
J cannot discriminate the point of bifurcation. If we wish, then, to exhibit and isolate
the point of bifurcation along the Jacobian sequence, what we need is some functional J
having the property (12) and whose first variation will not vanish, identically, for odd
deformations such as the one specified by equation (10). More precisely, the kind of
functional J we must seek is one which might vanish trivially for objects (such as the
Jacobi ellipsoids) with triplanar symmetry and will vanish non-trivially (as a condition
of equilibrium) for objects (such as the pear-shaped figures) which do not have such
triplanar symmetry. Relations, required by equilibrium, among the tensors of the second
rank, such as LB;; and I;;, are of no use in this connection, since the first variations of
such relations will vanish identically for odd deformations on account of the even char-
acter of these tensors. We are, therefore, led to seek relations among tensors of higher
rank; and, as we shall see in detail below, relations having the requisite properties can
be deduced from the virial equations of the third order.

IV. THE THIRD-ORDER VIRIAL EQUATION

For the sake of definiteness, we shall consider the equations of motion appropriate to
a gaseous, or a fluid, mass in a state of uniform rotation with an angular velocity Q. In
a frame of reference rotating with the angular velocity Q, the equations of motion can
be written in the form

du; _ P )

P T Tom T Pam

(21 QX x|24+B) + 2 pein 1 Qum a4

where the various symbols have their standard meanings.
In the derivation of the usual second-order virial equation, one multiplies the equa-
tion of motion by x; and integrates over the volume V occupied by the fluid. Instead,
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we shall now multiply the equation by #x;x; and integrate over the same volume. We

thus obtain
3 f p;
v

ﬁpxjxk% dx = —/;xj

OB
+_/I;ijxk 7y dx+ zéumﬂm_/vpxjxk%zdﬁ

2dx

)

and, considering in turn the different terms in this equation, we have

dui d
[,pxjxk—d? dx =[Ipm(xjxkui)dx—[,pui(ujxk+ukxj)dx, (16)

—-/;,x,xa

%f PX; Xk —(?—l QXx|2dx= Q2f pxx;Xpdx — Qz{lzf px X xLdx (18)
14 0x; v v

—Lp(xjaik+xkaij)dxa an

S
14

_G_/.dxp(x)x,ac;ca f ! Z(_’_cx)l

_ , oy (% — x3) %52
= Gf‘Idedx p(x)p(x )”—]-x—'—xllg—
(w;— %) (200 — x50%)
=___l ’ 4
2G./;fvdxdx p(x) p(x") x— x|

(19)

: ' ry L@ — i) [ (o= ah) o5+ (o — o) af ]
=—§G'[’~/;rdxdxp(x)P(x) A xk|xx—kxx/|3 Yi T *5) Xk

(@i — x5) (% — t)
= —1 . ’ ’
2G[Idxp(x)x,£,dxp(x) x=x

(2 — x) (27— ;)

|x —x' |3

—1G [ dx'p(x")x} [ d
2 fv,x p(x)xkfv xp(x)

= —%_/‘:P(x)xj%ikdx_%_/I;p(x)xk%ijdx-

We now define the tensors:

H¢=pridx, 20

Iip= f pEX;xrBx @1)
14
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Lijn= %fvpui”jxkdx , (22)
W= — %'/;p%ijxkdx, @3
and
Vi;jk=£,puixjxkdx. (24)

(Note that an index after the semicolon indicates that a moment with respect to the as-
sociated space co-ordinate is involved.) In terms of the tensors we have defined, equation
(15) now becomes

AV
—I;—lik =2(Tiise+ Tangi) +Bijon + Wangs + Q2L 555 — QL i

+ 10,645+ 0+ 2€i0m Vi inm -

(25)

This is the required virial equation of the third order. (The appropriate generalization
of this equation to hydromagnetics will be found in Appendix IT1.)

V. THE THIRD-ORDER VIRIAL EQUATIONS GOVERNING EQUILIBRIUM
When no relative motions are present and hydrostatic equilibrium prevails,

Tije=0 and  V;u=0; (26)
and equation (25) becomes
Bij55 + Ly s + Q2 55— QUL i = —T6i; — I du - @7)
It is now convenient to choose the 3-axis to be in the direction of Q. Then

Q;=Qd;3, (28)
and equation (27) takes the form

Vs + Winys + Q2L s — 206431 350 = — i — ;04 - (29)
The cases when ¢ = 3 and 7 # 3 are clearly distinguished. Thus, when ¢ = 3,
Wi+ Bar;j = — i35 —IL;8ss (30)

while, when 7 = @ # 3,

Woajx + Bork;; + P1ajr = — i de; — I dar (m=1or2) @1

Writing out the equations (29) and (30) explicitly, we have
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The foregoing equations allow some important simplifications. Thus, by combining
equations (42) and (47), we have

Q2195 = — Wiz;3 — Wiz;o = — Way;s — Was;1 - (50)
Hence

55313;2 =2f823;1 . (51)
From equations (34) and (51) it now follows that
Boz;1 =Wis;e =0 . (32)

Next, from equations (39) and (46) and similarly from equations (40) and (44), we ob-
tain, respectively,

Wag;1 — Wigse = —1I (53)
and

Biio— Wiy = —10, . (54)

