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Abstract. In this paper, we construct an invariant metric in the space of homogeneous polynomials
of a given degree (� 3). The homogeneous polynomials specify a nonlinear symplectic map which
in turn represents a Hamiltonian system. By minimizing the norm constructed out of this metric as
a function of system parameters, we demonstrate that the performance of a nonlinear Hamiltonian
system is enhanced.
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1. Introduction

One popular method of treating Hamiltonian systems perturbatively is the Lie algebraic
method [1–5]. In this approach, the time evolution of a Hamiltonian system is described
by a symplectic mapM [1]. This map is specified by a set of homogeneous polynomials of
degreem. The polynomials of degree greater than or equal to 3 give the nonlinear content
of M . For a generic nonlinear Hamiltonian system, the full symplectic map can not be
explicitly computed. This forces us to follow the Lie perturbative approach where we
consider terms degree by degree in the symplectic map. Now if we are able to construct
a norm for the space of homogeneous polynomials of a given degree, it can be used to
quantify the nonlinear content ofM . This has several applications described later.

In order to obtain such a norm, we first construct a bilinear form on the space of homo-
geneous polynomials of degreem that is both symmetric and positive definite. This defines
a metric on this space which then enables us to construct a norm. Further, the norm should
be invariant under the appropriate symmetry group. Thus, we define an invariant metric
to be a symmetric, positive definite, bilinear form that is invariant under the action of a
suitable symmetry group. The underlying symmetry group of the symplectic mapM is
an infinite dimensional non-compact Lie group. Fortunately, we can restrict ourselves to
a much smaller symmetry group for the following reason. It turns out that the symplectic
mapM can be represented in terms of homogeneous polynomials as
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M = M̂e: f3:e: f4: � � � :

The meaning of each term above will be explained in greater detail in the next section. For
the present we note thatfm is a homogeneous polynomial of degreem in z. It turns out that
e: f3: contains the leading order nonlinearity of the symplectic mapM . Therefore, in the
spirit of perturbation theory we can truncate our map as follows:

M = M̂e: f3:
:

Suppose we have a norm on the space of homogeneous polynomials of degree 3. Then
the norm of the polynomialf3 quantifies the leading order nonlinearity ofM . Now f 3
is a function of the parameters specifying the Hamiltonian under consideration and so
obviously is its norm. Therefore, minimizing the norm off 3 as a function of one or more
of these parameters corresponds to minimizing the leading order nonlinearity ofM . By
using the optimal value(s) of the parameter(s) thus obtained in the original Hamiltonian
system, one can obtain substantial improvements in the performance of most nonlinear
Hamiltonian systems (especially in increasing the stability region). Furthermore, the norm
can also serve as a measure to compute the ‘distance’ between two symplectic maps.

Now the symmetry group for the linear part̂M for n degrees of freedom is the finite
dimensional non-compact real symplectic group Sp(2n, R). A norm that is invariant under
the linear part would also be invariant underM = M̂e: f3: since the nonlinear term con-
tributes only a fourth order correction. Therefore, the relevant symmetry group for our
purpose would be Sp(2n;R). However, as Sp(2n;R) is non-compact, there can be no norm
that is invariant under the action of this group. To get around this problem, we first con-
vert M̂ into its so-called ‘normal form’ [1] using a symplectic transformation. Once this
transformation is made, we can take the relevant symmetry group to be the compact group
SU(n) [4,5]. Thus, our problem reduces to finding norms for the space of homogeneous
polynomials of degree 3 in the 2nphase space variables invariant under the action of SU(n).
This is accomplished by performing an invariant integration over SU(n) of a suitable func-
tion. Finally, we apply the above procedure to a FODO lattice (a common component of a
particle accelerator system). We demonstrate that minimizing the norm leads to significant
improvements in the stability region of this system.

2. Preliminaries

In this section, we briefly review the basic mathematical results required for the remaining
part of the paper.

