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Kolmogorov-Arnold-Moser Theorem

Can Planetary Motion be Stable?

Govindan Rangarajan

The contribution of Kolmogorov to classical mechanics
is illustrated through the famous Kolmogorov-Arnold-
Moser (KAM) theorem. This theorem solves a long-
standing problem regarding stability in non-linear
Hamiltonian dynamics. Various concepts required to
understand the KAM theorem are also developed.

Introduction

Kolmogorov was a versatile mathematical genius who made
important contributions to several areas of mathematics. One
such contribution was the solution to a long-standing problem
in classical mechanics. The problem concerns long-term stability
in non-linear Hamiltonian systems (more on Hamiltonian
systems later). I'ts solution is relevant to such important issues as
the stability of our solar system etc.

The genesis of the problem can be traced back to Newton.
Newton was able to solve the equations that determine the
motion of two bodies (say, the sun and the earth) interacting
with each other through the gravitational force. However, when
he added a third body (say, the moon), he was unable to solve the
corresponding equations determining the simultaneous motion
of all three bodies. This is the (in)famous 3-body problem.

We now rephrase the 3-body problem in a manner more suitable
for our purposes. As noted above, the equations of motion for
the 2-body system can be solved analytically (the system is said
to be ‘integrable’). When a third body is added, this can be
considered as a ‘perturbation’ to the original, integrable 2-body
system. We are interested in determining whether solutions to
this 3-body system exist and whether they are close to the 2-body
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solutions if the perturbation is small enough. This problem can
be generalised to consider small perturbations to any ‘integrable’
system (not necessarily the 2-body system).

Kolmogorov was the first to provide a solution to the above
gereral problem in a theorem formulated in 1954 (see Suggested
Reading). However, he provided only an outline of the proof.
The actual proof (with all the details) turned to be quite difficult
and was provided by Arnold and Moser (see Suggested Reading).
The result they obtained is now popularly known as the
Kolmogorov-Arnold-Moser (KAM) theorem. The significance
of Kolmogorov’s contribution is best summarised by the
following comment by Arnold (see Suggested Reading): ‘One of
the most remarkable of A N Kolmogorov’s mathematical
achievements is his work on classical mechanics of 1954. A
simple and novel idea, the combination of very classical and
essentially modern methods, the solution of a 200-year old
problem, a clear geometrical picture and great breadth of outlook
~ these are the merits of the work’.

Needless to say, we will not even attempt to give the proof of the
KAM theorem in this article. We will be content with merely
stating the theorem and motivating the various conditions that
appear in it. To do even this, we first need to understand various
concepts like Hamiltonian systems, canonical transformations,
integrable systems, action-angle variables etc. We will briefly
delve into each of these topics in the run up to the KAM
theorem.

Hamiltonian Systems

Hamiltonian systems form an important class of systems in
classical mechanics. Our solar system is a prime example of a
Hamiltonian system. In fact, any mechanical system without
friction can be described as a Hamiltonian system.

A Hamiltonian system with N degrees of freedom is charac-
terised by a single function H{(g, p), called the Hamiltonian,
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which is a function of the (generalised) coordinates g = @y 95
..» ) and (generalised) momentap = (p,, p,, ..., p,). Wehave
restricted ourselves to Hamiltonians which do not depend
explicitly on time for the sake of simplicity. The coordinates
and momenta together constitute the 2N-dimensional ‘phase
space’ of the system. The evolution of these coordinates and
momenta with time is given by the following Hamilton’s
equations of motion:

- dg; oH .
= =L LN, M)
i
dp; oH
& a0 =L N (2)

i

Thus we have a set of 2N first order ordinary differential
equations that have to be solved to obtain the desired time
evolution of ¢ and p. This can be done in principle once the so-
called initial conditions (the values of g and p at time t=0)are
specified.

Using the equations of motion, it can be easily seen that H is
constant in time for our time-independent Hamiltonian. One

says that H isa conserved quantity. Quite often the value of the -

Hamiltonian corresponds to the total energy of the system!. In
such cases, the conservation of H is equivalent to conservation
of energy.

As a simple example, let us consider the following one degree of
freedom Hamiltonian describing a particle of mass m moving in
a potential V- '

P 2
Hg,p)= 5+ V).

Applying the Hamilton’s equations of motion we get:

4 _oH _h
Z o ®

! This is true if the equations
defining the (generalised) co-
ordinates do not depend on
time explicitly and if the forces
in the system are derivable from
a conservative potential.

