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Abstract. In this paper, we construct an invariant metric in the space of homogeneous polynomials
of a given degreeX 3). The homogeneous polynomials specify a nonlinear symplectic map which
in turn represents a Hamiltonian system. By minimizing the norm constructed out of this metric as
a function of system parameters, we demonstrate that the performance of a nonlinear Hamiltonian
system is enhanced.
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1. Introduction

One popular method of treating Hamiltonian systems perturbatively is the Lie algebraic
method [1-5]. In this approach, the time evolution of a Hamiltonian system is described
by a symplectic map# [1]. This map is specified by a set of homogeneous polynomials of
degreem. The polynomials of degree greater than or equal to 3 give the nonlinear content
of .. For a generic nonlinear Hamiltonian system, the full symplectic map can not be
explicity computed. This forces us to follow the Lie perturbative approach where we
consider terms degree by degree in the symplectic map. Now if we are able to construct
a norm for the space of homogeneous polynomials of a given degree, it can be used to
guantify the nonlinear content of. This has several applications described later.

In order to obtain such a norm, we first construct a bilinear form on the space of homo-
geneous polynomials of degmnedhat is both symmetric and positive definite. This defines
a metric on this space which then enables us to construct a norm. Further, the norm should
be invariant under the appropriate symmetry group. Thus, we define an invariant metric
to be a symmetric, positive definite, bilinear form that is invariant under the action of a
suitable symmetry group. The underlying symmetry group of the symplectic#ap
an infinite dimensional non-compact Lie group. Fortunately, we can restrict ourselves to
a much smaller symmetry group for the following reason. It turns out that the symplectic
map.# can be represented in terms of homogeneous polynomials as
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M =Nefseld...
The meaning of each term above will be explained in greater detail in the next section. For
the present we note tht, is a homogeneous polynomial of degree z. It turns out that
e s’ contains the leading order nonlinearity of the symplectic ma&p Therefore, in the
spirit of perturbation theory we can truncate our map as follows:

M =Me's

Suppose we have a norm on the space of homogeneous polynomials of degree 3. Then
the norm of the polynomial; quantifies the leading order nonlinearity.af. Now f,
is a function of the parameters specifying the Hamiltonian under consideration and so
obviously is its norm. Therefore, minimizing the normfgfas a function of one or more
of these parameters corresponds to minimizing the leading order nonlinearity @y
using the optimal value(s) of the parameter(s) thus obtained in the original Hamiltonian
system, one can obtain substantial improvements in the performance of most nonlinear
Hamiltonian systems (especially in increasing the stability region). Furthermore, the norm
can also serve as a measure to compute the ‘distance’ between two symplectic maps.

Now the symmetry group for the linear pavt for n degrees of freedom is the finite
dimensional non-compact real symplectic group 8pi2. A norm that is invariant under
the linear part would also be invariant undegf = Me s since the nonlinear term con-
tributes only a fourth order correction. Therefore, the relevant symmetry group for our
purpose would be Spi2R). However, as Sp{2R) is non-compact, there can be no norm
that is invariant under the action of this group. To get around this problem, we first con-
vert M into its so-called ‘normal form’ [1] using a symplectic transformation. Once this
transformation is made, we can take the relevant symmetry group to be the compact group
SU(n) [4,5]. Thus, our problem reduces to finding norms for the space of homogeneous
polynomials of degree 3 in th@®hase space variables invariant under the action affSU(
This is accomplished by performing an invariant integration ovengbf(a suitable func-
tion. Finally, we apply the above procedure to a FODO lattice (a common component of a
particle accelerator system). We demonstrate that minimizing the norm leads to significant
improvements in the stability region of this system.

2. Preliminaries

In this section, we briefly review the basic mathematical results required for the remaining
part of the paper.

We start by representing a Hamiltonian system by a symplectic map [1]. Let us denote
the collection of A phase-space variablgs p, (i =1,2,...,n) by the symbok:

Z:(qlana~~~:Qnap1:p27~~~7pn)- (2.1)

The Lie operator [1] corresponding to a phase-space funétigris denoted by f(2) :. It
is defined by its action on a phase-space funaji@has shown below

(292 = [f(2).9(2)] (22)

Here[f(2),9(z)] denotes the usual Poisson bracket of the functfdmsandg(z). Next, we
define the exponential of a Lie operator. It is called a Lie transformation [1] and is given
as follows:
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Z!): . 2.3)

g e T
f(2):
e = 2

n= n

The effect of a Hamiltonian system on a particle can be formally expressed as the action
of a map.# that takes the particle from its initial stat# to its final statez™