We start by representing a Hamiltonian system by a symplectic map [1]. Let us denote
the collection of 2n phase-space variablesqi , pi (i = 1;2; : : : ;n) by the symbolz:

z= (q1;q2; : : : ;qn; p1; p2; : : : ; pn): (2.1)

The Lie operator [1] corresponding to a phase-space functionf (z) is denoted by :f (z) :. It
is defined by its action on a phase-space functiong(z) as shown below

: f (z) :g(z) = [ f (z);g(z)]: (2.2)

Here[ f (z);g(z)] denotes the usual Poisson bracket of the functionsf (z) andg(z). Next, we
define the exponential of a Lie operator. It is called a Lie transformation [1] and is given
as follows:
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e: f (z): =

∞

∑
n=0

: f (z) :n

n!
: (2.3)

The effect of a Hamiltonian system on a particle can be formally expressed as the action
of a mapM that takes the particle from its initial statezin to its final statezfin

zfin =M zin
: (2.4)

It can be shown thatM is a symplectic map [1]. Symplectic maps are maps whose 2n�2n
Jacobian matricesM(z) satisfy the following ‘symplectic condition’

]M(z)JM(z) = J; (2.5)

whereM̃ is the transpose ofM andJ is the fundamental symplectic matrix. The set of all
symplectic matrices forms the real symplectic group Sp(2n;R).

Using the Dragt–Finn factorization theorem [6], the symplectic mapM can be factor-
ized as shown below:

M = M̂e: f3: e: f4:
: : :e: fn:

: : : : (2.6)

HereM̂ gives the linear part of the map and hence has an equivalent representation in terms
of the Jacobian matrixM of the mapM [1]:

M̂zi = Mi j zj = (Mz)i : (2.7)

The infinite product of Lie transformations exp(: f n :) (n= 3;4; : : :) in eq. (2.6) represents
the nonlinear part ofM where fn(z) denotes a homogeneous polynomial (inz) of degree
n uniquely determined by the factorization theorem.

From the above discussion we see that homogeneous polynomials play an important
role in Lie perturbation theory. In particular, they represent the nonlinear content of the
symplectic map (and hence the underlying Hamiltonian system). To facilitate construction
of an invariant metric on the space of homogeneous polynomials, we first need to index the
basis monomials appropriately. Consider the spaceP (m) of all homogeneous polynomials
in z of degreem. Let fP(m)

α g be the basis for this space. The dimensionN(2n;m) of this
space is [7]

N(2n;m) =

�
2n+m�1

m

�
: (2.8)

We take the basisP(m)
α (z) to be themth degree basis monomial in 2n variables, i.e.,

P(m)
α (z) = qr1

1
pr2

1
: : :qr2n�1

n pr2n
n ; i � ri �m; r1+ r2+ � � �+ r2n = m: (2.9)

We can associate each basis monomial with a convenient numerical indexi [8] as shown
below. Let

i(r1; r2; : : : ; r2n) =

2n

∑
l=1

�
l �1+∑l�1

k=0 r2n�k

l

�
: (2.10)
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It can be easily shown thatpm
n is the last monomial with degree less than or equal tom in

this indexing, i.e.,

i(0;0; : : : ;0;m) = max
r1;r2;���;r2n

i(r1; r2; : : : ; r2n) ; r1+ r2+ � � �+ r2n � m: (2.11)

Thus, we see thati(0;0; : : : ;0;m) gives the total number of monomials less than or equal to
m. Therefore, a convenient indexα for the elements of the setfP(m)

α g is got using (2.10)
and (2.11). This is given by the relation

α(r1; r2; : : : ; r2n) = i(r1; r2; : : : ; r2n)� i(0;0; : : : ;0;m�1) :

Thus, any polynomialfm(z) can be written in the following way:

fm(z) = a(m)α P(m)
α (z) : (2.12)

The quantitiesa(m)α are real constants.
From our discussion in the introduction, we know that SU(n) plays an important role in

the construction of an invariant metric. We are most interested in single particle dynamics
(with three degrees of freedom) for which the relevant group is SU(3). Since the behaviour
of the system in its two transverse degrees of freedom is often quite useful to analyse, SU(2)
is also relevant. We will obtain the invariant metric by performing an invariant integration
over the above groups. Therefore, we now give the parameterizations for SU(2) and SU(3)
along with their Haar measures that will be required for this invariant integration.

A parameterization for a general elementU of SU(2) is [9]

U =

�
sinθ21exp(�iφ22) �cosθ21exp(�iφ21)

cosθ21exp(iφ21) sinθ21exp(iφ22)

�
; (2.13)

where

0� θ21�
1
2

π ; 0� φ21� 2π ; 0� φ22� 2π :

A parameterization for a general elementU of SU(3) is [10]

U =

0
@sinθ21sinθ31e

�iφ22 Γ12 Γ13
cosθ21sinθ31e

iφ21 Γ22 Γ23
cosθ31e

iφ31 sinθ31cosθ32e
iφ32 sinθ31sinθ32e

iφ33

1
A ; (2.14)

with

Γ12 =�cosθ21sinθ32e
i(�φ21�φ33)�sinθ21cosθ31cosθ32e

i(�φ22�φ31+φ32);

