
510 RESONANCE  June 2008

SERIES  ARTICLE

Snippets of Physics

6. The Logarithms of Physics

T Padmanabhan

T Padmanabhan works at

IUCAA, Pune and is

interested in all areas

of theoretical physics,

especially those which

have something to do with

gravity.

Keywords

Logarithm, potential theory.

S c a lin g a r g u m e n t s a n d d im e n s io n a l a n a ly s is a r e

p o w e r fu l t o o ls in p h y s ic s w h ic h h e lp y o u t o s o lv e

s e v e r a l in t e r e s t in g p r o b le m s . A n d w h e n t h e s c a l-

in g a r g u m e n t s fa il, a s in t h e e x a m p le s d is c u s s e d

h e r e , w e a r e le d t o a m o r e fa s c in a t in g s it u a t io n .

L e t u s b eg in th is tim e b y rev isitin g a p ro b lem w h ich
is b ea ten to d e a th in sta n d a rd te x tb o o k s in ele ctro d y -
n a m ics { e x ce p t th a t w e w ill d o it in a slig h tly d i® e ren t

m a n n e r a n d g e t o u rse lv es a ll tie d u p in k n o ts. C o n sid e r
a n in ¯ n ite stra ig h t lin e ch a rg e lo ca te d a lo n g th e y ¡ a x is
w ith th e ch a rg e d e n sity p er u n it le n g th b ein g ¸ . W e a re
in te re sted in d e te rm in in g th e ele ctric ¯ eld e v e ry w h ere
d u e to th is lin e ch a rg e .

T h e sta n d a rd so lu tio n to th is p ro b lem is rid icu lo u sly
sim p le . Y o u ¯ rst a rg u e , b a se d o n th e sy m m etry , th a t th e
e le c tric ¯ e ld a t a n y g iv e n p o in t is in th e x ¡ z p la n e a n d
d e p e n d s o n ly o n th e d ista n c e fro m th e lin e ch a rg e . S o w e

c a n a rra n g e th e c o o rd in a te sy stem su ch th a t th e p o in t a t
w h ich w e w a n t to c a lcu la te th e ¯ eld is a t (x ; 0 ; 0 ). If w e
n o w e n c lo se th e lin e ch a rg e b y a n im a g in a ry co n ce n tric
c y lin d ric a l su rfa c e o f ra d iu s x a n d le n g th L , th e o u tw a rd
° u x o f e lec tric ¯ e ld th ro u g h th e su rfa c e is 2 ¼ x L E w h ich

sh o u ld b e e q u a l to 4 ¼ tim es th e ch a rg e en clo se d b y th e
c y lin d er, w h ich is 4 ¼ L ¸ . T h is im m e d ia te ly g iv e s E =
(2 ¸ = x ). [Y o u w o u ld h a v e n o tice d to y o u r su rp rise th a t I
a m u sin g th e cg s u n its; th e S I p e o p le sh o u ld re p la ce 4 ¼

b y (1 = ² 0 ).] D im en sio n a lly , e le ctric ¯ eld is ch a rg e d iv id e d

b y sq u a re o f th e le n g th a n d sin c e ¸ is ch a rg e p e r u n it
len g th , ev ery th in g is ¯ n e.
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W e w ill n o w d o it d i® e re n tly a n d in { w h a t sh o u ld b e {

a n e q u iv a le n t w a y . W e w a n t to co m p u te th e e lec tro sta -
tic p o te n tia l Á a t (x ; 0 ; 0 ) d u e to th e lin e ch a rg e a lo n g
th e y ¡ a x is a n d o b ta in th e ele ctric ¯ e ld b y d i® e ren tia t-
in g . O b v io u sly, th e p o te n tia l Á (x ) ca n o n ly d e p e n d o n
x a n d ¸ a n d m u st h a v e th e d im e n sio n o f ch a rg e p er u n it

len g th . If w e ta k e Á » ¸ n x m , d im en sio n a l a n a ly sis im -
m ed ia te ly g iv e s n = 1 a n d m = 0 , so th a t Á (x ) / ¸ a n d
is in d e p e n d e n t o f x ! T h e p o ten tia l is a co n sta n t a n d th e
e le c tric ¯ e ld v a n ish e s! W e a re in tro u b le .