"= 7" (2.4)

It can be shown tha¥Z is a symplectic map [1]. Symplectic maps are maps whasezZh
Jacobian matriceld (z) satisfy the following ‘symplectic condition’

M(2)IM(z) = J, (2.5)

whereM is the transpose d¥l andJ is the fundamental symplectic matrix. The set of all
symplectic matrices forms the real symplectic group 8g€p

Using the Dragt—Finn factorization theorem [6], the symplectic m&an be factor-
ized as shown below:

M=Mefsels e (2.6)

HereM gives the linear part of the map and hence has an equivalent representation in terms
of the Jacobian matrikl of the map# [1]:

Mz = M;;z; = (M2);. (2.7)

The infinite product of Lie transformations éxpn:) (n= 3,4,...) in eq. (2.6) represents
the nonlinear part of# wheref,,(z) denotes a homogeneous polynomialZjiof degree
n uniquely determined by the factorization theorem.

From the above discussion we see that homogeneous polynomials play an important
role in Lie perturbation theory. In particular, they represent the nonlinear content of the
symplectic map (and hence the underlying Hamiltonian system). To facilitate construction
of an invariant metric on the space of homogeneous polynomials, we first need to index the
basis monomials appropriately. Consider the sp#d® of all homogeneous polynomials
in z of degreem. Let {P\™} be the basis for this space. The dimensi&@n,m) of this
space is [7]

- (2.8)

N(2n,m) = <2n+m—1>-

We take the basiB{™ (2) to be themth degree basis monomial im 2ariables, i.e.,
PI(2) = qrplz...q2tpn, i< <m 4+t =m. (2.9)

We can associate each basis monomial with a convenient numericali if8}es shown
below. Let

. 2 —14+35-Lr
I(r17r27"'ﬂr2n) = z ( Zk70 2nk>. (210)

=1 I
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It can be easily shown thall' is the last monomial with degree less than or equahtn
this indexing, i.e.,

i(0,0,...,0,m) = max i(ry,ry,...,ry,), rq+ry+---+r, <m. (2.11)

TP TN
Thus, we see tha(0,0, . ..,0,m) gives the total number of monomials less than or equal to

m. Therefore, a convenient indexfor the elements of the s¢P{™} is got using (2.10)
and (2.11). This is given by the relation

a(ry,fy,-.slp,) =i(ry,ry,...,rp,) —i(0,0,...,0,m—1).
Thus, any polynomialn(2) can be written in the following way:
fm(z) = a™ PM (2). (2.12)

The quantitiex(" are real constants.

From our discussion in the introduction, we know that §Ui{ays an important role in
the construction of an invariant metric. We are most interested in single particle dynamics
(with three degrees of freedom) for which the relevant group is SU(3). Since the behaviour
of the system in its two transverse degrees of freedom is often quite useful to analyse, SU(2)
is also relevant. We will obtain the invariant metric by performing an invariant integration
over the above groups. Therefore, we now give the parameterizations for SU(2) and SU(3)
along with their Haar measures that will be required for this invariant integration.

A parameterization for a general elemenof SU(2) is [9]

_ ([ sin6, exp(—i@,,) —cosh, exp(—ip,)
U= ( cosézlexp(i(pzﬁ sinezzllexp(i(pzz)l > ) (2.13)

where
1
0<6, < 5T 0<@,<2m 0< @, <2m.

A parameterization for a general eleménof SU(3) is [10]

sinB,, sinB,,e'%2 (S M3
U= [ cosB,;sin6;e%: M, Mo , (2.14)
c0sf;,€ %1 SinB;,cosb,,€%2 SNy, sinB;,e/%s3

with

[1» = —COSB,, SiNBa,e (~?1=%3) — sinf,, cOSHy; CoSB,,e (~%22~ it 2
[, = SiNB,,; SinB,,€ (%293 — cosh,, cosh,, CosB,,€ (%1~ Gt s2),

I3 = €088, CoSBa,e (~ %1~ %2) —sinf,, cosB,, SinB,,e (~ %2 Pt

[ 5 = — SiNB,, COsAy,e (%2792 — 0SB, oSOy, SiNB,,e P21 Part¥ss),

Next, we specify the Haar measure for SU(2) and SU(3). The measure for SU(2) with
parameterization (2.13) is [9]
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1
yre] Sin(26,,) d6,,d@y, d@,,

The case of SU(3) is more complicated, but following the procedure in [10] we have the
invariant measure for SU(3) (using the parameterization given in (2.14)) to be

1 . . .
W Sin(26,,) 4S|rr°’(931) cog 6;,) sin(26;,) d6,, dB;, dB;,d,, d@,,d@;; d@;,de;,.

