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HYDROMAGNETIC OSCILLATIONS OF A FLUID SPHERE
WITH INTERNAL MOTIONS*
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ABSTRACT

A stationary solution of the equations of hydromagnetics for an incompressible inviscid fluid of infinite
electrical conductivity is given by v = H/+/(47p), where v denotes the velocity, H the magnetic field,
and p the density. The case is considered in which v and H have symmetry about an axis, and convenient
forms for the equations governing axisymmetric oscillations about the stationary solution are obtained.
These latter equations take their simplest forms when the initial magnetic field and fluid motions have
no poloidal components. This case is considered in some detail.

I. INTRODUCTION

Since Babcock’s discovery of the magnetic variables, the oscillations of a fluid sphere
with a prevalent magnetic field have been the subject of investigations by several
authors (Schwarzschild 1949; Gjellestad 1950, 1952; Cowling 1952, 1955; Ferraro and
Memory 1952; Chandrasekhar and Limber 1954; Ferraro and Plumpton 1955). These
investigations have been inconclusive, in part because of a lack of definiteness in char-
acterizing the initial equilibrium configuration. The indefiniteness consists in the follow-
ing: If one supposes, as has hitherto been customary in the subject, that the initial con-
figuration is one of hydrostatic equilibrium, then there are immediate restrictions on the
possible magnetic fields which can prevail. Thus, in media of uniform density, the as-
sumption of hydrostatic equilibrium requires that the magnetic field, H, which is present,
be such that curl H X H is the gradient of a scalar function. In the investigations on
hydromagnetic oscillations to which reference has been made, the restrictions on H
arising from such considerations are not included; in particular, the magnetic fields
which have been assumed to be present are generally incompatible with a spherical
shape, which is also assumed (cf. Chandrasekhar and Fermi 1953, and several later in-
vestigations along the same lines). However, Chandrasekhar and Prendergast (1956)
have recently characterized in an explicit way magnetic fields which have symmetry
about an axis and which satisfy the requirements of hydrostatic equilibrium in media
of uniform density; and Prendergast (1956a) has constructed a model which satisfies
these requirements and is a true equilibrium configuration. Prendergast (1957) has also
examined the periods of oscillation of his model by a variational method and related
them to the condition for dynamical stability arising from the virial theorem (Chan-
drasekhar and Fermi 1953; Chandrasekhar and Limber 1954). Prendergast’s investiga-
tions represent the first really self-consistent treatment of the hydromagnetic oscillations
of a fluid sphere. Nevertheless, these latter investigations emphasize that if magnetic
variability in nature is to be interpreted as variability about an initial state of static
equilibrium, then the magnetic fields which prevail must be of very special kinds—a
conclusion which is perhaps not altogether satisfying (cf. Chandrasekhar 1956¢). One
need not suffer these limitations if one does not restrict one’s self (arbitrarily?) to static
configurations with no internal motions. Thus, by assuming internal motions and sup-
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posing that the velocity (v) at each point is related to the magnetic field at that point
by (cf. Chandrasekhar 19565)
H

—_— (1)

V=V )

we can satisfy the equations of motion governing v and H identically; and we need not
restrict v and H in any way except that they both be solenoidal. By thus relinquishing
the condition of static equilibrium, we gain an enormous freedom in the choice of the
possible magnetic fields. Indeed, this circumstance makes one wonder whether magnetic
fields, when they occur on the cosmic scale, are not always accompanied by correlated
motions. Regardless of one’s views on this general matter, it is of interest that, in the
framework of solution (1), we can construct a large class of non-static, but stationary,
equilibrium configurations which have simple properties. It is the object of this paper to
construct one such model and study its oscillations.

1I. THE EQUATIONS OF THE PROBLEM

We shall restrict ourselves to magnetic fields and fluid motions which have symmetry
about an axis. Convenient forms for the corresponding equations for H and v have re-
cently been written and discussed (Chandrasekhar 1956¢; this paper will be referred to
hereafter as “Paper I”’). We shall begin by quoting the relevant formulae.

Letting H

h= v g (2)

we express h and v (following Liist and Schliiter 1954) as superpositions of toroidal and
poloidal fields in terms of four scalars P, T', U, and V in the following manner (Paper I,
egs. [15] and [16]):

h= 1, X rT + curl (1, X rP) ®3)
and
v=1,XrV 4 curl (1, X rU), 4)

where 1, is a unit vector in the z-direction (which is assumed to be the axis of sym-
metry). The equations governing P, T, U, and V, then, are (Paper I, egs. [35]-{38])

w3ifi.=— [ZIS2P,Z32U], (5)

at
w%:-—[T,w?U]—i—[V,sz], (®)

av
@ == — [@V, ® U] + [*T, o?P] X

and
ouU 9

©s —7 = [P, @] — (A U, 02U+ o= (12— V), ®

where, for the sake of brevity, we have used the notation

[f: 8] =55 @) “9z90 9a 32’ ©

and A; denotes, as usual, the Laplacian operator for axisymmetric functions in five-
dimensional Euclidean space.
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a) The Stationary Solution
Equations (5)-(8) clearly admit the solutions

P=U=X(z3w) (say)
and (10)
T=V=Y(Ew (say).