A n e x p lic it c o m p u ta tio n o f th e p o ten tia l fro m ¯ rst p rin -
c ip le s m a k e s m a tte rs w o rse . A n in ¯ n ite sim a l a m o u n t
o f ch a rg e d q = ¸ d y lo ca ted b etw e en y a n d y + d y w ill
lea d to a n e lec tro sta tic p o te n tia l d q = r a t th e ¯ eld p o in t,

w h e re r = (x 2 + y 2 )1 = 2 . S o th e to ta l p o ten tia l is g iv e n
b y

Á (x ) = ¸

Z + 1

¡1

d y
p

x 2 + y 2
= 2 ¸

Z + 1

0

d y
p

x 2 + y 2
: (1 )

C h a n g in g v a ria b les fro m y to u = y = x , th e in te g ra l b e -

c o m es

Á (x ) = 2 ¸

Z + 1

0

d u
p

1 + u 2
: (2 )

T h is resu lt is c le a rly in d ep e n d en t o f x a n d h e n c e a co n -
sta n t w h ich is w h a t d im e n sio n a l a n a ly sis to ld u s. M u ch

w o rse , it is a n in ¯ n ite co n sta n t sin c e th e in te g ra l d i-
v e rg e s a t th e u p p e r lim it. W h a t is g o in g o n in su ch a
sim p le , cla ssic , tex tb o o k p ro b lem ?

A s a ¯ rst a tte m p t in g ettin g a se n sib le re su lt, let u s c u t-
o ® th e in te g ra l a t so m e len g th sca le y = ¤ . (Y o u m a y
th in k o f th e in ¯ n ite lin e ch a rg e a s th e lim it o f a lin e
ch a rg e o f le n g th 2 ¤ w ith ¤ À x .) U sin g th e su b stitu tio n
y = x sin h µ a n d ta k in g th e lim it ¤ À x , w e g et
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The problem has to

do with logarithms

which allow a

dimensionless

function like ln (x/2)

to occur in the

electrostatic potential

without the electric

field depending on

the arbitrary scale .

Á (x ) =

2 ¸

Z ¤

0

d y
p

x 2 + y 2
= 2 ¸ sin h ¡ 1

µ
¤

x

¶

¼ ¡ 2 ¸ ln
³ x

2 ¤

´
;

(3 )

w h e re w e h a v e u se d ¤ À x in a rriv in g a t th e ¯ n a l e q u a l-
ity . T h is p o te n tia l d o e s d iv e rg e w h e n ¤ ! 1 . B u t n o te
th a t th e p h y sica lly o b serv a b le q u a n tity, th e e lec tric ¯ eld
E = ¡ r Á is in d e p e n d e n t o f th e c u t-o ® p a ra m e te r ¤ a n d
is co rrec tly g iv en b y E x = 2 ¸ = x . B y in tro d u c in g a c u t-
o ® , w e see m to h a v e sa v ed th e situ a tio n .

It is n o w clea r w h a t is g o in g o n . A s th e title o f th is

a rtic le im p lie s, th e p ro b lem h a s to d o w ith lo g a rith m s
w h ich a llo w a d im e n sio n le ss fu n c tio n lik e ln (x = 2 ¤ ) to
o cc u r in th e e le c tro sta tic p o ten tia l w ith o u t th e e lec tric
¯ e ld d ep en d in g o n th e a rb itra ry sc a le ¤ . T h is re q u ire s
a d d itiv ity o n th e ¤ d e p en d e n c e ; th a t is w e n e e d a fu n c -

tio n f (x = ¤ ) w h ich w ill red u c e to f (x ) + f (¤ ). C lea rly
o n ly a lo g a rith m w ill d o . O n ce w e k n o w w h a t is h a p -
p e n in g , it is e a sy to ¯ g u re o u t o th er w a y s o f g e ttin g a
se n sib le a n sw er. O n e ca n , fo r e x a m p le , o b ta in th is resu lt
fro m a m o re stra ig h tfo rw a rd sc a lin g a rg u m e n t b y co n -