Finally, eliminating II; and II; from equations (35), (36), (53), and (54), we obtain the
pair of relations

%31;34‘%12;2 +%33;1—%22;1 =0 (55)

and

Wiso;s + Wig;1 + Was;o — Wiy;p =0 . (56)

With the simplifications achieved, the eighteen equations (32)-(49) group themselves
into the following sets of nine, six, and three equations:

Q21193 = — Wig;s (57)
Q455 = — 28151 ; Qg9 = — 2Ws;0 (58)
0233 = — 2W3;3 5 Q2 53 = — 2Wys;s (59
Q2115 = Was;s — Waiss ; Q21 303 = Wiz;3 — Wazss (60)
Q211 = 2 (Wags1 — Wizse — Wissa) (61)
Q2 300 = 2 (Wiy; — Wign — Waaga) (62)
Wi;1 = Waa;1 = Way;o = Way;a =0, (63)
Bso;s + Wig;r + Was;o — Biy;o =0, (64)
Wa1;s + Wiaso + Was;n — Wee;1 =0, (65)
Wigse — Woe;1 = ; Wiy — Wuye =My; W= —1II5 . (66)

Equations (63)—(65) provide relations exactly of the kind we had set out to find in
Section III; for, written out explicitly, these equations express the integral properties:

Byg; = — %/;Px1%1adx = 0; Biz;s = —%/;sz%13dx =0, (67)
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Wasyn = = %_/;le%zadx =0; Wz = — %/;,sz%zsdx =0, (68)
]1=>/;p[x3%23+x1%12+x2(%33_$11)]dx =0’ (69)

and
J2='/;,P[x3%13+ xg%lg—l- xl(%33 5822)]dx__ 70)

Each of the quantities listed, being an integral property of the configuration, is a func-
tional of the configuration, and their vanishing is a requirement of equilibrium. It is evi-
dent that these functionals vanish identically for configurations (such as the Jacobi
ellipsoids) which have triplanar symmetry; but they are required to vanish even if the
configurations (such as the pear-shaped configurations) do not have such symmetry. It is
this latter requirement that enables us to bridge, via these functionals, configurations
having triplanar symmetry and those which do not have this symmetry. Thus 8i3;1,
Wiz, Wisie, Wes:e, J1, and Jp are all functionals having the properties of the hypo-
thetical “J”” postulated in Section III. It remains to find out whether any of them will
enable us to exhibit and isolate the point of bifurcation along the Jacobian sequence;
this we now proceed to find out.

VI. THE FIRST VARIATION OF L%

In this section we shall establish a lemma which will be useful in our subsequent
analysis.

Consider an infinitesimal deformation of a given configuration. Any such deformation
can be thought of as the result of each element of mass of the configuration having been
subject to a certain Lagrangian displacement &. Kinematically, the only restriction on &
is that required by the conservation of mass, namely,

6fpdx=0; (71)
14

and, for the present, we shall not restrict € any further.
LemMA: The first variation of Vij;i due to an infinitesimal deformation of a configuration
is given by

— 26 = afvpxk%ﬁdx

—fpfk%wdx-l-fpxk&-— dx +fpiza@”’kd

where § is the Lagrangian displacement which induces the deformation, and Dijy is the
tensor

(72)

D x) =G/;,p(x')(xi x7) (x;— x5 )xkd , (73)

1x—x'?

The tensor Ds;;x has been defined in an earlier paper (Chandrasekhar and Lebovitz
1962¢; this paper will be referred to hereafter as “Paper II"’); and it has also been shown
(in Paper III) how, for homogeneous ellipsoids, explicit expressions for the different
components of this tensor can be written down.
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Proor: Making use of the condition (71), we have

afvdxp(xmzrsﬁ(x) =Ga[,[,dxdx'p(x)p<x'>

xe(xs — x3) (25— %)

|x— x|
=fodxdx' (x) (x’)[é (i = ) (2 = )
v/v P P * |x—x"|?
9 , 0 (& —af) (2 — «})
+x"(£13_xl+£l6x;/ Ix_xllg ]

, o (s — %) (%5 — x5) 79
=Gdexp(x)$k/;dx p (/)= Ii_xafp .
+Gfdxp(x)xk$z fdx p(x' (xz! = )ixlja %2)

( i z)( .;_ f)
—{—Gfdx p(x’ )Ez fdxp( )=k 3 Ixx x73 z

_ - 0B IDij;n
—fvpskﬂsz,dxjtfvpxksz-%— dx+fvp£z Tt d

VII. THE FIRST VARIATIONS OF THE BASIC FUNCTIONALS FOR A LAGRANGIAN
DISPLACEMENT WHICH DEFORMS THE JACOBI ELLIPSOID
INTO A PEAR-SHAPED CONFIGURATION

Since our prime interest is to find a condition that will exhibit the point of bifurcation
along the Jacobian sequence where the pear-shaped configurations first become pos-
sible, we shall consider the first variations of the six functionals? listed in Section V (egs.
[67]-[70]) when the initial configuration is a Jacobi ellipsoid and the Lagrangian dis-
placement is one which deforms it into a pear-shaped object. The Lagrangian displace-
ment to be considered is, therefore, the one which we have already specified in Section
IIT (egs. [10] and [11]). The components of this displacement can be written in the forms