This represents a stationary solution of the equations of motion and corresponds under
conditions of axisymmetry to solution (1), which the equations of hydromagnetics
generally allow.

b) The Equations Governing the Oscillations about the Stationary Solution

It has been shown quite generally (Chandrasekhar 19565) that solution (1) represents
a stable solution of the basic equations. For a discussion of axisymmetric oscillations
about the stationary solution (10), it will be convenient to have the general perturbation
equations for the toroidal and the poloidal scalars.
Writing
P=X4+P, U=X4+U,, T=Y+T,, and V=V4V,;, an

we readily find from equations (5)—(8) that the corresponding perturbation equations are

ok 9Py = — [&2¢, 52 X], (12)
at
@ %’Tf" — ¥, @ X1+ [V, o], (13)
@’ aaljl =+ [@, @ X] + [@V, o?¢] , a9
and
aU, a
BAs 50 (A5 X, w2¢] + [Aso, o2 X] + 2 32 Yy, s)
where we have used the abbreviations
¢=P —U; and y=T,—V;. (16)
Rewriting equation (14) in the form
v, . st o, 9X ¢
w—(—a—t——[xl/,asX]—l—[Y,w(p] 255\0—8—2— 2&5]/% an
and combining it with equation (13), we have
W ) ) ¢ 9
Similarly, by combining equations (12) and (15), we have
1
—@As %5? =wA5355 [@%¢, B2 X] %—f— [As X, w2¢] + [As¢, B2 X] + 2w 562 Y. a9

Equations (18) and (19) represent a pair of simultaneous equations for ¢ and . Once
these equations have been solved, equations (12) and (13) will complete the solution by
determining P; and 71 in terms of ¢ and ¢.
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III. HYDROMAGNETIC OSCILLATIONS OF A FLUID SPHERE WITH TOROIDAL
FIELDS AND ROTATIONAL MOTIONS ONLY

In this paper we shall restrict ourselves to a particularly simple case of the general
equations of the preceding section. We shall suppose that in the stationary state the
motions and the magnetic fields are purely toroidal, i.e.,

P=U=X=0. (20)

Now the boundary conditions on a toroidal magnetic field are that it vanishes on the
bounding sphere and is free of singularity at the origin. Thus

YV(=T=1V) mustvanishon =R, (21)

where R denotes the radius of the sphere. Accordingly, ¥ can be expressed as a linear
combination of the fundamental toroidal functions (Chandrasekhar 19564, eq. [36]; this
paper will be referred to hereafter as “Paper I1I”):

J (aj, nt)
Tn, ]= n+3/21T/2] n Cz/2 (‘U,) , (22)

where 7 is now measured in units of R; a;, » is the jth zero of the Bessel function J,3/2
(x); and C¥? (u) denotes the Gegenbauer polynomial.
When X = 0, equations (18) and (19) reduce to

W _ .. 0
=7 = 2Y 7 (23)
and 56 s
A5—67=—~2(—9;W, (29)
while equations (12) and (13) become
0P,
= (25)
ot
and s
il 2
o} 37 [V, w2¢] . (26)
From equation (25) it follows that
P1=0, (27)

Thus during the oscillation no poloidal magnetic field will be generated; however, meridional
motions, as well as rotational motions and toroidal magnetic fields, will be generated.
Eliminating y between equations (23) and (24), we have

¢ _ 8 ( , 99
As'a—ﬂ-— 462 YE . (28)
Separating the time dependence by writing
¢(z, w)et in place of (3, @, 1), (29)
we obtain the equation
a?Asp =4 _6_(1/,2% (30)
93 0z/"
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The boundary conditions which we should impose on ¢ can be inferred from equation
(26). In spherical polar co-ordinates this equation is

oT 1 ad _d¥Y 9
e e G =Sl —wa | 6o

Since T4, like ¥, must vanish on » = 1, it is clearly necessary that

¢=0 on r=1. (32)