Γ22 = sinθ21sinθ32e
i(φ22�φ33)�cosθ21cosθ31cosθ32e

i(φ21�φ31+φ32);

Γ13 = cosθ21cosθ32e
i(�φ21�φ32)�sinθ21cosθ31sinθ32e

i(�φ22�φ31+φ33);

Γ23 =�sinθ21cosθ32e
i(φ22�φ32)�cosθ21cosθ31sinθ32e

i(φ21�φ31+φ33):

Next, we specify the Haar measure for SU(2) and SU(3). The measure for SU(2) with
parameterization (2.13) is [9]
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1
4π2 sin(2θ21)dθ21dφ21dφ22:

The case of SU(3) is more complicated, but following the procedure in [10] we have the
invariant measure for SU(3) (using the parameterization given in (2.14)) to be

1
(2π)5 sin(2θ21)4sin3(θ31)cos(θ31) sin(2θ32)dθ21dθ31dθ32dφ21dφ22dφ31dφ32dφ33:

3. Invariant metric

For our purposes, we define an invariant metric to be a symmetric, positive definite, bilinear
form on the space of homogeneous polynomials of a given degreem, in 2n phase-space
variables, that is invariant under the action of SU(n). This metric defines an inner product
on the space of homogeneous polynomials of degreem. This in turn enables us to define
an invariant norm on that space. This norm is used to quantify the nonlinear content ofM .

Our task now is to generate the invariant metric. LetG denote either SU(2) or SU(3).
We define the bilinear form to be

g(m)αβ � (P(m)
α (z); P(m)β (z)) : (3.15)

We requireg(m)
αβ

to be invariant under the action ofG . That is,

(U P(m)
α (z) ; U P(m)

β (z)) = (P(m)α ; P(m)
β ) ; (3.16)

whereU 2 G . HereU has to be embedded in Sp(6,R) (or Sp(4,R) if G 2 SU(2)) using the
procedure outlined in Appendix D of ref. [5] so that it can act on the phase space functions.

The standard way of constructing an invariant is to use the invariant integral from group
theory [9]. For a Lie groupG , it is defined as

I =
Z
G

h(U)σ(U)dU; (3.17)

whereU 2 G , h(U) is a function defined onG , andσ(U) is the Haar measure for the Lie
groupG . In our case, theU ’s are taken to be the matrices defined in (2.13) or (2.14), de-
pending on whether the groupG is taken to be SU(2) or SU(3). Since we are interested in
symmetric, positive definite, invariant bilinear forms on the space of homogeneous poly-
nomials of degreem, it is natural to take

h(U) = [D
m
]
T
(U)D

m
(U) ; (3.18)

whereDm is aN(2n;m)�N(2n;m) matrix defined by

U Pm
α (z) = Pm

α (U z) =
N(2n;m)

∑
γ=1

D
m(U)γ

α Pm
γ (z) ; (3.19)

and [Dm]T is the transpose ofDm. From standard matrix theory, we know that
[Dm]T(U)Dm(U) is both symmetric and positive definite. Thus we have an invariant met-
ric on the space of homogeneous polynomial of degreem given as follows:
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g(m)
i j

= (P(m)
i

; P(m)
j

) =

Z
G

( [Dm]T(U)Dm(U))i j σ(U)dU: (3.20)

We now explicitly evaluate the invariant metricg(m)
i j

given above for various values ofn

(the number of degrees of freedom) andm (the degree of the homogeneous polynomials).
For this, we have to carry out the invariant integration over SU(n) using the appropriate
parameterization of the group. The calculations are very laborious and so we do not repro-
duce them here. We will only summarize the results. Further, we will also list the invariant
metric form= 2 for the sake of completeness. Since we are interested only in monomials
of degree greater than or equal to 2 we take the indexα appearing in (2.9) to be

α(r1; r2; : : : ; r2n) = i(r1; r2; : : : ; r2n)� i(0;0; : : : ;0;1): (3.21)

Since the metric is symmetric, i.e.g(m)
i j

= g(m)
ji

8i; j, it is enough to list down the elements
gi j for i < j.