£r1= (a+B)xi—ax;—Baxs—1,

(75)
£, = —2ax1%; and £3= — 2Bx1%3,
where
U d p=—_1_ (76)
FPEDY an a2+ N\’

and A is the numerically larger of the two roots of the equation (cf. Darwin 1901, egs. on
. 297):
P ) 5)\2+2)\(ai+20§+2a§)—i—Sagag—{—a?(ag—l—ag) =0. (77
Consider, first, 68;3;. According to the lemma of Section VI,

_ 0Bz 9 D13;1
——2623313;1~/;p£1%13dx+/;px1£z P dx-i—/;pfz 35, dx. (78)

8 These are the only functionals that are available for our present purposes (indeed, as we shall see
presently, only one of them, J3, actually turns out to be useful); for the relations prov1ded by the nine
equations (57)—(62) are not "usable as they stand, since Q2, which occurs in them, is not invariable and,
moreover, none of the relations that can be obtained by ehmmatmg Q2 from any pair of these equatlons
is useful because their first variations will vanish identically.
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The expressions relevant to the evaluation of ;31 can all be found in Paper III;

they are
3
D = afxl(A = zz A Ux%), (79
=1

3
D= oz, (4= 2 4,0), 50
=1
B,=2(4,— a4, )xx,, @81)
9D; | 9D
Dizs1 = — x3 a—l+——£
X1 E)x1

3
- _ agxs[(Al— > Aux§>— 245 ®2)
=1

3
+ a§a§x3[(A 13— z Awﬂ%) —24 13190%] ’
1=1

where we have suppressed a common factor (mGpaia:0;) in all the expressions. On in-
serting the foregoing expressions in equation (78), we readily find that

5%813;1E 0 (83)

for any Lagrangian displacement of the general form considered. And it can be verified
that the same thing is true of all the other functionals except Jo. Thus

5%23;1 = 5%13;2 = 52823;2 =6J:=0 ; (84)
8J2.#£ 0 . (85

Among the six functionals listed in Section V, J; is therefore the only one that has all
the properties requisite for the exhibition and the isolation of the point of bifurcation
along the Jacobian sequence. We shall, accordingly, consider its first variation in some
detail.

but

Now
5J2=5LP[x3%13+x2%12+x1(%33‘%22)]dJC- (86)
According to the expressions for the tensor potential given in Paper III (egs. [51] and
[52]),
B, = 2(4,— a%Asl)x1x3 ) 87
%12=2(A1—a§‘421)x1x2 ’ (88)
and

%33— %22"—' agAa_ a§A2+ (“31‘121" “?;A 31)90";-}— (A1— a’§A21_ 2(1§A32)x§

(89)

— (4, —a3dy —2a34,)) a3,
where, again, a constant common factor, m#Gpa1a20s, in all the expressions has been sup-
pressed. In obtaining the particular form for B33 — B, given in equation (89), we have
made use of the relations among the symbols 4; and A,; which are given in Paper III

(egs. [23] and [29]).
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Making use of equations (87)-(89), we find

S dn+ [ 500 dx = 204, - 024,) [CgaD +2CEmap], o0

Iy
S eBudt [ a8, S dx =204, — a2, 6D + 2 Er,a) ], o0
and
ad
S (B =B dxt [ 28,52 (B~ B,,) da

= (034, — ajd,) <& +3(ajdy, — ajd ) <E D
+ (Al - agAzl_ 20§A32) [<Elx§> —|—2<£2x1x2>]
— (4= a4y — 2034 ) [<E D + 2{E 20 ]

(92)

where the angular brackets signify that the quantity inclosed is to be integrated over the
volume of the ellipsoid.

By the lemma of Section VI and equations (90)—(92), the first variation of J, due to
an arbitrary Lagrangian displacement is given by

5‘]2 = (agAs— agAz) <El> —|—3(a§A21— agABI) <£1x%>
+(34,— 3024, — 2a24,) (£ +2( 5,2, ]
F (4, — a2, +2a4,) [CEad +2(Exe) ] ©3

+_/I:Ez 369‘0—1(@13;3 +f©12;2 +f©33;1 - @22;1) dx ’

where an additional common factor, p, has been ignored. To evaluate the last remaining
integral on the right-hand side of equation (93), we require a knowledge of the different
components of the tensor D,;;x which appear in the integrand. They can all be deter-
mined with the aid of the formula (Paper II, eq. [15])

0Dk, 0D
i = — X — 2 (94)
Diiie ¥ ox; 0x;

in terms of Dy and D,;; and the expressions for the latter are

3
D, = agxi(Ai_ 2 Aizxz;) 05
=1

and
3
Dy = a%“i”ﬂk(‘él ik E A ikﬁ%) (¢# k). 90
1=1

(When ¢ = k the expression for ®;; is more complicated; but we do not need it in the
present context.) Making use of equations (94)-(96) we find
D1z = d§x1[ — (43— a%Aw) +(4a— G§A131)x%+ (Ag— G%Am)xg

+3(A33—afA133)x§] ’