Accordingly, we must seek solutions of equation (30) which vanish on » = 1 and are
free of singularities at the origin. This is a characteristic value problem for %

a) The Variational Method

Let ¢; be a solution belonging to a characteristic value o7. Multiplying the equation
governing ¢; by @w®¢, (belonging to ¢}) and integrating over the volume of the sphere,
we have

o[ [¢,A0 BPdwd 2 =4[f¢, — 37 <Y2 a¢’> &dwdz. 33)
This equation can be rewritten in the form

o?ffd)k%a%( a"”>+a862¢’}dadz-—4ff¢k (w )w3dwdz ”

Integrating by parts the integrals on both sides of this equation and remembering that
¢ vanishes on the boundary, we obtain

_ d¢; Iy
o2 [ grad ¢,-grad ¢, @*dwdz =4[ [ 1> a_z] ' dwd s . (35)
From this equation it follows that
ffgrad ¢;-grad ppwidwdz=0 if j#k, 36)

and, when 7 = k, we have (on further suppressing the subscripts)

4(YV2(0¢/0z2)2@dwd 3
J[|grad ¢ |*@¥dwd 2
From equations (36) and (37) it is evident that the characteristic value problem asso-

ciated with equations (30) and (32) is a self-adjoint one. Accordingly, equation (37) can
be made the basis of a variational method for determining o2

g2 = (37)

b) Case when Initial Magnetic Field and Fluid Motions Are Both
Described by (0, 1) Toroidal Mode

We shall apply the formulae of the preceding section to the case when the magnetic
field and the fluid motions in the initial stationary state both belong to the (0, 1) toroidal
mode, i.e., when

J 7
V="V,2% 3/2 (Zz 07) ’ (38)
where Y is a constant of the dimension sec ~*. To,determine the corresponding lowest
modes of oscillation, we expand ¢ in terms of the basic toroidal functions, 75, ;, and
determine the coefficients in the expansion by minimizing the expression for ¢2 given
by equation (37).
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Thus, letting
¢ = Z An, an, 7 (39)
n, g
and making use of the properties (Paper II, egs. [32], [34], and [39])
As T ;= —(1,]2‘, n Tn, i (40)
and
+1 1 9
/ / Tu, iTm, b7t (1 — ) drdu (n+2 )j_n;— ) [Tn+arz (az, ) ] 2 On, m0j, k, (41

we find that the denominator in the expression for o* becomes

fflgrad ¢ |2@ddwdz = — [[¢pAs¢pw3dmd 3

1 +1
=f f (2 A"’fT"r J><Z Am,kazk, mlm k) rt(1 —/.1.2) drdp (42)
0 -1 n, j m, k

> (n+1) (n+2)
B 2n+3

[J1€+3/2 (0.] n)] a] nAiL; J-

Considering, next, the numerator in equation (37), we first observe that the recur-
rence relations satisfied by the Gegenbauer polynomials (Paper II, eqs. [40] and [41])
and the Bessel functions enable us to write

az 75/22 An, 5 (B, ;GG ,jcj/_ﬂ), 43)
where
n+1
B, j =TI F 3 4 (ajy n?) (0T nsr2 (05, ) — (n+ 3) Juts/z (aj,n7) ] )
—n (27/L+ 3) Jn+3/2 (aj, nr) }
and
Gor =22 (0 n7) [WTarvs (a5,07) = (nF 3) Tura (a5, u7) ]
n, j ""’(_z"n—“_'_ 3y 2 aj, nt n+1/2 jrm n+5/2 7» n¥ (45)
+ (n+3) 20+ 3) Jutssz (aj,,7) .
With d¢/dz given by equation (43), we have
, 1+12<3‘31524 2 o ftdr )
4/0f_1 y 5;)1' (=) drdu=4V [ L 1us (a1, 0)] .

X/;:ldu (1 =) 3 S (w [Z (An-1,;Far, 5+ Ant1, 5Grr, 5) ] %2'

On making use of the orthogonality properties of the Gegenbauer polynomials (Paper II,
eq. [34]), we can reduce the foregoing to the form

[ () g R

Xf — s (a1, 07) ] 32 (An—1, i Fa—1, i+ Ant1, jGosa, 7) %
- .

C 47
2. a7
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From equation (47) it is clear that the solutions for ¢ which include in their expansions
only the even, or only the odd, orders of the Gegenbauer polynomials fall into non-
combining groups. The various modes of oscillation can therefore be classified as even
or odd—a fact which could also have been inferred, directly, from equation (30).

For the form of ¢ assumed, the variational expression for o? is given by the ratio of
the quantities on the right-hand sides of equations (42) and (47). In practice one includes
only a few terms in expansion (39) and minimizes the expression for ¢* with respect to
the A4,, ;’s. The results, summarized in Tables 1 and 2, were derived in this manner.

