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Symplectic integration of nonlinear Hamiltonian systems
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Abstract. There exist several standard numerical methods for integrating ordinary differential
equations. However, if one is interested in integration of Hamiltonian systems, these methods can
lead to wrong results. This is due to the fact that these methods do not explicitly preserve the so-
called ‘symplectic condition’ (that needs to be satisfied for Hamiltonian systems) at every
integration step. In this paper, we look at various methods for integration that preserve the
symplectic condition.
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1. Introduction

In this paper, we consider numerical integration methods for Hamiltonian systems. In
particular, we would be interested in long-term integration of these systems. In these
cases, it is important to preserve the Hamiltonian nature of the system at every integration
step. Otherwise, one can get spurious damping or even chaotic behaviour which is not
present in the original system. Such behaviour can obviously lead to wrong predictions
regarding the long-term stability of the Hamiltonian system being studied.

In this paper, we look at various integration methods that overcome the above problem
[1-20]. Such integration methods go by the name of symplectic integrators. In §2, we
introduce the basic concepts. In §3, we consider the generating function methods for
symplectic integration. Section 4 is devoted to symplectic Runge-Kutta (RK) and
Runge-Kutta—Nystrom (RKN) methods. Section 5 introduces the Lie algebraic methods
for integrating Hamiltonian systems. A better formulation of the generating function
methods in this language is given. The jolt map factorization method for symplectic
integration is also considered in some detail. Finally, integration using solvable maps is

~ discussed. The concluding remarks can be found in §6.

2. Basic concepts

* Consider the following set of 2n first order differential equations:
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Figure 1. Numerical integration results using a non-symplectic fourth-order Taylor

series map for the anharmonic oscillator. The initial condition used is (9:(0),
p1(0)) = (0.8,0.0).

where g, p € R". The initial conditions are given by q(t) = qo and p(to) = po.
The above system of differential equations defines a Hamiltonian system where
the Hamiltonian function H is a function of the variables gi, pi i=1,2,...,n).
‘The variables gi and p; constitute the phase space of the Hamiltonian system.
Typically, g/’s are the (generalized) coordinates and pi’s the (generalized) momenta of
the system.

Consider the Poisson bracket [,] of two phase space functions f(g,p) and g(g,p)
defined as

_\ f’l%-?ﬁ@] | | 2.2
[f(a,p),2(q,p)] —; {aq,- o B9, Bal| (2:2)

Hamiltonian systems possess the remarkable property that they preserve the fundamental
Poisson bracket [g;, p;], that is o ‘

@), i) = lai(0),p,O)], Vi, (2.3)

Equivalently, Hamiltonian systems . preserve the symplectic 2-form dp Adg. This
condition is called the symplectic condition,

In general H is a complicated function of g’s and p’s. Consequently, the resultant
equations of motion [cf. eq. (2.1)] are nonlinear ordinary differential equations.
Generically, such systems of nonlinear equations do not admit an analytic solution,
that is, the system is non-integrable. Hence, one is forced to integrate these sets of
ordinary differential equations numerically. There exist several standard methods for
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Figare 2. Numerical integration results using the exact symplectic map for the
anharmonic oscillator. The initial conditions used are (g1(0),p1(0)) = (0.8,0.0),
(1.2,0.0), (1.6,0.0), and (2.0,0.0).

numerical integration of a system of first order ordinary differential equations. However,
these are general purpose methods and are not geared explicitly towards Hamiltonian
systems. In particular, they do not preserve the symplectic condition at every step. For
short-term integration this does not lead to much problems. For long-term integration,
these non-symplectic methods can be a disaster. Since the symplectic condition is not
preserved, even the qualitative nature of the solutions obtained by these methods can be
very different from that of the exact solution. For example, one can get spurious damping
or chaos where there is none. This can lead to wrong deductions regarding the long-term
stability of the Hamiltonian system in question.

An example of how things can go wrong is shown in figure 1. This figure gives the
result of integrating the nonlinear Hamiltonian system defined by the followmg
Hamiltonian using a non-symplectic method

a+r 4t

H==7"""u | - 24
Looking at the figure, one might conclude that chaotic behaviour is present in the system.
However, the exact solution of the system exhibited in figure 2 shows that this is not true.
One way to avoid such a situation while using non-symplectic methods is to reduce the -
step size so that the symplectic violation is very small at each step. However, the
computational cost of such a procedure for long-term numerical integration would be
prohibitive. Therefore, one is lead to look for integration schemes which explicitly
preserve the symplectic condition at every step. Such schemes are called symplectic
integration methods and we look at some of them in the following sections.
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3. Generating function methods

Symplectic integration methods were first discovered by DeVogelaere [1]. However,
these results were not widely known. In 1983, Ruth [2] independently discovered
symplectic integration methods using canonical generating functions.

