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Thomas precession is a curious effect in special
relativity which is purely kinematical in origin
and illustrates some important features of the
Lorentz transformation. It also has a beautiful
geometric interpretation. We will explore these
in this and the next installment.

The simplest context in which the Thomas precession
arises is when an object with an intrinsic spin (like an
electron or a gyroscope) moves in a closed orbit with
variable velocity — an example being the electron orbit-
ing the nucleus in an atom, treated along classical lines.
It turns out that, due to Thomas precession, the effective
energy of coupling between the spin and the orbital an-
gular momentum of the electron picks up an extra factor
of (1/2) which, of course, has experimentally verifiable
consequences. Naively, you might have thought that
any special relativistic effect should lead to a correction
which is of the order of (v/c)? and hence will be a very
weak effect for an electron in an atom. This is indeed
true. But experimentally observable effects of the spin-
orbit interaction are also relativistic effects. These arise
because, in the instantaneous rest frame of the orbit-
ing electron, the Coulomb field (Ze?/r?) of the nucleus
gives rise to a magnetic field (v/c)(Ze?/r?). This mag-
netic field couples to the magnetic moment (eh/2m.c)
of the electron. So any other effect which is of the order
of O(v?/c?) will change the observable consequences by
order unity factors.

It turns out that this precession also has an interesting
geometrical interpretation that allows one to relate it to
other — apparently unconnected — physical phenomena
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like the rotation of the plane of the Foucault pendulum.
In this installment I will provide a straightforward (and
possibly not very inspiring) derivation of the Thomas
precession. Next month we will explore the Foucault
pendulum and the geometrical relationship.

Consider the standard Lorentz transformation equations
between two inertial frames which are in relative motion
along the z-axis with a speed v = ¢f. This is given by
z = ~(z'+ot'), t = y(t'+va'/c?), where vy = (1—2)"1/2,
We know that the Lorentz transformation leaves the
quantity s = (—c*t? + |z|?) invariant. A quadratic ex-
pression of this form is similar to the length of a vector
in three dimensions which is invariant under rotation of
the coordinate axes. This suggests that the transforma-
tion between the inertial frames can be thought of as a
rotation in four-dimensional space. The rotation must
be in the t—x plane characterized by a parameter, say, 1.
Indeed, the Lorentz transformation can be equivalently
written as

x = 2’ cosh) + ct’ sinh v, ct = 2’ sinh ¢ + ct’ cosh .

(1)

with tanh+ = (V/c¢), which determines the parameter
¢ (called the rapidity) in terms of the relative velocity
between the two frames. Equation (1) can be thought
of as a rotation by a complex angle i).

Two successive Lorentz transformations with velocities
vy and vy, along the same direction x, will correspond to
two successive rotations in the t—x plane by angles, say,
11 and 1,. Since two rotations in the same plane about
the same origin commute, it is obvious that these two
Lorentz transformations commute and are equivalent to
a rotation by an angle 11 + 15 in the t—x plane. This
results in a single Lorentz transformation with a veloc-
ity parameter given by the relativistic sum of the two
velocities v1 and vo. Note that the rapidities simply add
while the velocity addition formula is more complicated.

The transformation
between inertial
frames can be
thought of as a
rotation in four-
dimensional space.
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The root cause of

Thomas precession is
this: when a body is
accelerated, with its

velocity vector
changing
continuously, the
instantaneuous
Lorentz frames are
obtained by boosts
along different

directions, and there
is an effective rotation

of coordinate axes
which occurs in the
process.

The situation, however, changes in the case of Lorentz
transformations along two different directions. These
will correspond to rotations in two different planes and it
is well known that such rotations will not commute. The
order in which the Lorentz transformations are carried
out is important if they are along different directions.
Suppose a frame S7 is moving with a velocity v1 = vin,
(where nq is a unit vector) with respect to a reference
frame Sy and we do a Lorentz boost to connect the coor-
dinates of these two frames. Now suppose we do another
Lorentz boost with a velocity vy = voms to go from Sy
to So. We want to know what kind of transformation
will now take us directly from Sy to Sy. If n; = ng,
then the two Lorentz transformation are along the same
axis and one can go from S to Sy by a single Lorentz
transformation. But if the two directions n; and n, are
different, then this is not possible. It turns out that in
addition to the Lorentz transformation one also has to
rotate the spatial coordinates by a particular amount.

This is the root cause of Thomas precession. When a
body is moving in an accelerated trajectory with the
direction of velocity vector changing continuously, the
instantaneous Lorentz frames are obtained by boosts
along different directions at each instant. Since such
successive boosts are equivalent to a boost plus a ro-
tation of spatial axes, there is an effective rotation of
the coordinate axes which occurs in the process. If the
body carries an intrinsic vector (like spin) with it, the
orientation of that vector will undergo a shift.