(°7)
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Dig;e = agxl[ - (Az" afAm) + (A21— G%Alm)x% +3 (A22— diA 122) xg 08)
8
+ (45— a%A123) x?,] ’
and
Dizs1— Do = ai [ ( a3 A 81— agA 21) %1+ (0314 211 a3A ) xi
—(241+ G§A312_ 3a§A212)x1x§ ©9
+(245+ dgAm — 3a34313) max3] .
The remaining integral in equation (93) can be evaluated now; and we find, after some
minor reductions and rearrangements,
8Jy=2C£1)( ataid ;s — a%A 2) +6< E1x§> (@34 41— aiaid 131)
+ [{E1a3) +2{Em125) 1 341+ 30340, — (201 +3a3) 41
- dgAsz" 2aia3A 1321 (100)
+ (1) + 2{Eamixe) | [41+ 30540 + (201 — 03) 41
-+ 3G§A 23 60:120314 183] -
The terms in the brackets in equation (100) can be simplified if use is made of the rela-
tions among the symbols 4, and 4;; given in Paper ITI. We find
30J,= (£ ( a%agA 18— a;A 2) 1+ 3¢ Elx%> ( agA 2 — @1a3A 131)
+ [(Exd) + 2120 1 [3(A1— a341,) — a3 ( A5+ ald 1) | (101)
+ [CEaws) +2<Esmamws) 1 [ (2454 034 53) — 3031034 155] .

Equation (101) is entirely general and is applicable to any Lagrangian displacement.
For the Lagrangian displacement of the particular form specified in equation (75),
the moments of the components of £ which occur in equation (101) can be readily writ-
ten down with the aid of the following elementary formulae:

1 2,2
(ah) = 4ma,0205 o5 5 (ulad) = dna10,05 T (i 5 )
35 105
(102)
2
(x5 = dra,a40; % ; and (1) =%ma,a.0; .
Thus
(&) =T[(ai—a3)a+ (ai—a5)B—351,
(awd) =af[(3af—a3) e+ (3a1—a3)B— 171,
(Eixy) = a3 (al—3a3)a+ (ai—a3)B—T71, (103)
(Erx5) = a3l (ai—a3)a+ (a1 —3a3)B— 71,
and

CEaming) = — 202{03@ ’ and (Ezxyag) = — 20?“%3 ’

where a common factor 47@,a,05/105 has been suppressed.
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For a and B given by equation (76)

2 2 2 2
a;— Qs a1—a3+5
al+ N

+ a§+}\

ooy
— (k) =
— 1

CESVICESY
=0

by virtue of equation (77) satisfied by A.
Now substituting from equations (103) and (104) in equation (101), we finally obtain
(restoring the common factors which have been suppressed at different stages)

10567
Srraaayic = S0l (3ei—ai)at (30i—a5) BT (e}dn — alosdim)

+ai[—3(ai+ad)at+ (ai—ad)B—T71[3(41—a341,) — a3(Ag+aidis,)] 109
+a3il(ai—a3)a—3(ai+a3)B—711(245+ajAy) — 3alasAis] -

[5x2+2x(a“;+2a§+ 2a2) +3a§a§+af(a§+a§)] (104

VIII. THE EXHIBITION AND THE ISOLATION OF THE POINT OF BIFURCATION
ALONG THE JACOBIAN SEQUENCE

As we have already pointed out in Section ITI, we should be able to exhibit and isolate
a point of bifurcation along an equilibrium sequence, if a functional of the equilibrium
state can be found which vanishes non-trivially at least on one side of the point of bi-
furcation. Then the first variation of such a functional must vanish for a Lagrangian dis-
placement which deforms the body from the shape it has before the point of bifurcation
to the shape it has after the point of bifurcation—and only at the point of bifurcation,
since at any other point along the sequence the displacement will not carry the equi-
librium configuration into another equilibrium configuration. Since J; is a functional
having all the properties requisite for the isolation of the point of bifurcation along the
sequence of the Jacobi ellipsoids, it is clear that a necessary condition for its occurrence

is that
6J,=0 (106)

for the particular Lagrangian displacement specified by equations (75)—(77). In other
words, if the quantity on the right-hand side of equation (105) is evaluated along the
sequence of the Jacobi ellipsoids, we must find that it vanishes at the point of bifurca-
tion. With the constants of the Jacobi ellipsoids tabulated in Appendix I (Table 2), it is
a simple matter to carry out the necessary calculations. The results are given in the
accompanying tabulation (eq. [107]). This tabulation exhibits and isolates the point of

cos~laz/m ER
68° 40.00505
69° . . . 40 00034 s
69°8166 .  0.00000 (o7
70° . 40 00023
71° +0 00263

bifurcation where the pear-shaped figures branch off; and the calculations isolating it
cannot certainly be described as “arduous.”

¢ The quantity 63 listed is the value of the expression on the right-hand side equation (104) evalu-
ated with the constants normalized as they are in Table 2 of Appendix I.
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IX. CONCLUDING REMARKS

The relative simplicity with which we have been able to isolate the point of bifurca-
tion along the Jacobian sequence suggests that, with the aid of the general virial equa-
tions of the third order derived in this paper, we should be able to treat the stability of
the Jacobi ellipsoids with comparable simplicity. The method, which will be based on
equation (25), will be similar to the one (based on the corresponding virial equation of
the second order) by which the stability of the Maclaurin spheroids has been considered
by Lebovitz (1961). The solution to the problem of the stability of the Jacobi ellipsoids
along these lines will be presented soon.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.