The basic idea behind this method is as follows. For simplicity, let us consider a
Hamiltonian given by the special form

H(g,p) =A(p) +V(q). (3.1)

Ideally, we would like to make a canonical transformation such that the new Hamiltonian
H' in the new variables is identically zero. However, this is not practical. Hence, we
attempt to make H' zero up to a given order # [2, 3]

H'(¢,p',1) = O(#), ‘ (32)

where ¢ and p' are the new variables after the canonical transformation. Using the
equations of motion [cf. eq. (2.1)], we get

(1) = qo+ 0, p'(t) =po+ OFH). (3.3)

Thus, the motion is simple in the new coordinates. Once this is accomplished, we can
invert the canonical transformation to get the motion in the original variables (accurate to
order k). Therefore we get a map from g(0), p(0) to ¢(z), p(#) (again accurate to order k).
Now we can repeat the process to go from ¢(t), p(t) to ¢(2¢), p(2¢) and so on. Thus, we
have an integration algorithm (of order k) for the Hamiltonian system which allows us to
step forward in time starting from the intitial conditions. Of course, we will typically take
the time step ¢ at every stage to be small so that the error generated (which is of order
#*1) is small. Since canonical transformations explicitly preserve the symplectic
condition, we in fact have a symplectic integrator of order k.

We did not specify above how the canonical transformation is to be performed. This is

done using the generating function method [21]. We use a generating function of the new
coordinates and the old momenta [2, 3]

F3(q’:p7t) = “‘1' P+ G(q',p, t)' | (34)

Now we derive a simple symplectic integration method using the technique described
above. Let the generating function be Specified by [2]

G=-H(d,p)t = —[A(p) + V(q)]z. (3.5)
Using the canonical transformation equations appropriate for this generating function
[21] we get
P; =pi +a%(q,?:)-t; .
’ Op;

Note that the momentum equation would in general be an implicit equation inp which
has to be inverted to obtain p as a function of p'. This can be done explicitly only for
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Hamiltonians having a simple form. In general, one has to solve the equation numerically
to obtain p as a function of p’. This complication is the greatest drawback of the
generating function method. In our case, because of the special form of our Hamiltonian,
we can easily invert the momentum equation. Then; we can write the new Hamiltonian in
terms of ¢’ and p’ as follows [2]:

H ot agg) ?%g’;ﬁ +0(P). (37)

i=1

Consequently, one gets

d =qo+0(*), p =po+0(H). (3.8)

Thus, we have succeeded in obtaining a symplectic integration method of order 1 for our
simple Hamiltonian.

Following the same procedure, one can in principle get symplectic integration methods
of higher order. However, it is not easy to obtain the necessary canonical transformations.
In general, one uses a series of transformations to attain the final goal. For example, for
the special Hamiltonian given in (3.1), a fourth order symplectic integration method is
given by the following equations [3]

ov 0A
p§l+1):pz§l) —cCit —a';('l')'a ngH-l) = qgl) —dpt 'é'm‘ ) l= 03 172a 314 (39)
i

12

Here the index [ labels successive canonical transformations. Moreover, q(o) = qo and
p® = po (the initial conditions). The unknown coefficients ¢;, d; are determined by the
condition that the new Hamiltonian in terms of the final canonical variables is zero upto
order r*. One possible solution is given below [3, 5]:

c1 =C4=a+%, cp=c3=—a,dy=d3s=2a+1, dy=—-4a—1, dy =0,
' (3.10)
where a = 0.1756.... ..

The necessary canonical transformations become more and more difficult to solve for
as one goes to higher orders. Further, for complicated Hamiltonians the inversion of the
momenta equations becomes impossible analytically. One has to invert them numerically
(typically using Newton-Raphson method) with its attendent convergence problems.

Also, this slows down the integration algorithm considerably. We shall see that these
problems are solved by using Lie algebraic methods.