TABLE 1
0%/Y% = S FOR THE LOWEST EVEN MODE
No Modes Inciuded in the <2 No Modes Included in the 52
Variational Calculation 0 Variational Calculation °
1 (0, 1) and (0, 2) 01461 |5 ©, 1), (0,2), (0, 3), and (0,4) | 0 0408
2 (0. 1), (0, 2), and (0, 3) 07070 || 6 0, 1), (0, 2), (0, 3), (0, 4), | 0 03842
3 0, 1), (0, 2), (2, 1), and (2,2) | 06980 (2,1), and (2, 2)
4 (0, 1), (0, 2), (0, 3), (2, 1), | 0 06223
and (2,
TABLE 2
02/Y% = S} FOR THE LOWEST ODD MODE
No Modes Included in the 52
Variational Calculation L
1 (1, Hand (1, 2) 0 9697
2 (1,1),(1,2), and (1, 3) 0 5383

An inspection of Tables 1 and 2 shows that the sequence of trial functions used has
not yet produced a satisfactory convergence toward the true characteristic values. This
is also evident from the following list of the coefficients in the trial function (No. 6 in
Table 1), including the modes (0, 1), (0, 2), (0, 3), (0, 4), (2, 1), and (2, 2), which mini-
mizes the expression for o%:

Ao, 1= 1, Ao, 2 = —093723, A(), 3= +052133, Ao, 4= —016927, 48)
48
A1 = —0.18525; and A5, 2 = +0.0635 .

This lack of convergence is somewhat surprising. It must originate in the basic equa-
tion’s not being separable into the variables » and p and in the problem’s being so inex-
tricably two-dimensional that it is impossible to approximate ¢ by a linear combination
of the first few toroidal functions. A further fact which may be relevant in this connec-
tion is that equation (30) must change its character—hyperbolic or elliptic—within the
unit sphere. This can be seen as follows:
Rewriting equation (30) in the form
2 2 2 2
9_9+(1_4 Y2\ o029 399 4 9paYV? _

S I . SO —=0, (49)
w2 02) 022 wow o292 02

we observe that, since ¥ = 0 on 7 = 1, the equation is certainly elliptic on and near the
boundary. If it were elliptic throughout, then we could infer from the fundamental
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theorem on elliptic equations (cf. Courant and Hilbert 1937) that there exists no non-
zero solution of equation (30) which vanishes on the boundary of the sphere. Hence a
necessary condition for the existence of a solution of equation (30) which satisfies the
boundary condition (32) is that ¢? be less than ¥? in at least some parts of the unit
sphere; in these parts the equation will be hyperbolic. Thus the equation must have this
mixed character of being hyperbolic in some parts and elliptic in others.

Returning to the formula (cf. Tables 1 and 2)

o= YVis?, (50)

we shall express Y} in terms of more easily interpretable quantities: The magnetic
energy, M, in the undisturbed sphere is given quite generally by

1 +1 27
=1 401 — .
M 2pR5f0 f_1 fo Virt(1— ) drdpde; (s1)
and, for ¥ of the chosen form (eq. [38]), we readily find that
M= %’"’PRS [J372 (a1, o) ]2 Y% . (52)
Defining (H?%).. by
(H? Yoy
M =-—g—— (FmRY), (83)
we can write
2 _V° 2
Yo=—75 Uin(a, 017, (59)

where V4 denotes the Alfvén velocity for the root-mean-square field. Inserting this
expression for ¥ in equation (50), we obtain
8 v
=8 [T (a1, 0] " —R2i=7.40852§§1. (55)

Thus the period of oscillation, 27/ ¢, apart from a numerical factor, is given by the time
taken for the Alfvén wave to travel once around the circumference of the sphere. For
the lowest modes considered,

V2
and  ¢1<0.50 —]@’1. (56)

Vv

76<0.28

IV. CONCLUDING REMARKS

This paper makes hardly more than a beginning in the study of hydromagnetic
oscillations of models with internal motions. There are a great many problems in this
general field which can be considered by the methods of this paper and whose solutions
might be expected to contribute toward our understanding of hydromagnetic phenome-
na. While it is clearly premature to relate the results of this paper to particular aspects
of known phenomena, it is perhaps worth pointing out that, by considering the hydro-
magnetic oscillations of a fluid sphere with rotational motions, we have removed a sharp
distinction between the two models which have been proposed to interpret the magnetic
variables—the model based on the oscillations of an initial static equilibrium configura-
tion and the model based on a rotating star (cf. Deutsch 1956).

In conclusion I wish to express my thanks to Miss Donna Elbert for valuable assist-
ance with the numerical calculations.
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