3. Invariant metric

For our purposes, we define an invariant metric to be a symmetric, positive definite, bilinear

form on the space of homogeneous polynomials of a given degrae2n phase-space

variables, that is invariant under the action of SU(n). This metric defines an inner product

on the space of homogeneous polynomials of degrethis in turn enables us to define

an invariant norm on that space. This norm is used to quantify the nonlinear contgnt of
Our task now is to generate the invariant metric. ¥etlenote either SU(2) or SU(3).

We define the bilinear form to be

m) (m) (m)
o = (P (2), PI" (2)). (3.15)

We requiregg;‘g) to be invariant under the action gf That s,

(UR™ (@), UP™(2) = (PY™, ™), (3.16)
whereU € ¢. HereU has to be embedded in Sp®),(or Sp(4,R) if ¥ € SU(2)) using the
procedure outlined in Appendix D of ref. [5] so that it can act on the phase space functions.

The standard way of constructing an invariant is to use the invariant integral from group
theory [9]. For a Lie groug, it is defined as

| :/ h(U)o(U) dU, (3.17)
g

whereU € ¢, h(U) is a function defined off, ando (U) is the Haar measure for the Lie
group¥. In our case, th&)’s are taken to be the matrices defined in (2.13) or (2.14), de-
pending on whether the grogpis taken to be SU(2) or SU(3). Since we are interested in
symmetric, positive definite, invariant bilinear forms on the space of homogeneous poly-
nomials of degree, it is natural to take

h(U) =[2"" (V) 2™(), (3.18)
where2™is aN(2n,m) x N(2n,m) matrix defined by
N(2n,m)
UPY(2 =P'(U2) = z 2™U)5P(2), (3.19)

V=1

and [2™MT is the transpose of?™ From standard matrix theory, we know that
[2™"(U) 2M(U) is both symmetric and positive definite. Thus we have an invariant met-
ric on the space of homogeneous polynomial of degrg&en as follows:
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g = (R™, pm) = é ([2™ (U) 2™(U));;0(U)dU. (3.20)

We now explicitly evaluate the invariant metg’ﬁ“) given above for various values of

(the number of degrees of freedom) andthe degree of the homogeneous polynomials).
For this, we have to carry out the invariant integration overrsléing the appropriate
parameterization of the group. The calculations are very laborious and so we do not repro-
duce them here. We will only summarize the results. Further, we will also list the invariant
metric form = 2 for the sake of completeness. Since we are interested only in monomials
of degree greater than or equal to 2 we take the imdappearing in (2.9) to be

a(ry,o,-.,f) =i(ry,ry,...,ry,) —i(0,0,...,0,1). (3.21)
Since the metric is symmetric, i.glﬁjm) = ggim) Vi, j, it is enough to list down the elements
g;j fori <j.
3.1Two degrees of freedom

The non-zero elements of the melgiiQ]?) for the homogeneous polynomials of degree 2 in
two degrees of freedom are as follows:

3
gi(iz)zz, i € {1,5,8,10},

:g’ i€{25374567779}’
gi(jZ)zliz, Vi,j€{1,58,10} andi< j. (3.22)

The non-zero elements of the metgiiQ]:”) for the homogeneous polynomials of degree 3
in two degrees of freedom are

o® =22 jc(11,2127,30},

i 48’
9
=4, 1€{1617,1925},
61
=g 1€{12..151820,22...24,26,28,29},
7 L. . .
gi(ji*l):@, Vi, j€{11,151820} andi < j,
:4_78, Vi,j € {12,21,24,26} andi < |,
7 . L
=78 Vi, j€{132227,29} andi< j,
7 L. . .
=g Vi€{14232830} andi <. (3.23)
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The non-zero elements of the melgi#) for the homogeneous polynomials of degree 4
in two degrees of freedom are

691
@292
i =g |€1{31,51,6165},
87 .
=50 | €1{32...,3441,4750525357,60,62,64},
727
=250 | €1{353840545663},
631
=540 1€1{3637,39,42,..,44 46,48 49,55,58,59}
47 .
=10’ i € {45},
@ _ 169 _ o .
o =5g5 €131} 1€{353840}; i€ {51}, € (355456,
i€ {61}, j € {3854,63}; ic{65},]c {40,5663},
17 . : : .
i(j“) =geo €31} i€{5456,63}; i€ {51}, ]e {38406},
i € {61}, j € {3540,56}; ic {65}, jc{353854},
5 _ _ _ . . .
of =15 1€{32 je{a1}; €33} je{a7}; ie {34} e {50},
i€ {52}, je{b7}; 1€{53}, je{60}; iec{62}, € {64},
19 . : : .
g = oo 1€{3241} j€{4446}; i€ {3347},]¢€ {4249},