4. Symplectic RK and RKN methods

In this section, we discuss Runge-Kutta and Runge-Kutta—Nystrom methods that are
explicitly symplectic [14-20]. We start with the set of 2x first-order differential equations
for a Hamiltonian system [cf. eq. (2.1)] which we reformulate as follows:

% :f(z)’ Z(IO) = 20,
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where z = (g,p) is a 2n-vector and f is a vector function specified by the right hand side
of (2.1).

An s-stage Runge-Kutta method to integrate the above system of differential equations
is given by [20] '

S
Zi= z,,-l-hZa,-jf(Zj), = 172a"'3s$ (41)
j=1
s
1 =2 +h Y by f(Z). (42)
=

Here h is the step size and z,, 2, are the values of phase space variables at the end of the
nth and (n + 1)th integration steps respectively. The coefficients a;; and b; have specific
values depending on the RK method under consideration. The RK method is said to be
explicit [20] if a; vanishes for i < j. In this case, the vectors Z; can be solved recursiv;ly
without having to solve any implicit equations. The method is called diagonally implicit
if a;; vanishes for i < j and implicit otherwise. It can be shown [17] that only implicit RK

methods can be symplectic. These are symplectic if the following condition .is
satisfied [17]:

biaj+bjay —bb; =0, i,j=12,...,s.
An example of a two-stage implicit RK method which is symplectic is specified by
| 1 1 V3 1 V3 1

ay =dan=-, a12=z-——6~, a21=2+?, b1=b2=—2-. (4.3)

This can be shown to be a symplectic integrator of order 4. In fact, this is one member of

a family of symplectic RK methods which g0 by the name of Gauss-Legendre methods

[20]. However, these are computationally costly methods. Iserles[16] has derived more
efficient symplectic RK methods. ]

Next, we consider Runge-Kutta-Ny.

ourselves to Hamiltonians of the fo

rm H = p?/2 + V(q). The equations of motion for
such Hamiltonians can be written as

d%q
where f is the gradient of —V. The above system can be solved by an s-stage RKN
method [20]
s
Qiz%l +hcipn+hzzaijf(gj): j= 172:--‘35‘: (44)
i=1
Pri=pu+hY bif(Q), o (4.5)
=1
9n+1 = qn + hp, + K Zgjf(Q}) - (4'6)

j=1
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This method is symplectic if the following conditions are satisfied [15,18]

bi—bi+bic;=0, i=12,...,5, 4.7)
biag—bjaji—bi3j+bj5i=0, i==1,2,...,j—1; j=2,3,...,s. (48)
Unlike RK methods, explicit RKN methods can also be symplectic.

The simplest symplectic one-stage RKN method is the Stormer—Verlet method of order
2 specified by :

an=0, ¢, =05 b =05 b =1

The above method is used extensively in molecular dynamics simulations. Higher order
symplectic RKN methods have been derived. The highest order method currently
available is the explicit 13-stage method of order 8 obtained by Calvo and Sanz—Serna
[19]. Symplectic RKN methods have also been obtained using collocation and perturbed
collocation techniques [20].

5. Lie algebraic methods

One.of the approaches to symplectic integration is the use of Lie algebraic methods [3, 5,
7-13]. Before going into the details we need to consider some mathematical prelimi-
naries. The common denominator in all these approaches is the representation of
Hamiltonian systems by symplectic maps [22] which are then iterated to obtain the time
evolution of the system.

We start by defining certain mathematical ochcts For simplicity, we restrict ourselves
to three degree-of-freedom systems. Let us denote the collection of six phase-space
variables g¢;, p; (i = 1,2, 3) by the symbol z:

= (ql)plaQva%qS:p?))' (51)

The Lie operator corresponding to a phase-space function f(z) is denoted by: f(z):. It is
defined by its action on a phase-space function g(z) as shown below

:f(2):8(2) = [£(2), 8(2)]- (5:2)

Here [f(z), g(z)] denotes the usual Poisson bracket of the functions f(z) and g(z) [cf. eq.
(2.2)]. Next, we define the exponential of a Lie operator. It is called a Lie transformation
and is given by

e = Z ST (53)
n=0 nl v
Powers of : f(z): that appear in the above equation are defined recursively by the relation
:(2)"8(2) = : f(2)" ' [F(2), 8(2)], (54)
with
1 f(2)8(2) = 8(2). | - (59)
For further details regarding Lie operators and Lie transformations, see [22]. ‘
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The time evolution of the Hamiltonian system can be represented by a symplectic map
M [22] as follows:

M _ M: —H(z):. (5.6)
dt

Symplectic maps are maps whose Jacobian matrices M (z) satisfy the following
symplectic condition ‘

MEIM() =J, (57)
where M is the transpose of M and J is an antisymmetric matrix defined as follows:

0 1 0 0 0 O
-1 0 0 0 0 O

|0 0 0 1 0 O 5.8

=10 0 -10 0 o0 58
0 0 0 0 0 1
0 0 0 0 -1 0

Matrices M satisfying (5.7) are called symplectic matrices and the corresponding maps
M symplectic maps. Symplectic maps explicitly preserve the symplectic condition. It can

- be shown [22] that the set of all M’s forms an infinite dimensional Lie group of
symplectic maps. On the other hand, the set of all real 6 x 6 symplectic matrices forms
the finite dimensional real symplectic group Sp(6, R).

The above map M gives the final state z(1) of a particle after one time step as a
function of its initial state z(©):

20 = MO, (5.9)

To obtain the state of a particle after N time steps, one has to merely iterate the above
mapping N times i.e.

2 = pMNO) (5.10)
Thus, we have obtained an integrator that is symplectic (since M preserves

symplecticity). Moreover, we have the values of phase space variables after one time
step as explicit functions of the initial values.

5.1 Generating function methods

We reformulate the generating function method using Lie algebraic techniques [3]. For a
time-independent Hamiltonian, (5.6) can be solved formally to give

M(t) = exp(: —tH(z):). (5.11)

If one could solve this explicitly, one would get a symplectic integrator valid to arbitrary
order since symplectic maps

explicitly preserve the symplectic condition. However,
unless the Hamiltonian is integrable, one can not evaluate the Lie transformation on the
right hand side. On the other hand, for special Hamiltonians, it may be possible to split
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the Hamiltonian as follows:
H =H; + HZ:
Ni(t) = exp(: —tH;:) i=1,2,

where the symplectic map /V; can be evaluated exactly (or up to order #*, the order of the
symplectic integration method that we wish to derive). The above restriction is a
drawback of this method (equivalent to the invertibilty of momenta equation in § 3). We
will overcome this restriction in the next subsection.

Under the assumption that H can be split as above, one can construct symplectic
integration methods as follows. Consider

N () = N1(ON(2). (5.13)
Since each symplectic map N; is a canonical transformation [22], NV is a product of two
canonical transformations. Therefore, this is just a reformulation of the generating

function method considered in §3. Using the group-theoretical Campbell-Baker—
Hausdorff (CBH) formula [23], one obtains

N(I) = N] (t)Nz(l) = GXp(: —tH| — tH, — tZ[Hl,Hz]/Z e ) (5.14)
Using eq. (5.12), we get
N(t) = M(2t) + O(£). (5.15)

Thus, N (z) is a symplectic first-order approximation to M(t) and consequently, we get
z(#) as a function of z(0) accurate to order z In other words, we have succeeded in
obtaining a first-order symplectic integrator. If we apply this to the H given in (3.1) with
H; = A(p) and H, = V(q), we get back (3.6). This again demonstrates the equivalence of
this method with the generating function method described in § 3.

To obtain a fourth-order symplectic integrator, we start with the relation [3]

N (t) = efePeePPeefet,

(5.12)

where

21+ a)A =:—tHy:, (2+0) =:—tH,:.
If

a=1-213 g= 4&:&&._2.,

~ (a+1)
we get [3]

N () = M) + OF).

This is of course a symplectic integrator of order 4. This is actually the same integrator
that we discussed in §3 in a different form.

The above method was further generalized by Yoshida [7] to obtain symplectic
integrators of arbitrary even orders for Hamiltonians of the form given in (3.1).

5.2 Symplectic completion bf symplectic jets

In this approach [8-10, 12, 13], symplecticity is achieved by refaétorizing the truncated
symplecﬁc map using the so-called ‘jolt maps’.
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We start by factorizing the symplectic map M [cf. eq. (5.6)] representing the
Hamiltonian system using the Dragt-Finn factorization theorem [22, 24] from Lie
perturbation theory:

M = MeFieh .. gfi... ’ - (5.16)

Here M gives the linear part of the map and hence has an equivalent representation in
terms of the Jacobian matrix M(0) of the map M at the origin [22]:

MZ;‘ = Mjz; = (Mz)i. (5.17)

Thus, M is said to be the Lie transformation corresponding to the 6 x 6 matrix M
belonging to Sp(6,R). The infinite product of Lie transformations exp(: fn:)
(n=3,4,...) in (5.16) represents the nonlinear part of M. Here f,(z) denotes a
homogeneous polynomial (in z) of degree n uniquely determined by the factorization
theorem.