After all that English, let us do some maths to estab-
lish the idea rigorously. To do this we need the Lorentz
transformations connecting two different frames of ref-
erences, when one of them is moving along an arbitrary
direction m with speed V' = fc. The time coordinates
are related by the obvious formula

=9 -8 x), (2)
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where we are using the notation 2! = (2% @) = (ct, )

to denote the four-vector coordinates. To obtain the
transformation of the spatial coordinate, we first write
the spatial vector  as a sum of two vectors; x| = V(V-
x)/V? which is parallel to the velocity vector and z, =
x — x| which is perpendicular to the velocity vector. We
know that, under the Lorentz transformation, we have
x'| = x, while :cil = v(x| — Vt). Expressing everything
again in terms of x and ', it is easy to show that the
final result can be written in the vectorial form (with

B =pn) as:

(v—1)
5

Equations (2) and (3) give the Lorentz transformation
between two frames moving along an arbitrary direction.

(8- 2)B —1Bz". (3)

x =x+

We want to use this result to determine the effect of
two consecutive Lorentz transformations for the case in
which both v; = vin; and v9 = v9ny are small in the
sense that v; < ¢, v9 < c¢. Let the first Lorentz trans-
formation take the four vector 2° = (ct, x) to 2% and the
second Lorentz transformation take this further to z$;.
Performing the same two Lorentz transformations in re-
verse order leads to the vector which we will denote by
x$5. We are interested in the difference 62* = x4, — x5
to the lowest nontrivial order in (v/¢). Since this in-
volves product of two Lorentz transformations, we need
to compute it keeping all terms up to quadratic order in
vy and vy. Explicit computation, using, (3) and (2) now
gives (try it out!)

W~ (B B~ (B4 B

z — (B2 + B1)2° + [Ba(B2- ) + Bi(B1 - )] +
ﬁz(ﬁl : $)7 (4)

accurate to O(B%). It is obvious that the terms which
are symmetric under the exchange of 1 and 2 in the

Q
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above expression will cancel out when we compute 6x¢ =
18, — 2%, Hence, we immediately get 62° = 0 to this
order of accuracy. In the spatial components the only
term which survives is the one arising from last term in
the expression for x,; which gives

1
2

bx = [B2(B1-x) — Bi(B2- )] =

y (v1 X vo) X x. (H)
Comparing this with the standard result for infinitesi-
mal rotation of coordinates éx = Q x x, we find that the
net effect of two Lorentz transformations leaves a resid-
ual spatial rotation about the direction v; X vy. Since
this result was obtained by taking the difference between
two successive Lorentz transformations, @ = x5 — X219,
we can think of each one contributing an effective ro-
tation by the amount (1/2)(v; X vs)/c?. Consider now
a particle with a spin moving a circular orbit. (For ex-
ample, it could be an electron in an atom; the classical
analysis continues to apply mainly because the effect is
purely kinematic!). At two instances in time ¢ and ¢+ 6t,
the velocity of the electron will be in different directions
v1 and v+ adt, where a is the acceleration. This should
lead to a change in the angle of orientation of the axes
by the amount
1(vy xvy) 1(v; xa)

50 = - — - 51 6
2 c? 2 c? (6)

corresponding to the angular velocity w = 6Q/6t =
(1/2)(v1 x @)/c®. This is indeed the correct expression
for the Thomas precession in the nonrelativistic limit
(since we had assumed v; < ¢,v9 K ¢).

Let me now outline a rigorous derivation of this effect,
leaving the algebraic details for you to figure out! To
set the stage, we again begin with the rotations in 3-
dimensional space. A given rotation can be defined by
specifying the unit vector n in the direction of the axis
of rotation and the angle # through which the axes are
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rotated. We associate with this rotation a 2 X 2 matrix

R(6) = cos(0/2) —i(o - n)sin(0/2) = exp —%(a ‘n),

(7)

where o, are the standard Pauli matrices and the cos(6/2)
term is considered to be multiplied by the unit matrix
though it is not explicitly indicated. The equivalence of
the two forms — the exponential and trigonometric — of
R(6) in (7) can be demonstrated by expanding the ex-
ponential in a power series and using the easily proved
relation (o - n)? = 1. (Incidentally, the occurrence of
the angle #/2 has a simple geometrical origin: A ro-
tation through an angle # about a given axis may be
visualized as the consequence of successive reflections in
two planes which meet along the axis at an angle 6/2.)
We can also associate with a 3-vector «, the 2 x 2 ma-
trix X = x - o. The effect of any rotation can now be
concisely described by the matrix relation X’ = RX R*.

Since we can think of Lorentz transformations as rota-
tions by an imaginary angle, all these results generalize,
in a natural fashion, to Lorentz transformations. We
shall associate with a Lorentz transformation in the di-
rection m with the speed v = ctanh «, the 2 x 2 matrix

L = cosh(a/2) + (n - o) sinh(a/2) = exp %(a o).

(8) The change from
trigonometric
functions to
hyperbolic functions
is in accordance with
the fact that Lorentz
transformations
correspond to rotation
by an imaginary
angle.