-

RESONANCE | April 1998




GENERAL | ARTICLE

a —1 _._?_{I_ v (4)
dr o, aq,

The reader may recall from high school physics that — (817/dy,)
corresponds to the force F acting on the particle. Combining
the above two equations we get

dp d%q
1_ 1_ _
= = m————-dt2 ma = F,

where a denotes the acceleration. Thus, we have recovered
Newton’s second law of motion.

We see that the Hamiltonian formalism does give expected
results in cases such as the one described above. However, in
more general settings, the formalism is a more powerful and
elegant tool. In particular, it is very useful in developing
perturbation theories (which we will come to soon). Furthermore,
it provides some of the basic language used in constructing
quantum mechanics and statistical mechanics.

We now dig deeper into Hamiltonian mechanics. From the
Hamilton’s equations of motion it is easy to see that if H is a
complicated function of ¢ and p, then the differential equations
also become quite complicated and difficult to solve. Therefore,
it may be worthwhile to transform to a new set of coordinates
and momenta (denoted by Q and P) such that the corresponding"
Hamiltonian is a simple function of this new set. However, one
can not make any arbitrary transformation to new variables.
The transformation that we make should respect the Hamiltonian
structure i.e. equations of motion in the new variables should
have the same functional form as before:

0 g
=12, ..,N,
i op" )
dP,  oH"
@ TagThE N ©
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Here H' denotes the transformed Hamiltonian in the new
variables. Transformations which respect the Hamiltonian
structure are called ‘canonical transformations’. Henceforth, all
variable transformations that we make would be restricted to
such canonical transformations.

Coming back to our problem, we would like to make a canonical
transformation from (g, p) to (Q, P) such that H' is a simple
function of Q and P. Itshould be so simple that one can solve
the resultant equations of motion trivially. For some special
Hamiltonian systems, the above goal can be achieved. One can
canonically transform to a special set of variables called the
‘action-angle’ variables (J,0) such that the transformed
Hamiltonian is a function only of the N action variables I.. In

this case, the equations of motion are easily solved: 1-torus (circle)
8. B Figure 1.
—t="""=0.)i=1,2,...,N. 7
da . {0 @)
dl. BH'
| N
P =0,i=1,2,..., N. (8)

i

Here o, s are called the characteristic frequencies of the system.
Solving the above equations we get

0.0) = 6,(0) + o, t, i=1,2, ..., N, )
L@ = L), i=12,...,N. (10)

Thus the actions are constant in time and are said to be invariant.

Furthermore, the motion does not occupy the full 2N-

dimensional phase space but is restricted to the N-dimensional

surface of an N-torus and 6, s are nothing but angles along the

N independent loops® on this torus (see Figure I). The ;s are 2 The N independent loops

the frequencies of rotation around these N loops and I,s are ' respond to N closed paths
lated h dii of th 1 N h he initial that cannot be deformed into

related to the radii of these loops. Note that once the initial o o 016 g point.

conditions ¢,(0) and p,(0) are specified in the original variables,

the canonical transformation completely fixes I.(0) and 6, (0).

Once I; (0)=I, (¢)s are fixed, the torus on which the motion is
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3 For a mathematically more
rigorous definition of integrable
Hamiltonian systems, see V. I,
Arnold, Mathematical Method's
of Classical Mechanics {Sprin-
ger, 1978).

restricted to, is fixed. The torus is called an invariant torus. The
frequencies of motion on this invariant torus are also fixed since
these frequencies depend only on the invariant actions. The
actual trajectory followed on this torus is specified by the values
of 8.(0). The special Hamiltonian systems for which all of the
above is realised are called ‘integrable Hamiltonian systems’ 3.
One can show that all one degree of freedom Hamiltonian
systems are integrable.

Kolmogorov-Arnold-Moser (KAM) Theorem

A natural question that arises at this point is whether by making
an appropriate canonical transformation (provided one is clever
enough!) one can make all non-linear Hamiltonian systems with
more than one degree of freedom integrable. By a non-linear
Hamiltonian, we refer to a Hamiltonian which gives rise to non-
linear equations of motion.

We start by restricting ourselves to the simplest case of a
Hamiltonian system ‘close’ to an integrable Hamiltonian system
in the following sense: The Hamiltonian H can be written as a
sum of'a Hamiltonian H, known to be integrable and a small
additional piece ¢ H, (where ¢ is a dimensionless number
assumed to be small)

H(g, p) = Hq, p) +e H (g, p).