3.1Two degrees of freedom

The non-zero elements of the metricg(2)
i j

for the homogeneous polynomials of degree 2 in

two degrees of freedom are as follows:

g(2)
ii

=
3
4
; i 2 f1;5;8;10g ;

=
4
3
; i 2 f2;3;4;6;7;9g ;

g(2)
i j

=
1
12

; 8 i; j 2 f1;5;8;10g and i < j : (3.22)

The non-zero elements of the metricg(3)
i j

for the homogeneous polynomials of degree 3
in two degrees of freedom are

g(3)
ii

=
25
48

; i 2 f11;21;27;30g ;

=
9
4
; i 2 f16;17;19;25g ;

=
61
48

; i 2 f12: : :15;18;20;22: : :24;26;28;29g ;

g(3)
i j

=
7
48

; 8 i; j 2 f11;15;18;20g and i < j ;

=
7
48

; 8 i; j 2 f12;21;24;26g and i < j ;

=
7
48

; 8 i; j 2 f13;22;27;29g and i < j ;

=
7
48

; 8 i; j 2 f14;23;28;30g and i < j : (3.23)
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The non-zero elements of the metricg(4)
i j

for the homogeneous polynomials of degree 4

in two degrees of freedom are

g(4)
ii

=
691
1920

; i 2 f31;51;61;65g ;

=
87
80

; i 2 f32; : : : ;34;41;47;50;52;53;57;60;62;64g ;

=
727
480

; i 2 f35;38;40;54;56;63g ;

=
631
240

; i 2 f36;37;39;42; : : :;44;46;48;49;55;58;59g ;

=
47
10

; i 2 f45g ;

g(4)
i j

=
169
960

; i 2 f31g; j 2 f35;38;40g ; i 2 f51g; j 2 f35;54;56g ;

i 2 f61g; j 2 f38;54;63g ; i 2 f65g; j 2 f40;56;63g ;

g(4)
i j

=
17
960

; i 2 f31g; j 2 f54;56;63g ; i 2 f51g; j 2 f38;40;63g ;

i 2 f61g; j 2 f35;40;56g ; i 2 f65g; j 2 f35;38;54g ;

g(4)
i j

=
5
16

; i 2 f32g; j 2 f41g ; i 2 f33g; j 2 f47g ; i 2 f34g; j 2 f50g ;

i 2 f52g; j 2 f57g ; i 2 f53g; j 2 f60g ; i 2 f62g; j 2 f64g ;

g(4)
i j

=
19
60

; i 2 f32;41g; j 2 f44;46g ; i 2 f33;47g; j 2 f42;49g ;

i 2 f34;50g; j 2 f43;48g ; i 2 f36;59g; j 2 f52;57g ;

i 2 f37;58g; j 2 f53;60g ; i 2 f39;55g; j 2 f62;64g ;

g(4)
i j

=
1

240
; i 2 f32g; j 2 f64g ; i 2 f33g; j 2 f53g ; i 2 f34g; j 2 f57g ;

i 2 f41g; j 2 f62g ; i 2 f47g; j 2 f60g ; i 2 f50g; j 2 f52g ;

g(4)
i j

=�
1

240
; i 2 f32g; j 2 f62g ; i 2 f33g; j 2 f60g ; i 2 f34g; j 2 f52g ;

i 2 f41g; j 2 f64g ; i 2 f47g; j 2 f53g ; i 2 f50g; j 2 f57g ;

g(4)
i j

=
1
80

; i 2 f36g; j 2 f48g ; i 2 f37g; j 2 f42g ; i 2 f39g; j 2 f46g ;

i 2 f55g; j 2 f44g ; i 2 f58g; j 2 f49g ; i 2 f59g; j 2 f43g ;

g(4)
i j

=�
1
80

; i 2 f36g; j 2 f43g ; i 2 f37g; j 2 f49g ; i 2 f39g; j 2 f44g ;

i 2 f55g; j 2 f46g ; i 2 f58g; j 2 f42g ; i 2 f59g; j 2 f48g ;

g(4)
i j

=
73
240

; i 2 f36g; j 2 f59g ; i 2 f37g; j 2 f58g ; i 2 f39g; j 2 f55g ;

i 2 f42g; j 2 f49g ; i 2 f43g; j 2 f48g ; i 2 f44g; j 2 f46g ;
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g(4)
i j

=
31
160

; i 2 f35g; j 2 f38;40;54;56g ; i 2 f38g; j 2 f54;63g ;

i 2 f40g; j 2 f38;56;63g ; i 2 f54g; j 2 f56;63g;

i 2 f56g; j 2 f63g;

g(4)
i j

=
23
480

; i 2 f35g; j 2 f63g ; i 2 f38g; j 2 f56g ; i 2 f40g; j 2 f54g ;

g(4)
i j

=
19

1920
; 8 i; j 2 f31;51;61;65g and i < j :