i € {3450}, j € {4348}, i€ {3659}, j € {5257},
i € {37,58}, j € {53,60}; i€ {39,55}, j € {6264},

g L i€{32}, je{64}; i€{33},je{53}; iec{34}, €57},
i€{41}, je{62}; ie {47}, je{60}; i€ {50}, € {52},

g —_ 1 e {32}, j€{62}; i€{33},jec{60}; ic{34},]ec {52},
i€ {41}, je{64}; ie{47}, j€{53}; ie€{50}, e {57},

g¥ = _— i€ {36}, jc{48}; i€ {37}, jec{42}; ie€{39}, e {46},
i€ {55}, je{44}; 1e€{58}, j€{49}; i1€{59}, ]e {43},

g __%, i€ {36}, € {43}; i€{37}, {49} ie€{39}, e {44},
i € {55}, je{46}; ie€{58}, jec{42}; ie{59}, je {48},
@ —2%, ic {36}, j € {59); ic{37),jc{58); ic{39,]ec {55,

ie€{42}, j€{49}; 1e€{43}, € {48}; ie{44}, e {46},
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gi(j“) :%, i € {35}, j € {3840,54,56}; ic {38}, jc {5463},
i € {40}, j € {38,56,63}; ic {54}, j € {56,63);
i € {56}, j € {63},
23 _ _ . . .
of =155 €135 1€{63}; ie{38}, je{56}; i€ {40}, € {54},
g@ =22 vijc{31516165 andi<j.
IJ 19207 ) ) 2] )

3.2Three degrees of freedom

The non-zero elements of the metgiiQ]?) for the homogeneous polynomials of degree 2 in
three degrees of freedom are

1 .
gl? = I 1€{17,12161921},
= g, ie{2...,6,8,...,11,13,...,15,17,18 20},
gi(jz) = 1—16, Vi, j€{1,7,1216/19,21} andi< j. (3.24)

The non-zero elements of the metgiiQ]‘f') for the homogeneous polynomials of degree 3
in three degrees of freedom are

B> e {22,43 /58 68,7477},

9 =12
21 .
=55 1€1{23...,283337,40,424445,...,48,52,55 57,
59,...,6265,67,69,70,71,73,75,76},
= 1—2 , i€{29,...,3234,35 36,38 39,41,49,50,51,53 54,
56,63,64,66,72}
gi(f) = 1—10, Vi, j e {22283337,40,42} andi < j,

:%’ Vi,j € {23,43,48 52,5557} andi < |,
- Vi,j € {24,44,58,62,6567} andi < j,
Vi,j € {254559.68,71,73} andi < j,
¥i,] € {26,46,60,69,74,76} and i < j,

Vi,j€{27,47,61,70,7577} andi < . (3.25)
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4. Invariant norm

We are now in a position to obtain the invariant norm. Consider the symplectic#hap
describing the Hamiltonian system. As discussed in the introduction, we retain only the
leading nonlinear term and get

M =Me's, (4.26)
Next we transform this map into its normal form and then write out the invariant norm for
f in the transformed phase space coordinates.

We now give details of the calculations outlined above. A& the symplectic trans-
formation that takeM into its normal formN. Then the normal formy” of the symplectic
map.# is given by

N =AtaA=AMAA e A= Ne,
where

5 = A"11,(2) = (A 12).
SinceA depends oM, f, also now depends dvl. The homogeneous polynomigf can
be expressed as a linear combination of the basis monomials as follows.

(2 = by PO (2). (4.27)

The quantitied, are real constants.
We are now in a position to define the invariant norm which is given by

1(2) = (11 (2), 1§(2) "2, (4.28)

where the symmetric, positive definite, invariant, bilinear fdrm) is defined in (3.20)
through the basis monomials with= 3. This is invariant under the action of". Using
the expansion of{ (2) in terms of the basis monomials we obtain

(f¥(2), 4 (%ﬂsba 2znsbp >

N(2n,3) N(2n,3)

_ 3 (7). pd
-3 Z baby (PP (2), PP2) ,
N(2n,3) N(2n,3) s
B aZl le babﬁ gg;. e

Here the elements @2323 are given in (3.23) and (3.25) for= 2 andn = 3 respectively.

Sincegg?l)3 is an invariant metrid,(z) is a well-defined invariant norm.