c en tra tin g o n th e p o te n tia l d i® eren ce Á (x ) ¡ Á (a ), w h ere
a is so m e a rb itra ry sca lin g d ista n c e w e in tro d u ce in to th e
p ro b le m . F ro m d im e n sio n a l a n a ly sis, it fo llo w s th a t th e
p o ten tia l d i® ere n c e m u st h a v e th e fo rm Á (x ) ¡ Á (a ) =
¸ F (x = a ), w h e re F is a d im en sio n le ss fu n c tio n . E v a lu a t-

in g th is e x p re ssio n fo r a = 1 , sa y, in so m e u n its w e g e t
¸ F (x ) = Á (x ) ¡ Á (1 ). S u b stitu tin g b a ck , w e h a v e th e
re la tio n Á (x ) ¡ Á (a ) = Á (x = a ) ¡ Á (1 ). T h is fu n c tio n a l
e q u a tio n h a s th e u n iq u e so lu tio n s Á (x ) = A ln x + Á (1 ).
D im e n sio n a l a n a ly sis a g a in tells y o u th a t A / ¸ . B u t,
o f c o u rse , sca lin g a rg u m e n ts c a n n o t d e term in e th e p ro -

p o rtio n a lity c o n sta n t. H o w e v e r, o n e c a n c o m p u te th e
p o ten tia l d i® e ren c e b y th e ex p lic it in te g ra l
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It turns out that such

phenomena, in which

naive scaling

arguments break

down due to the

occurrence of

logarithmic function,

is a very general

feature in several

areas of physics

especially in the study

of renormalization

group in high energy

physics.

Á (x ) ¡ Á (a ) = 2 ¸

Z 1

0

d y

Ã
1

p
x 2 + y 2

¡
1

p
a 2 + y 2

!

:

(4 )

It is ea sy to se e th a t th is in te g ra l is ¯ n ite. Y o u c a n w o rk
it o u t b y fa irly stra ig h tfo rw a rd p ro c ed u res a n d o b ta in
th e re su lt

Á (x ) ¡ Á (a ) = ¡ 2 ¸ ln (x = a ): (5 )

T h e n u m e ric a l v a lu e o f Á (x ) in th is e x p ressio n is in d e -
p e n d e n t o f th e le n g th sc a le a in tro d u ce d in th e p ro b -
lem . In th a t se n se th e sc a le o f Á is d ete rm in e d o n ly b y
¸ w h ich , a s w e sa id b e fo re , h a s th e c o rre c t d im e n sio n s.
B u t to e n su re ¯ n ite v a lu e s fo r th e e x p ressio n s, w e n ee d
to in tro d u ce a n a rb itra ry le n g th sc a le a w h ich is th e k ey
fe a tu re I w a n t to e m p h a siz e in th is d iscu ssio n . It tu rn s
o u t th a t su ch p h e n o m e n a , in w h ich n a iv e sca lin g a rg u -

m en ts b re a k d o w n d u e to th e o cc u rre n c e o f lo g a rith m ic
fu n c tio n , is a v e ry g e n e ra l fe a tu re in sev era l a re a s o f
p h y sic s e sp ec ia lly in th e stu d y o f re n o rm a liz a tio n g ro u p
in h ig h en erg y p h y sics. W h a t w e h a v e h e re is a v e ry el-
e m e n ta ry m a n ife sta tio n o f th is re su lt. In a ll th e se c a se s

w e n ee d to sm u g g le in to th e p ro b lem a le n g th sc a le to
m a k e so m e u n o b se rv a b le q u a n titie s (lik e th e p o te n tia l)
¯ n ite b u t a rra n g e m a tte rs su ch th a t o b se rv a b le q u a n -
titie s re m a in in d e p e n d e n t o f th is sca le w h ich w e b rin g
in .