3.2Three degrees of freedom

The non-zero elements of the metricg(2)
i j

for the homogeneous polynomials of degree 2 in
three degrees of freedom are

g(2)
ii

=
11
16

; i 2 f1;7;12;16;19;21g ;

=
5
4
; i 2 f2; : : : ;6;8; : : : ;11;13; : : : ;15;17;18;20g ;

g(2)
i j

=
1
16

; 8 i; j 2 f1;7;12;16;19;21g and i < j : (3.24)

The non-zero elements of the metricg(3)
i j

for the homogeneous polynomials of degree 3

in three degrees of freedom are

g(3)
ii

=
5
12

; i 2 f22;43;58;68;74;77g ;

=
21
20

; i 2 f23; : : : ;28;33;37;40;42;44;45; : : :;48;52;55;57;

59; : : : ;62;65;67;69;70;71;73;75;76g ;

=
19
10

; i 2 f29; : : : ;32;34;35;36;38;39;41;49;50;51;53;54;

56;63;64;66;72g ;

g(3)
i j

=
1
10

; 8 i; j 2 f22;28;33;37;40;42g and i < j ;

=
1
10

; 8 i; j 2 f23;43;48;52;55;57g and i < j ;

=
1
10

; 8 i; j 2 f24;44;58;62;65;67g and i < j ;

=
1
10

; 8 i; j 2 f25;45;59;68;71;73g and i < j ;

=
1
10

; 8 i; j 2 f26;46;60;69;74;76g and i < j ;

=
1
10

; 8 i; j 2 f27;47;61;70;75;77g and i < j : (3.25)
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4. Invariant norm

We are now in a position to obtain the invariant norm. Consider the symplectic mapM

describing the Hamiltonian system. As discussed in the introduction, we retain only the
leading nonlinear term and get

M = M̂e: f3:
: (4.26)

Next we transform this map into its normal form and then write out the invariant norm for
f3 in the transformed phase space coordinates.

We now give details of the calculations outlined above. LetA be the symplectic trans-
formation that takesM into its normal formN. Then the normal formN of the symplectic
mapM is given by

N = A�1
MA= A�1MAA�1e: f3:A= Ne: f tr

3 :
;

where

f tr
3 = A�1 f3(z) = f3(A

�1z):

SinceA depends onM, f3 also now depends onM. The homogeneous polynomialf tr
3 can

be expressed as a linear combination of the basis monomials as follows.

f tr
3 (z) = bα P(3)

α (z) : (4.27)

The quantitiesbα are real constants.
We are now in a position to define the invariant norm which is given by

I(z) =
�

f tr
3 (z); f tr

3 (z)
�1=2

; (4.28)

where the symmetric, positive definite, invariant, bilinear form(�; �) is defined in (3.20)
through the basis monomials withm= 3. This is invariant under the action ofN . Using
the expansion off tr

3 (z) in terms of the basis monomials we obtain

�
f tr
3 (z); f tr

3 (z)
�
=

 
N(2n;3)

∑
α=1

bα P(3)
α (z);

N(2n;3)

∑
β=1

bβ P(3)
β (z)

!
;

=

N(2n;3)

∑
α=1

N(2n;3)

∑
β=1

bα bβ

�
P(3)

α (z); P(3)
β

(z)
�
;

=

N(2n;3)

∑
α=1

N(2n;3)

∑
β=1

bα bβ g(3)αβ : (4.29)

Here the elements ofg(3)
αβ

are given in (3.23) and (3.25) forn= 2 andn= 3 respectively.

Sinceg(3)
αβ

is an invariant metric,I(z) is a well-defined invariant norm.

Notice thatI(z) is a function of the coefficientsbα which in turn are related to the coeffi-
cientsaα which parameterize the symplectic mapM (and hence the original Hamiltonian
system). Moreover,I(z) is a polynomial of degree 2 which quantifies the leading nonlin-
earity of the system. Therefore, one can attempt to vary one of the parameters describing
the original system and minimize the normI(z). The system performance with this optimal
parameter value would be enhanced since the nonlinearity is reduced. We demonstrate this
in the final section using an example.
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5. Application

In the previous section, we have defined a normI(z) using f tr
3 of the symplectic map in

its normal form. Further, we argued that minimizing this by varying one of the system
parameters should enhance the system performance. We now demonstrate this through an
example. In this case, the region of stability of the system is shown to increase significantly.