Notice that (z) is a function of the coefficients, which in turn are related to the coeffi-
cientsa, which parameterize the symplectic maf (and hence the original Hamiltonian
system). Moreovet,2) is a polynomial of degree 2 which quantifies the leading nonlin-
earity of the system. Therefore, one can attempt to vary one of the parameters describing
the original system and minimize the nok(z). The system performance with this optimal
parameter value would be enhanced since the nonlinearity is reduced. We demonstrate this
in the final section using an example.
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5. Application

In the previous section, we have defined a nbfgh using fg of the symplectic map in

its normal form. Further, we argued that minimizing this by varying one of the system
parameters should enhance the system performance. We now demonstrate this through an
example. Inthis case, the region of stability of the system is shown to increase significantly.

For example, consider a particle being transported through the following ‘FODO Cell’
(a common component of a particle accelerator) which consists of a thin lens corrector, a
drift, a focusing quadrupole, a drift, a thin lens corrector, a drift, a defocusing quadrupole,
a drift and another thin lens corrector in the given order. We will show that the stability of
the system can be enhanced by minimizing the norm as a function of the length-strength
products of the thin lens correctors.

We will consider the case where the first and the last have the same stemagith the
middle corrector has a different strength The quadrupole strength is set @@Dand the
length of the drift is taken to be 5 m. Since we restrict ourselvesftg, the drift has only
alinear part. The individual map elements for the divtj, the focusing quadrupold/,

f{) and the defocusing quadrupol , f{™) are as follows:

1025 0 0
[0 1 0 o0
Mi=lo o 1 a25)
o 0 0 1
0379702 0783113 0 0
M. | ~109285 0879702 0 0
= 0 0 178278 124937’
0 0 174352 178278

.
£{ = 0.000729027786268741,> — 0.00401370331668622 p,”

—0.0022340294121527%¥,2q, + 0.00366214590673008,2q,

+0.00315085652798438 ,° — 0.002603625980646 17>
+0.013396336186578, p, g, — 0.013872226822998,7, 0,

—0.011804190022307, 0,2 + 0.016039119622458, q,7,

1.78278 124937 0 0
M 174352 178278 0 0
df — 0 0 0379702 0783113|°
0 0 —1.09285 037970

f19 — 0.0018454687810903¥,° — 0.00294431866040622 p,°
—0.0090716074824948,2 q, + 0.0050155118752108%2q,
+0.015553938120045, 0, — 0.010031600023799,°
+0.0056768897338474% p,q, — 0.011148606961365,0, d,
—0.0037189007980057, 0,2 + 0.01043591674642 q,°.
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The mapf?EC) for a corrector is

19 — —0.465174(c} — 30, B) s,

wheresis the length-strength product that has to be minimized. In our case, we will have
two different maps — one for the end correctors (depending,;prand another for the
middle corrector (depending @y).

Using CBH theorem from Lie group theory [9] we combine the maps of all individual
elements to get one single map describing the entire FODO cell. The final combined matrix
M is given by

—2.22235 224671 00 0.0
M — —2.239 181356 00 0.0
o 0.0 0.0 181356 224671
0.0 0.0 —2.239 —-2.22235

The expression for the combined third degree polynofjas very long and is hence not
given here.

We now put the map in normal form. The matAxvhich puts the map# in the normal
form and the normal forr\ are given below

151498 0 0 00
A [ 136073 0660076 00 00

0.0 00 151498 o |

0.0 00  —-1.36073 066007

0204398 (97889 00 00

0978887 —0.204397 0 00
N= 0.0 00  —0204397 097889 |- (5:30)

0.0 00  —0.078887 —0.20439

The polynomialf; also gets transformed t@r by this process. We now calculate the norm
|(2) using this transformed! and minimize it as a function & ands,.

The minimum value fot(z) is obtained when the corrector strengths are given as fol-
lows:

s, = —0.00134675; s, = —0.0269976

The boundary of the region of stability (dynamic aperture) of the system is found using the
solvable map method [11]. Along thig direction, the dynamic aperture is found to be

1. (4, P4,0y, P,) = (0.18,0,0,0) when all correctors are turned off.

2. (04, Py1,0,,P,) = (2.2,0,0,0) when the correctors are turned on with the above
strengths.

Similar results are observed in the other directions. We notice that the dynamic aperture
has increased by an order of magnitude.

6. Conclusions

We have defined an invariant metric on the space of homogeneous polynomials charac-
terizing a symplectic map. We have demonstrated that the metric thus defined helps in
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improving the stability and hence the performance of the system. This then promises to be
a handy tool that can be employed to enhance the performance of nonlinear Hamiltonian
systems.
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