If y o u th o u g h t th is w a s to o sim p le, h ere is a m o re so -
p h istic a ted o cc u rre n ce o f a lo g a rith m fo r e ssen tia lly th e
sa m e re a so n .

C o n sid er th e S ch rÄo d in g e r eq u a tio n in tw o d im en sio n s
fo r a n a ttra ctiv e D ira c d e lta fu n ctio n p o te n tia l V (x ) =
¡ V 0 ± (x ) w ith V 0 > 0 . T h e v e cto r x is in tw o d im e n -
sio n a l sp a ce a n d w e lo o k fo r a sta tio n a ry b o u n d sta te
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w a v e fu n c tio n Ã (x ) w h ich sa tis¯ e s th e e q u a tio n

µ

¡
~2

2 m
r 2 ¡ V 0 ± (x )

¶

Ã (x ) = ¡ jE jÃ (x ); (6 )

w h e re ¡ jE j is th e n eg a tiv e b o u n d sta te en e rg y . R e sc a l-
in g th e v a ria b le s b y in tro d u c in g ¸ = 2 m V 0 = ~2 a n d E =
2 m jE j= ~2 , th is eq u a tio n red u ce s to

¡
r 2 + ¸ ± (x )

¢
Ã (x ) = E Ã (x ): (7 )

W e c o u ld h a v e d o n e e v e ry th in g u p to th is p o in t in a n y
sp a tia l d im en sio n . In D d im e n sio n , th e D ira c d e lta fu n c -
tio n ± (x ) h a s th e d im e n sio n L ¡ D . T h e k in etic e n e rg y o p -
e ra to r r 2 , o n th e o th er h a n d , a lw a y s h a s th e d im e n sio n
L ¡ 2 . T h is lea d s to a p e c u lia r b eh a v io u r w h e n D = 2 .
W e ¯ n d th a t, in th is c a se, ¸ is d im e n sio n less w h ile E h a s
th e d im en sio n o f L ¡ 2 . S in c e th e sc a le d b in d in g e n e rg y E
h a s to b e d e term in ed e n tire ly in te rm s o f th e p a ra m ete r
¸ , w e h a v e a p ro b lem in o u r h a n d s. T h ere is n o w a y

w e ca n d e term in e th e fo rm o f E w ith o u t a d im e n sio n a l
c o n sta n t { w h ich w e d o n o t h a v e.

T o see th e m a n ife sta tio n o f th is p ro b le m m o re c le a rly ,

let u s so lv e (7 ). T h is is fa irly e a sy to d o b y F o u rie r
tra n sfo rm in g b o th sid es a n d in tro d u cin g th e m o m e n tu m
sp a ce w a v efu n c tio n Á (k ) b y

Á (k ) =

Z

d 2 x Ã (x ) e x p (¡ ik ¢ x ): (8 )

T h e le ft-h a n d sid e o f lea d s to th e term [¡ k 2 Á (k )+ ¸ Ã (0 )],
w h ile th e rig h t-h a n d sid e g iv e s E Á (k ). E q u a tin g th e tw o
w e g e t

Á (k ) =
¸ Ã (0 )

k 2 + E
: (9 )

W e n o w in te g ra te th is e q u a tio n o v e r a ll k . T h e left-h a n d
sid e w ill th e n g iv e (2 ¼ )2 Ã (0 ) w h ich c a n b e c a n c e lled o u t
o n b o th sid e s b y a ssu m in g Ã (0 ) 6= 0 . (T h is is, o f c o u rse ,
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The Dirac delta

function, in spite of

the nomenclature,

is strictly not a

function but what

mathematicians

call a distribution.

n e ed ed fo r Á (k ) in (9 ) to b e n o n z e ro a n d h e n c e is n o t

a n a d d itio n a l a ssu m p tio n .) W e th e n g e t th e re su lt

1

¸
=

1

4 ¼ 2

Z
d 2 k

k 2 + E
=

1

4 ¼ 2

Z
d 2 s

s 2 + 1
: (1 0 )