One can not use M in the form given in (5.16) for numerical computations since it

involves an infinite number of Lie transformations. Using the perturbation theory
approach, we therefore truncate M as follows:

M Metfighs .. gl (5.18)

However, each exponential e+ in M still contains an infinite number of terms in its
Taylor series expansion. One possible way around this is to truncate the Taylor series

generated by the Lie transformations to order P giving the following truncated map
(denoted by Mp):

MPZ=M(1+:f3:+---)(1+;f4;+...)... .
(U | (5.19)

Here the power series is truncated in such a way that the highest order term generated is
Z'~1. The truncated map Mp is called a symplectic jet of order P (for a more precise
definition, see [10]). Despite its name, M p is not symplectic because of the truncation of
the Taylor series. Therefore, it can lead to spurious damping or growth (as discussed
earlier).

The basic idea behind the approaches followed [8, 10, 12] is to refactorize Mp [cf.
€q. (5.19)] as a product of symplectic maps that can be evaluated exactly. This process of
refactorizing Mp goes by the name of ‘symplectic completion of symplectic jets’.

We begin this process by defining jolt maps. Consider the symplectic map given by
8@ where &(2) is a function of the phase space variables z. It is called a jolt map if
:8(2): is a nilpotent operator of rank 2 i.e. if the following condition is satisfied

:g(2)*z=0. (5.20)

The functio-n 8(z) is then called a jolt function. We note that jolt maps have only two non-
zero terms in their Taylor series expansions [cf. eq. (5.3)]. Hence they can be evaluated

exactly without any truncation. The term jolt map was first introduced in [12]. An
example of jolt map [10] is given below:

eRf(@.q2.25):” (5;21 )
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Here f(q1, g2, ¢3) is an nth degree polynomial in variables g1, g5, and g3 and R is the Lie
transformation corresponding to a 6 x 6 matrix R belonging to any subgroup of Sp(6, R).
R is glven by the following relation [cf. eq. (5.17)]

Rz = Ryz = (Rz);. (5.22)

Now we can formulate the problem [8]. Given the map Mp, find another map J
specified by the following product of K jolt maps

(1) QR

~ (1) (2) (2) @, &) 4 ,(K) (),
sze‘gi +8y +g,, : +8, +t+8p ..e8 +gy Atgp (5_23)

such that this map agrees with Mp to order P i.e.

J = Mp to order P. (5.24)
Here g( D5 are (homogeneous) jolt polynomials of degree n given by the following relation
g =9Rg" i=1,2,...,K, (5.25)

where ,Bf,i) is a real coefficient. The matrices R; belong to a subgroup of Sp(6,R)
(including Sp(6, R) itself) and R; denotes the Lie transformation corresponding to these
matrices [cf. eq. (5.22)]. Since 7 is given as a product of finite number of jolt maps, it can
be evaluated exactly without any truncation. Thus it gives a symplectic approximation to
Mp accurate to order P.

By comparing terms of same order in Mp and J, the problem of obtaining a
symplectic completion for Mp can be reduced to the following general problem leen a
nth degree homogeneous polynomial f, and K matrices R;, find the coefficients ,3,, s such
that the following condition is satisfied

K
Z BORG? = f,. (5.26)
i=1. . ‘
Typically, one has more ﬁ,(,i)’s than there are equations. So, one imposes constraints on
these coefficients. In [10], the sum of squares of these coefficients is minimized. A more
sophisticated approach can be found in [12, 13].

To proceed further, following the approach given in [10], one goes to the continuum
limit of the above problem. We get the following continuum problem: Given an nth degree
homogeneous polynomial f, and a subgroup G of Sp(6, R) on which invariant integration is
well defined, find the function g(x) such that the following condition is satisfied ‘

ﬁzLdug(u)ﬁ(u)q’{. (5.27)

Here u denotes a general element of the group G and R(u) denotes the Lie transformation
corresponding to u. All integrations are invariant integrations performed over the group
G. Again, an appropriate constraint on g(u) is imposed.