Such Hamiltonians are called ‘near-integrable’ Hamiltonians.
Since H , is integrable, one can make a canonical transformation
to the action-angle variables (I, 0) such that H,’is a function
only of actions. However, H, ;" would still depend on both I and
8. In these variables, the transformed Hamiltonian H’ is given
by

H{I,0)=H' () +eH (,0).

If the perturbation is zero (i.e. €=0), we are left with only H.
Since this is integrable, the motion is restricted to the surface of
an invariant torus for given initial conditions. If we now ‘turn
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on’ the perturbation (e # 0), we want to investigate how the
motion changes. Provided € is small enough, we would expect
the motion to lie on a slightly distorted version of the original
invariant torus. To show this, we have to make a canonical
transformation to (I, 8) such that the Hamiltonian H " in these
new variables is a function only of I'. Using the perturbation
theory approach, we will attempt to do this only to first order in
ei.e. we will neglect all terms that contain higher powers of €. As
isshown in the Appendix, even this is not possible. We encounter
small denominators and the desired canonical transformation
diverges and becomes ill-defined. Consequently, we can not
make the transformed Hamiltonian a function only of the actions.

In light of the above, the situation appears hopeless as far as
saying anything about the behaviour of even near-integrable
Hamiltonian systems is concerned. It took Kolmogorov’s genius
to snatch a partial victory from the jaws of apparent defeat.
Kolmogorov realized that the above roadblock was a result of
trying to solve the problem for all possible initial conditions. If
one excludes some problematic initial conditions, one can obtain
precise albeit qualitative conclusions about the behaviour of the
majority of trajectories. In particular, the problem occurs (refer
to the Appendix) under the following conditions: Consider a
torus (invariant under the integrable H,) whose characteristic
frequencies o, satisfy the so-called ‘resonant condition’ m- o =
0 (for some integer vector m) * If one tries to investigate how
this torus deforms when one turns on the perturbation, the
canonical transformation diverges (since m - ® occurs in the
denominator of the relevant expression cf. sidebar). So we exclude
all such torii (or equivalently, the corresponding initial
conditions). Divergence problems can occur even if m - ® is not
exactly zero, but close to it (the precise condition will be given in
the statement of the KAM theorem below). So, such torii also
have to be excluded. Fortunately, the size of the set of all such
excluded torii is very small. Kolmogorov was able to show that
the remaining ‘non-resonant’ torii only get slightly deformed
when the perturbation is turned on provided the perturbation is

4 The resonant condition is
easier to understand for 2
degrees of freedom. In this
case, we have m o, + m,w,=0
for some integers m, and m,.
This is equivalent to the
condition that the ratio of the
characteristic frequencies o,
and o, is a rational number,
Therefore, invariant torii for
which this condition is satisfied
are sometimes called ‘rational
torii’.
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5 For a given value of the
perturbation strength ¢, the
coefficient K is fixed. As we
increase N we are tfesting for
resonances of higher and
higher orders. The inequality
allows us to approach reso-
nance as Nincreases, but not
too closely. K tends to zero as
g— 0.

¢ Moser was able to relax this
condition. His proof requires
the existence of only a finite
number of derivatives of 4.

small. There is still one unsolved problem. Till now, we have
kept only terms that are first order in ¢ (terms proportional to g2
etc. were discarded). What happens when we put back the
higher order terms? By formulating a new type of perturbation
theory called the ‘super- convergent’ perturbation theory,
Kolmogorov was able to show that no further divergence
problems occur even in this case.

We are now in a position to state the Kolmogorov-Arnold-
Moser (KAM) theorem.

Kolmogorov-Arnold-Moser (KAM) Theorem: Consider an

~analytic N degrees of freedom Hamiltonian H(I,0) and let

H=H (D)+e H(I,0) with

’H
det 01 +0.
ol iaIJ.

Then the torii of the unperturbed (e=0) integrable Hamiltonian
H, which satisfy the following inequality

K(e)

lm- o] > l—lm-;ﬁ, lm| = [m |+|m,| +..+ (!

survive the perturbation (they merely get deformed)®. The set of
torii not satisfying the above inequality is small and its size
tends to zero as € —» 0.

We will now motivate the various conditions that appear in the
KAM theorem. We will restrict ourselves to 2 degrees of
freedom for the sake of simplicity. We require H to be analytic
since this is a key factor in ensuring the convergence of the series
defining the canonical transformation 6. The condition on the
determinant ensures that the characteristic frequencies ©, and
o, are notindependent of both the actions I, andI,. This has the
followmg consequence: At resonance (m,0, +m, ®, = 0) we have
already seen that we get into problems. In such a case, the
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amplitude of motion starts increasing (i.e. / starts changing). If
the ;s are independent of I.s, the system continues to remain
atresonance and the amplitude increases without limit. However,
if the frequencies depend on the actions (as in our case), the
frequencies start changing as I changes and the resonance
condition m, ®, + m,0, = 0 is no longer satisfied. The system
‘drops off’ the resonance. Hence the excursion in I is limited.
Therefore the bad effects of the resonant torii do not extend to
the whole space.