For example, consider a particle being transported through the following ‘FODO Cell’
(a common component of a particle accelerator) which consists of a thin lens corrector, a
drift, a focusing quadrupole, a drift, a thin lens corrector, a drift, a defocusing quadrupole,
a drift and another thin lens corrector in the given order. We will show that the stability of
the system can be enhanced by minimizing the norm as a function of the length-strength
products of the thin lens correctors.

We will consider the case where the first and the last have the same strengths1 and the
middle corrector has a different strengths2. The quadrupole strength is set at 0:01 and the
length of the drift is taken to be 0:25 m. Since we restrict ourselves tof 3, the drift has only
a linear part. The individual map elements for the drift (Md), the focusing quadrupole (Mf ,
f (f)
3

) and the defocusing quadrupole (Mdf, f (df)
3

) are as follows:

Md =

0
B@

1 0:25 0 0
0 1 0 0
0 0 1 0:25
0 0 0 1

1
CA ;

Mf =

0
B@

0:379702 0:783113 0 0
�1:09285 0:379702 0 0

0 0 1:78278 1:24937
0 0 1:74352 1:78278

1
CA ;

f (f)
3

= 0:000729027786268741p1
3�0:00401370331668622p1 p2

2

�0:00223402941215277p1
2q1+0:00366214590673008p2

2q1
+0:00315085652798429p1q1

2�0:00260362598064677q1
3

+0:013396336186578p1p2q2�0:013872226822993p2q1q2
�0:011804190022307p1q2

2+0:016039119622458q1q2
2
;

Mdf =

0
B@

1:78278 1:24937 0 0
1:74352 1:78278 0 0

0 0 0:379702 0:783113
0 0 �1:09285 0:379702

1
CA ;

f (df)
3

= 0:00184546878109027p1
3�0:00294431866040622p1p2

2

�0:0090716074824943p1
2q1+0:00501551187521087p2

2 q1
+0:015553938120045p1q1

2�0:010031600023799q1
3

+0:00567688973384745p1p2q2�0:011148606961365p2q1q2
�0:00371890079800577p1q2

2+0:010435916746424q1q2
2
:

486 Pramana – J. Phys.,Vol. 58, No. 3, March 2002



Invariant metric for nonlinear symplectic maps

The mapf (c)
3

for a corrector is

f (c)
3

=�0:465174
�
q3

1�3q1q2
2

�
s;

wheres is the length-strength product that has to be minimized. In our case, we will have
two different maps – one for the end correctors (depending ons1) and another for the
middle corrector (depending ons2).

Using CBH theorem from Lie group theory [9] we combine the maps of all individual
elements to get one single map describing the entire FODO cell. The final combined matrix
M is given by

M =

0
B@
�2:22235 2:24671 0:0 0:0
�2:239 1:81356 0:0 0:0

0:0 0:0 1:81356 2:24671
0:0 0:0 �2:239 �2:22235

1
CA :

The expression for the combined third degree polynomialf 3 is very long and is hence not
given here.

We now put the map in normal form. The matrixA which puts the mapM in the normal
form and the normal formN are given below

A=

0
B@

1:51498 0 0:0 0:0
1:36073 0:660076 0:0 0:0

0:0 0:0 1:51498 0
0:0 0:0 �1:36073 0:660076

1
CA ;

N =

0
B@
�0:204398 0:97889 0:0 0:0
�0:978887 �0:204397 0:0 0:0

0:0 0:0 �0:204397 0:97889
0:0 0:0 �0:978887 �0:204398

1
CA : (5.30)

The polynomialf3 also gets transformed tof tr
3 by this process. We now calculate the norm

I(z) using this transformedf tr
3 and minimize it as a function ofs1 ands2.

The minimum value forI(z) is obtained when the corrector strengths are given as fol-
lows:

s1 =�0:00134675; s2 =�0:0269976:

The boundary of the region of stability (dynamic aperture) of the system is found using the
solvable map method [11]. Along theq1 direction, the dynamic aperture is found to be

1. (q1; p1;q2; p2) = (0:18;0;0;0) when all correctors are turned off.

2. (q1; p1;q2; p2) = (2:2;0;0;0) when the correctors are turned on with the above
strengths.

Similar results are observed in the other directions. We notice that the dynamic aperture
has increased by an order of magnitude.

6. Conclusions

We have defined an invariant metric on the space of homogeneous polynomials charac-
terizing a symplectic map. We have demonstrated that the metric thus defined helps in
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improving the stability and hence the performance of the system. This then promises to be
a handy tool that can be employed to enhance the performance of nonlinear Hamiltonian
systems.
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