This problem has been solved [10] by taking the group G to be SU(3). The solutlon is
given by:

g(u) = Z 49} D, W), j<n. o (5.28)
Here, {;’s (all of which can be shown to be non—zerb) and ¢’ ’s are the coefficients
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obtained by expanding g} and f, respectively in terms of SU(3) basis vectors. Further,
’15{,1”1] (u)’'s are the complex conjugates of the usual D matrices that occur in SU (3)
representation theory. Finally, 4 is the dimension of the SU(3) representation labeled by J.

Once the continuum solution has been obtained, one can go back to the discrete case by
using discrete subgroups of SU(3) or by quadrature formulas. See refs [10, 12, 13] for
further details.

Now that a solution g(u) has been obtained, we would like to reduce the number of jolt
maps involved in the refactorization so that a fast numerical integration method is
obtained. A substantial reduction can be achieved by splitting the integration over SU(3)
as an integration over SO(3) followed by an integration over the coset space SU(3)/SO(3).
In ref. [10] it is shown that the number of jolt maps required by following this approach is
less than that required by Irwin [8]. Irwin uses the group U(1) x U(1) x U(1). However,
there are still many theoretical problems regarding integration over coset spaces etc. which
are not fully resolved. Work is still proceeding along these lines.

5.3 Solvable map method

In this approach [9,11], the symplectic map M is refactorized using the so-called
‘solvable maps’.

Solvable maps [11] are generalizations of Cremona maps. The class of Cremona maps
includes only those symplectic maps for which the Taylor series expansion terminates
when acting on phase space coordinates. The class of solvable maps also includes those
symplectic maps for which the Taylor series expansion can be summed explicitly. The Lie

transformation exp(: agh™ + bg'™p; :) is a simple example of a solvable map that is not a
kick. One finds that

91 = exp(:aqit? + bgttlp;) gy = ———-g-l——l for 1>1, (5.29)
1+ gl
. ‘ E—ald 2 .
Py = exp(:aq)™ + b py) pr = —-,(L}ﬁi-—, (530)
b(q1) o
where ,
E = aq"* + bgtp,. (5.31)

The basic idea behind the solvable map method is to represent each nonlinear factor
exp(:fn:) in Mp [cf. eq. (5.18)] as a product of solvable maps:

exp(:fn:) = exp(:g1:) exp(:g2:) - exp(:gm:) for n>3. (5.32)

For example, consider the Lie representation of a general fourth order map in one
dimension [cf. eq. (5.18)]:

My = Mexp(:f3:) exp(:fa:) ' (5.33)
where "

f = a1q] + a:g}p1 + asqip} + asp?, (5.34)

fo = asq; +a5q?p1 + -+ agp‘l‘. : (5.35)
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This can be represented in terms of solvable maps as given below:

My =M exp(:b1q; + bag’p1 ) exp(: bsqip; + bapy:)
exp(:bsqt + beqip: 1) exp(:b7qipy 1) exp(:bsqip] + bopt:),  (5.36)

where
bj=a; for i=1,2,...,5 and i=09, (5.37)
bg = a¢ — 3aias, (5.38)
b7 = a7 — 9aya4/2 — 3azas3 /2, (5.39)
bg = ag — 3axay. (5.40)

Only some preliminary work has been done on this method. It needs a stronger theoretical
foundation.

Another related approach is the monomial factorization method. See Refs [25, 26] for
further details.

6. Summary

In this paper, we saw that if integration performed on a Hamiltonian system is not
symplectic, one can draw wrong conclusions regarding the long-term stability of the
system. We looked at various methods for symplectic integration. There is no single ideal
method yet. Generating function methods suffer from the drawback that implicit
equations have to be solved numerically during the process of integration with its
attendent convergence problems. This can also lead to reduction in the speed of the
algorithm. Symplectic RK methods are again implicit. Symplectic RKN methods can be
explicit but are slow for long-term integration. This is especially so when one is
integrating complicated systems like particle storage rings with thousands of components.
Integration using symplectic maps can be very fast since one has to merely iterate the
maps. Methods using Lie algebraic properties (like jolt factorization method and solvable
map method) also give maps where the final values of variables are explicit functions of
initial values. For these reasons, these approaches look most promising especially for
long-term integration. However, some theoretical problems associated with these
methods are not fully resolved. :
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