The change from trigonometric functions to hyperbolic
functions is in accordance with the fact that Lorentz
transformations correspond to rotation by an imaginary
angle. Just as in the case of rotations, we can associate
to any event z° = (2%, ), a (2 x 2) matrix P = z'0;
where o( is the identity matrix and o, are the Pauli
matrices. Under a Lorentz transformation along the di-
rection n with speed v, the event z* goes to z* and P

goes P’. (By convention ¢;’s do not change.) They are
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with
P =LPL* (9)
where L is given by (8).

Consider a frame Sy which is an inertial, laboratory
frame and let S(¢) be a Lorentz frame comoving with
a particle (with a spin) at time ¢. These two frames are
related to each other by a Lorentz transformation with
a velocity v. Consider a pure Lorentz boost in the co-
moving frame of the particle which changes its velocity
relative to the lab frame from v to v + dv. We know
that the resulting final configuration cannot be reached
from Sy by a pure boost and we require a rotation by
some angle 60 = wdt followed by a simple boost. This
leads to the relation, in terms of the 2 x 2 matrices cor-
responding to the rotation and Lorentz transformations,
as:

L(v + dv)R(wdt) = Leomoy(dv)L(v). (10)

The right-hand side represents, in matrix form, two Lo-
rentz transformations. The left-hand side represents the
same effect in terms of one Lorentz transformation and
one rotation — the parameters of which are at present
unknown. In the right-hand side of (10) the matrix
Lcomov(dv) has a subscript ‘comoving’ to stress the fact
that this operation corresponds to a pure boost only in
the comoving frame and not in the lab frame. To take
care of this, we do the following: We first bring the
particle to rest by applying the inverse Lorentz trans-
formation operator L™ (v) = L(—wv). Then we apply a
boost L(@comoydT), Where @comoy is the acceleration of
the system in the comoving frame. Since the object was
at rest initially, this operation can be characterized by a
pure boost. Finally, we transform back from the lab to
the moving frame by applying L(v). Therefore we have
the relation

L comov(dv) = L(v) L(@comovdT) L(—v). (11)
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Using this is in (10), we get
L(v 4 dv)R(wdt) = L(v)L(@comovdT).

In this equation, the unknowns are w and @comoy. MoOV-
ing the unknown terms to the left-hand side, we have
the equation,

R(wdt)L(—aeomoydT) = L(—[v + dv])L(v),  (12)

which can be solved for w and acomey. If we denote the
rapidity parameters for the two infinitesimally separated
Lorentz boosts by a and o’ = a+da and the correspond-
ing directions by n and n’ = n + dn, then this matrix
equation can be expanded to first order quantities to
give

1 — (iwdt + adr) -

= [cosh(a'/2) — (n' - &) sinh(a’/2)]
cosh(a/2) — (n - &) sinh(a/2)]. (13)

| Q

Performing the necessary Taylor series expansion in da
and dn in the right-hand side and identifying the cor-
responding terms on both sides, we find — after some
algebra!l — that acomoy = n(da/dr) + (sinha)(dn/dr)
and more importantly,

w = (cosha — 1) (d_n X n) (14)
dt

with tanha = (v/c). (This result for wdt has a nice

geometrical interpretation which we will discuss next

month.) Expressing everything in terms of the velocity,

it is easy to show that the expression for w is equivalent

to

2

v axwv (v x a)
= = - 1)
“ vy+1 2 (=1 v?

(15)

In the nonrelativistic limit (v << ¢), this gives a pre-
cessional angular velocity w = (1/2¢?)(a x v) which the
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spin will undergo because of the non-commutativity of
Lorentz transformations in different directions. Work-
ing out the details of the derivation given above is a
worthwhile exercise in special relativity.
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Information and Announcements

Refresher Course on RS and GIS Applications for
Water and Environmental Technologies

The Centre for Water Resources, Institute of Science and Technology, JNTU, Hyderabad

25th August 2008 to 16th September 2008

The Centre for Water Resources, Institute of Science and Technology, INTU, Hyderabad, Andhra Pradesh is
organizing an UGC sponsored above refresher course for faculty members working in universities and colleges.
This course is designed to help the participants upgrade their academic and research activities. The course will
be further supplemented by field trips, hands on practical training on Arc GIS 9.1 and ERDAS 8.7 and
interactions with industry/academia experts. Eligible candidates would be provided to and fro second class
railway fare by the shortest route for attending the programme and each participant shall pay an amount of
Rs.500/- towards registration fee. Free boarding and lodging will be provided for outstation participants. This
course is planned as a residential programme and stay in the University Guest House at Kukatpally Campus of
JNTU, Hyderabad, is compulsory for outstation participants. Selection will be based on a first-come-first-
served basis. Application form can be downloaded from the Centre for Water Resources web site www.cwr.co.in
and also from the INT University website www.jntu.ac.in. Last date for registration is 18th August, 2008.

Dr. M V S S GIRIDHAR (Course Coordinator) , Assistant Professor, Centre for Water Resources
Institute of Science and Technology, JNT University, Kukatpally, Hyderabad 500 085, AP
Telephone: 09440590695, 040-23157220 (R), Email:mvssgiri@yahoo.com
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