Next, we consider the condition |m; @,+m, @,| > K(g)/
(|m,|+|m,|)® Consider the torii whose characteristic
frequencies do not satisfy this condition. In such cases, it can be
shown using number theory that the ratio o,/w, is well
approximated by rational numbers ’ . Moreover, the number of
torii which do not satisfy this condition (and hence are excluded
by the KAM theorem) is proportional to K. Further, K goes to
zero as € — 0. Thus, for asmall ¢ (i.e. if the perturbation strength
is small), the majority of the torii are merely deformed. What
happens to the torii excluded by the KAM theorem? Using
another theorem (the Poincaré-Birkhoff theorem), it can be
shown that they get destroyed by the perturbation and ‘chaotic
motion’ develops in their vicinity. In chaotic motion, two
trajectories that start close to one another diverge exponentially
and the motion is not integrable. As the perturbation increases
in magnitude, more and more torii get destroyed. Often, the
torus whose ratio of characteristic frequencies is most badly
approximated by rational numbers is destroyed the last! This
ratio corresponds to the golden mean (52— 1)/2 which is the
most irrational number in the sense that its continued fraction
expansion converges most slowly. In fact, the golden mean is
also used by painters to determine the most aesthetically pleasing
placement of the horizon in their paintings. Thus the most
irrational number according to number theory is the most
aesthetically pleasing ratio according to painters and also
corresponds to the most stable configuration according to non-
linear Hamiltonian dynamics!

7 1tis well approximated in the
sense that the continued frac-
tion expansion of the ratio -
either terminates after a finite
number of terms or converges
quite rapidly.
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Finally, we are in a position to answer the question with which
we started this Section. From the above discussion it is clear
that most near-integrable Hamiltonian systems are not
completely integrable since motion is chaotic near resonant torii
and therefore not integrable. However, the motion for the
majority of initial conditions is integrable as a consequence of
KAM theorem. Thus the phase space is a mixture of integrable
and non-integrable regions with the former being in the majority.
On the other hand, if ¢ is large, KAM theorem no longer applies
and most of the phase space could be non-integrable. In extreme
cases, the whole of phase space is dominated by chaotic motion.

To summarise, we hope that we have provided an example of
Kolmogorov’s enormous contributions to mathematics by
studying the KAM theorem. Through this theorem, we have
also attempted to give a glimpse of the field of non-linear
Hamiltonian dynamics.

Appendix: Canonical Perturbation Theory

Consider the following Hamiltonian
H'(I,0)= H/(I) + & H,', 6)

where H' is the integrable part. We would like to perform a
canonical transformation to a new set of action-angle variables
such that the transformed Hamiltonian H" is a function only of
the new actions I' to first order in &. The canonical
transformations are usually performed using a ‘generating
function’. We will use the following generating function:

SI'®)=1I-0+ e §,(I",0).

Here S, is yet to be determined.

The relations between old and new variables are given by

oS ,, oS8
=22, 0= 22
00 or'
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We now substitute for (Z, ©) in H' in terms of the new variables
(I", 8") using the above relations. Since we want the transformed
Hamiltonian to be dependent only on I', we fix S, by requiring
that all 6’ dependent terms in A" sum to zero (to first order in €).
To obtain an explicit expression for S, , we express H,' and S,
as a Fourier series in the angle variables 6, :

H''= X H _I') exp(im-6 ), (11)
m 3

S =2 § ) exp(im-0 ), (12)
m >

1

where m is an N-component vector of integers. Using these
series we obtain

H Lm ("

S, =iX exp(im-0)

m

Here o is the N-dimensional vector of the characteristic
frequencies which characterises an invariant torus of the
integrable H,'. If the infinite sum in the above expression for §,
converges, then we are done since the desired canonical
transformation is given by the generating function §=S§,+¢ §,.
However, the factor m - ® in the denominator gives rise to
problems. For any ©, we can always find a m such that m- o
is .equal to zero or very close to zero. If this happens that
particular term ‘blows up’ and the sum will not converge. Since
the sum in the expression for S, runs over all values of m, we
will always encounter such ‘small denominators’. Thus the
desired canonical transformation can not be carried out.
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