APPENDIX I
THE PROPERTIES AND THE CONSTANTS OF THE JACOBI ELLIPSOIDS

In 1887, Darwin computed the principal constants of the Jacobi ellipsoids for nine members
of the series (including the spheroid common to this and the Maclaurin series). In 1901, after
he had determined the point of bifurcation along the Jacobian series, he added the constants for
this critical ellipsoid to his earlier list. And this information provided by Darwin has been re-
produced in all books dealing with this topic since that time. However, the information Darwin
provided is not complete even for his ten cases: the constants 4; in the expression for the in-
ternal potential of the ellipsoid are essential to many calculations pertaining to the Jacobi
ellipsoids, and they cannot be deduced, simply, from the tabulated constants. For the calcula-
tions of the present paper, not only the symbols 4; but also the higher index symbols, 4;; and
A % (these are defined in Paper ITI) are needed; and they will be needed again when we come to
consider the stability of the Jacobi ellipsoids. For these reasons, it seemed worthwhile to provide
more complete and more adequate information than Darwin’s on the constants of the Jacobi
ellipsoids.

Before we present the results of the newer calculations, we may note that the equation de-
termining the geometry of the Jacobi ellipsoids is

Bas — Wig;0.=0; (A1, 1)

with the expressions for the tensor components 833 and LBis;2 given in Paper III (egs. [57] and
[63]), the equation gives

a§A3 —alald,=0. (AL 2)
Now, substituting for 4. its expression in terms of 4, and 4,, we obtain

aja;
2 - 2
4=

a3As+ (4,—4,) =0. (AL, 3)

We shall rewrite this equation in the form
2 2
AD=(A1—G—:A3>—(A2—0—ZA3)=O. (AL, 4)
4 @y

Using the known expressions for the constants 41 (quoted in Paper I1I, eqgs. [15]-[17]), we can
reduce equation (AI, 4) to the following form which is convenient for numerical calculations:

lai(ai+ ad) +a3(ai+ a}) — 4alalad1E( 6, ¢) — 2aias(as—a3)F (0, ¢)

asQ (AL, 5)
="23(g}—al) (24} —a}) V(a}—a3).

1
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In equation (Al 5), E(6, ¢) and F(6, ¢) are the standard elliptic integrals of the two kinds; and
the arguments are

2 2
6 = sin—1 \/a; —a§ and ¢ = cos™! iy (AL, 6)
lZl —_ da a

For various initially assigned values of ¢ (i.e., of as/ay), equation (AI, 5) was solved for @
(i.e., for as/a,) by a method of successive approximations. (The accuracy with which the equation
has been solved can be judged from the entries against AD in Table 2.) For every pair of values
(as/a1, as/a,) determined consistently with equation (AI, 5) the various related quantities in
which one is interested were calculated. The results of the calculation are summarized in
Tables 1 and 2.

TABLE 1
THE PROPERTIES OF THE JACOBI ELLIPSOIDS*
coslas/m a/a az/a as/a 02/27Gp —[W] [7] [M]
54°3576 1197234 | 1 197234 | 0 697657 0 18711 | 0 585054 | 0 080461 | 0 303751
55 1 216081 | 1 178918 697516 18701 584999 .080473 303876
56 1246772 | 1 150440 697186 18663 584740 080565 .304541
57 1 278733 | 1 122876 696448 18585 .584235 080733 .305812
58 1 312155 | 1 096024 695336 18470 583484 080983 .307710
59 1 347190 | 1 069802 693854 18317 582481 081312 310248
60 1 383985 | 1 044160 691992 18126 581216 081722 313453
61 1 422706 | 1 019056 | .689742 17897 579679 .082215 317357
62 1 463530 | 0 994460 687086 17628 .577859 082788 321993
63 1 506673 | 0 970321 684015 17321 575743 083443 327404
64 1 552368 | 0 946605 680513 16975 573317 084177 333635
65 1 600892 | 0 923268 676566 16590 570564 084989 340741
66 1 652556 | 0 900273 672155 16166 .567466 085877 348785
67 1 707707 | 0 877597 667254 15704 .564000 086837 357838
68 1 766796 | 0 855169 661853 15204 .560142 087867 367990
69 . 1 830295 | 0 832968 655919 14666 555866 088961 379337
69 8166 1 885826 | 0 814976 | .650659 14200 552041 089897 389571
70 1 898788 | 0 810953 649424 14092 551139 090112 391996
71 1 972986 | 0 789060 642341 13482 545924 091315 406110
72 2 053705 | 0 767258 634630 12838 540179 092559 421841
75 2 346331 | 0 701819 607275 10716 519239 096413 480943
77.. 2 600213 | 0 657497 .584921 09166 501479 098897 53344
80 3 129265 | 0 588092 543391 06699 466969 101873 64274
83 4 006116 | 0 511280 | 0 488223 0 04187 | 0 418240 | 0 102437 | 0 81750

*In the second to fourth columns ¢ = (@1a2¢3)1/3 For the meanings of the headings of the last three columns see text.

In Table 1 we list the principal physical characteristics of 24 members of the Jacobian series,
including the critical ellipsoid at the point of bifurcation (at ¢ = 6978166) and the limiting
spheroid (at ¢ = 54°73576) with which the series begins. In addition to the principal axes in the
unit & = (a:1a5a3)? (introduced by Darwin in this connection), the quantities tabulated are

92
TGy 1020a( Ay — aid ), @1, 7)
B 3 s 2
- [W] = _GM—z/a::IB(alazaa) ;Aidn (AL 8)
(T] = kineticenergy _ 3 ai+ a3 Q2 AL 9)

GM?/a 20 (a10403)%3 27Gp’
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TABLE 2
THE CONSTANTS OF THE JACOBI ELLIPSOIDS}

coslas/m 54235762 55° 56° 57° 58° 59°

as 1 000000 0 969440 0 922735 0 878116 0 835285 0 794099
as. 0 582724 0 573576 0 559193 0 544639 0 529919 0 515038
A% 0 515890 0 505637 0 489423 0 473126 0 456723 0 440213
A*, 0 515890 0 526042 0 542255 0 558410 0 574584 0 590789
A*; 0 968219 0 968321 0 968322 0 968463 0 968693 0 968997
I*.. 1 360557 1 318586 1.253912 1.190986 1 129634 1.069801
ADY . 0 —3 6X1078 —9X1077 +1X10~7 +6X10~7 —1X10~7
A*y 0 328776 0 323812 0 315864 0 307734 0 299414 0 290896
A*yp 0 328776 0 354994 0 400827 0 452306 0 510437 0 576249
A*3y 1 506684 1 555203 1 636114 1 724624 1 821634 1 928235
A*p 0 328776 0 339029 0 355629 0 372561 0 389883 0 407617
A¥og 0 684897 0 724070 0 790854 0 864260 0 945363 1 035253
A*g 0 684897 0 689534 0 696780 0 704236 0 711875 0 719693
A%y 0 243462 0 240428 0 235622 0 230616 0 225444 0 220085
A¥*9 0 243462 0 278974 0 346124 0 429424 0 533302 0 663334
A*333 2 971302 3 165530 3 503720 3 893135 4 343486 4 866799
A*yg 0 243462 0 25283 0 26767 0 28320 0 299270 0 315967
A%y 0 539225 0 545032 0 554218 0 563718 0 573512 0 583607
A¥om 0 243462 0 26526 0 30424 0 34836 0 398791 0 456494
A¥as 0 539225 0 604227 0 723957 0 868267 1 043271 1 256414
A*3q 1 244315 1 290097 1 366694 1 450717 1 543078 1 644866
A3z 1 244315 1 360674 1 568949 1 813371 2 101942 2 44432

A*yo3 0 539225 0 573824 0 633235 0 699064 0 772374 0 854234
cos~laz/a 60° 61° 62° 63° 64° 65°

as 0 754459 0 716280 0 679494 0 644016 0 609782 0 576721
as. 0 500000 0 484810 0 469472 0 453990 0 438371 0 422618
A% 0 423606 0 4006915 0 390154 0 373333 0 356468 0 339571
A*, 0 607019 0 623260 0 639494 0 655714 0 671903 0 688053
A*, 0 969375 0 969824 0 970352 0 970953 0 971629 0 972376
I*. . 1 011471 0 954627 0 899284 0.845415 0 793021 0.742095
ADt —6X1077 —4X1077 —6X10~7 —8X10~7 —5X1077 +7X10~7
A*p 0 282184 0 273279 0 264187 0 254908 0 245450 0 235815
A*o 0 650907 0 735783 0 832466 0 942917 1 069449 1 214901
A*gy 2 045713 2 175584 2 319644 2 480018 2 659248 2 860392
A*p 0 425757 0 444294 0 463210 0 482503 0 502153 0 522153
A¥p . 1 135169 1 246557 1 371102 1 510854 1 668250 1 846240
A*y 0 727691 0 735868 0 744229 0 752772 0 761497 0 770403
A*m 0 214543 0 208815 0 202902 0 196799 0 190508 0 184026
A¥90 0 826630 1 032434 1 29274 1 62354 2 045896 2 588220
A¥3a3 5 478028 6 195868 7 043898 8 052018 9 258584 10 713159
A*ye 0 333276 0 351200 0 369734 0 388888 0 408655 0 429041
A*py3 0 594009 0 604723 0 615758 0 627116 0 638806 0 650831
A¥om 0 522645 0 598611 0 685980 0 786706 0 903097 1 037991
A*g3 1 51707 1 83720 2 23215 2 72197 3 33289 4 09957

A%y 1 757363 1 882081 2 020808 2 175667 2 349194 2 544442
A*y3 2 85250 3 34162 3 93084 4 64495 5 51583 6 585352
A*z3 0 945883 1 048765 1 164566 1 295328 1.443492 1 611999

t The unit of distance adopted in this table is the semimajor axis &1 For the meaning of the asterisks to the symbols see text
1 This is the quantity defined in eq (AI, 4)

1064
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TABLE 2—Continued

cos~laz/a 66° 67° 68° 69° 69°8166 70°
0 544776 0 513904 0 484022 0 455101 0 432159 0 427090
. 0 406737 0 390731 0 374607 0 358368 0 345026 0 342020
A% 0 322660 0 305755 0 288865 0 272016 0 258301 0 255229
A% 0 704145 0 720151 0 736082 0 751902 0 764728 0 767592
A*y 0 973195 0 974094 0 975052 0 976082 0 976971 0 977179
. 0 692637 0 644660 0 598142 0 553104 0 517424 0 509550
AD} +2 5X107¢ | —1 2X107¢ | 41 7X107% | 41 8X107% | +1 4X10°6 | —1 7X10°®
A*y 0 226009 0 216043 0 205919 0 195649 0 187163 0 185246
A%y 1 382698 1 576944 1 803057 2 067406 2 317308 2 378194
A*y 3 087160 3 344097 3 636750 3 972075 4 283544 4 358786
A%y 0 542484 0 563112 0 584045 0 605241 0 622728 0 626672
%93 2 048395 2 279029 2 543662 2 848941 3 134220 3 203317
A*y 0 779489 0 788760 0 798198 0 807811 0 815783 0 817590
A% 0 177353 0 170494 0 163444 0 156210 0 150168 0 148796
Az 3 288762 4 199280 5 39280 6 96939 8 63854 9 07148
A* 333 12 480529 14 646359 17 32486 20 671042 24 044408 24 897542
A¥*pg 0 450038 0 471624 0 493816 0 516585 0 535593 0 539909
A*ng 0 663196 0 675909 0 688962 0 702364 0 713565 0 716113
A*om 1 19481 1 377671 1 591976 1 844111 2 083742 2 142287
A*g93 5 06825 6 30090 7 88317 9 93196 12 0635 12 6112
A*3n 2 765117 3 015755 3 301909 3 630523 3 936358 4 010314
A*gg 7 908586 9 558505 11 63509 14 27309 16 97224 17 66020
123 1 804425 2 025089 2 279499 2 574312 2 850867 2 917983
cos~laz/m 71° 72° 75° 77° 80° 83°
0 399932 0 373597 0 299113 0 252863 0 187933 0 127625
. 0 325568 0 309017 0 258819 0 224951 0 173648 0 121869
A% 0 238521 0 221920 0 173043 0 141562 0 0968573 0 0566418
A*, 0 783150 0 798541 0 843499 0 872191 0 912638 0 948784
A*; 0 978329 0 979538 0 983454 0 986249 0 990512 0 994588
. 0 467480 0 426914 0 314389 0 247237 0 158958 0.0868674
ADY +2 3X1076 | +2 4X107¢ —6X10~7 0 +1 0X10® —8X10~¢
A*y 0 174717 0 164080 0 131690 0 109918 0 0776373 0 0470000
A*y 2 746075 3 184424 5 130827 7 315576 13 568 29 995
A*gs 4 807890 5 333626 7 587490 10 02713 16 776 33 9370
A*yy 0 648327 0 670158 0 736334 0 780536 0 845648 0 906914
*a3 3 617688 4 105793 6 22533 8 55225 15 077 31 898
A*y 0 827521 0 837601 0 868596 0 889709 0 921440 0 952086
A*in 0 141203 0 133440 0 109226 0 0924442 0 0667666 0 041423
Ay 11 9050 15 7681 39 26868 77 89900 259 58 1237
A*333 30 30087 37 30162 75 58220 132 167 370 88 1523
A*ug 0 563784 0 588171 0 664057 0 716426 0 796129 0 874152
A*ns 0 730201 0 744626 0 789813 0 821353 0 870038 0 918731
A%*gy 2 497158 2922121 4 826296 6 981430 13 188 29 570
A%z 16 1556 20 9006 48 6844 92 7278 292 2 1325
A%y 4 452288 4 9700682 7 20129 9 62444 16 348 33 4822
A 22 0607 27 8525 60 5902 110 589 328 9 1420
A¥23 3 32141 3 79834 5 88312 8 18597 14 674 31 458
1065
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and

(A, 10)

(M] = angular momentum __ [ 3 (ai+a3)* @ ]1/2
(GM3g) 12 50 (aiaqa3)¥3 27Gp
Table 2 is devoted to the symbols 4;, 4, and 4 ;% These symbols are defined in Paper III
and occur in many calculations pertaining to the Jacobi ellipsoids. In tabulating these symbols,
the semimajor axis, @i, was adopted as the unit of distance. Also, the constants 4% which are
tabulated differ from the A;’s (as they have been defined) by the constant factor a1a:a3 so that

3
* .
* =2 z : AL 11)
i; A instead of A; a1a2a3 (

The two and the three index symbols are derived from the 4%’s with the aid of the formulae
given in Paper III; they are distinguished by asterisks to emphasize that they differ from the
symbols without the asterisks by the factor aia.a; and that their values depend on the adopted
unit of distance (a1).

I am indebted to Miss Donna D. Elbert for her assistance with the calculations summarized
in Tables 1 and 2.

APPENDIX II

THE SECOND POINT OF BIFURCATION ALONG THE MACLAURIN SEQUENCE

It is clear that a sequence of pear-shaped configurations must branch off from the Maclaurin
sequence even as one branches off from the Jacobian sequence. An infinitesimal Lagrangian dis-
placement, corresponding to that given by equation (10) for the Jacobi ellipsoid, which will
deform a Maclaurin spheroid into a pear-shaped object must be of the form

£j=constanta—ax—x1(xf+x§—|-5x§—:c), (AL, 1)
J

where the constants 8 and «, determined by the conditions

div £=0 and <& =0, (AL, 2)

have the values

B=—4 and x=%(af—a§). (AL, 3)
The components of &, apart from an arbitrary multiplicative constant, are, therefore,

2 2 2 2 2
§1=3xi+x;— 43— % (a1—a3) ,
(AIL, 4)

£, =2x2, and £3= — 8x1x3 .

For this displacement, we readily find that (cf. egs. [102] and [103])

CEal) = Caaahy + 2 Eamixey = 2 a1(11ai+ 4a5)

and (AIL 5)

a3y +2{Esmias) = — & a5 (11aT44a3) .
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Inserting the foregoing averages in equation (101) and simplifying appropriately for this case
(a1 = as), we find that

16J,=2 (11ai+ 4a3) (3aid1— 8a34;— Safaid s

(AIT, 6)
—4ata3Ans+12a3a54133) .
Hence, at the point of bifurcation, the condition
3034, — 84345 — 5a}a3A 13 — 4ataiA s+ 12ala54 135= 0 (AL, 7)
must hold. Remembering that along the Maclaurin sequence
Q2 2
— aid asA (AH, 8)
’H'Gpdf 02( 141— a3 3)1
we can rewrite the condition (AII, 7) in the form
4Q2 2 2 2 4
— = 5A1+ 5(13/113""‘4(110314113— 12(1314133 . (AIL, 9)
G paia

It is found that this condition is satisfied when the eccentricity along the Maclaurin sequence
attains the value

¢=0.96937. (AL, 10)
At this point, then, the Maclaurin sequence has its second point of bifurcation. It will be shown
in a later paper that at this second point of bifurcation the Maclaurin spheroid becomes neutrally
stable with respect to a particular mode of third harmonic oscillation while the Jacobi ellipsoid
becomes unstable at the corresponding point along the Jacobian sequence.

APPENDIX III
THE THIRD-ORDER VIRIAL EQUATIONS IN HYDROMAGNETICS

The extension of the analysis of Section IV to hydromagnetics is straightforward. We start
with the equation of motion in its standard form, namely,

PG = = (P ) T Pty gy i, D

(where H denotes the intensity of the prevailing magnetic field) and proceed in the same way.
However, the specification of the volume over which the integration is to be effected, after multi-
plication by x; ax, requires some consideration, since the magnetic field may not vanish in the
regions in which the material density vanishes. On this account, if the integration is effected only
over those regions in which the material density is non-vanishing, then the virial equations (ob-
tained after some of the integrals have been transformed by integration by parts) will include
surface integrals over the non-vanishing magnetic fields on the boundary. The occurrence of
such surface integrals can be formally avoided by extending the integration over those regions in
which the magnetic field is also non-vanishing. Adopting this latter procedure, we readily obtain
from equation (AIII, 1) the required third-order equation:

dS&,
2= 2( Tt Taws — Mise— Mings) +BWijsn + Wiy AL 2)
+ (e 4+ Masse) 645+ T+ Mar;s) 6 »
where {
Mg = g j;HiHjxkdx, (AL, 3)

and the remaining tensors have the same meanings as in § IV.
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APPENDIX IV
THE TENSOR L8, IN PoLyTROPIC EQUILIBRIUM

In a recent note (Chandrasekhar 1961) it has been shown how, under conditions of polytropic
equilibrium, we can express, with the aid of the virial equations of the second order, the com-
ponents of the potential energy tensor® L8; in terms of the mass M, the moment of inertia tensor
I;;, and the gravitational potential L at the pole of the configuration. It will appear that, with
the aid of the virial equations of the third order, we can similarly express, under the same condi-
tions, the components of the tensor MW;;, in terms of LBy and the moment of inertia tensors of
the odd ranks 1 and 3.

By taking the x;-moment of the equation

(n+1)p=p[B+32(ai+x2) —Bol , A1V, 1)
which obtains in polytropic equilibrium (cf. Chandrasekhar 1961, eq. [13]), we have
(n+ DI = — 2BWyj+ 32 (Lor+ L) — Bolx (ALV, 2)
where
Iy= xrdx . (AIV, 3)
k /;/;0 k

Supplementing the eighteen equations (57)-(66) by the three equations provided by equation
(AIV, 2), we have a set of equations which will enable us to express all the eighteen different
components of W;,;x in terms of the components of ;5 and Ix.

Note added in proof—The statement in the footnote on page 1057 that the nine equations
(57-62) cannot be used to isolate neutral points and points of bifurcation is not strictly cor-
rect: Q2 can be considered as invariable for deformations belonging to the third harmonic. On this
last account, equations (57-62) can in fact be used to isolate @/l configurations neutrally stable
with respect to third harmonic deformations along the Maclaurin and the Jacobian sequences
without even specifying the form of the Lagrangian displacement. These matters are consid-
ered in a paper now in preparation.
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