T h e se c o n d eq u a lity is o b ta in ed b y ch a n g in g th e in te g ra -
tio n v a ria b le to s = k =

p
E . T h is e q u a tio n is su p p o se d

to d ete rm in e th e b in d in g en e rg y E in term s o f th e p a -
ra m e ter in th e p ro b le m ¸ b u t th e la st e x p re ssio n sh o w s

th a t th e rig h t h a n d sid e is in d e p en d e n t o f E ! T h is is
sim ila r to th e situ a tio n in th e ele ctro sta tic p ro b le m in
w h ich w e g o t th e in te g ra l w h ich w a s in d ep en d en t o f x .
In fa c t, ju st a s in th e elec tro sta tic c a se, th e in te g ra l o n
th e rig h t h a n d sid e d iv e rg e s, c o n ¯ rm in g o u r su sp icio n .

O f co u rse , w e a lrea d y k n o w th a t d e te rm in in g E in term s
o f ¸ is im p o ssib le d u e to d im e n sio n a l m ism a tch .

O n e c a n , a t th is sta g e , ta k e th e p o in t o f v ie w th a t th e

p ro b le m is sim p ly ill-d e¯ n ed a n d o n e w o u ld b e q u ite co r-
re ct. T h e D ira c d e lta fu n c tio n , in sp ite o f th e n o m e n c la -
tu re , is stric tly n o t a fu n c tio n b u t w h a t m a th e m a tic ia n s
c a ll a d istrib u tio n . It is d e ¯ n e d a s a lim it o f a se q u en c e o f
fu n c tio n s. F o r e x a m p le , su p p o se w e c o n sid e r a se q u e n ce

o f p o te n tia ls

V (x ) = ¡
V 0

2 ¼ ¾ 2
e x p

·

¡
jx j2

2 ¾ 2

¸

; (1 1 )

w h e re x is a 2 -D v e c to r a n d ¾ is a p a ra m e te r w ith th e d i-
m en sio n o f len g th . In th is ca se , w e w ill a g a in g et (7 ) b u t
w ith th e D ira c d elta fu n c tio n re p la c ed b y th e G a u ssia n
in (1 1 ). B u t n o w w e h a v e a p a ra m e te r ¾ w ith th e d im e n -
sio n o f le n g th a n d o n e c a n im a g in e th e b in d in g en e rg y

b e in g co n stru c te d o u t o f th is. W h en w e ta k e th e lim it
¾ ! 0 , th e p o te n tia l in (1 1 ) red u c e s to o n e p ro p o rtio n a l
to th e D ira c d e lta fu n c tio n . (T h is is w h a t w e m e a n t b y
sa y in g th e d e lta fu n c tio n is d e ¯ n e d a s a lim itin g c a se o f
se q u en c e o f fu n c tio n s. H e re th e fu n c tio n s a re G a u ssia n s
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The essential idea is

to accept that the

theory requires an

extra scale with

proper dimensions for

its interpretation and

treat the coupling

constant a function of

the scale at which we

probe the system.

in (1 1 ) p a ra m e triz ed b y ¾ . W h en w e ta k e th e lim it o f
¾ ! 0 th e fu n c tio n re d u c es to d e lta fu n c tio n .) T h e
tro u b le is th a t, w h en w e le t ¾ g o to z ero , w e lo se th e
len g th sc a le in th e p ro b lem a n d w e d o n o t k n o w h o w to
¯ x th e b in d in g e n e rg y . O f c o u rse, n o o n e a ssu re d y o u
th a t if y o u so lv e a d i® e re n tia l e q u a tio n w ith a n in p u t

fu n c tio n V (x ;¾ ) w h ich d e p e n d s o n a p a ra m ete r ¾ a n d
ta k e a (so m e w h a t d u b io u s) lim it o f ¾ ! 0 , th e n th e
so lu tio n s w ill a lso h a v e a se n sib le lim it. S o o n e c a n sa y
th a t th e p ro b lem is ill-d e ¯ n e d .

R a th e r th a n le a v in g it a t th a t, w e w a n t to a ttem p t h ere
so m e th in g sim ila r to w h a t w e d id in th e e lec tro sta tic
c a se . L e t u s ev a lu a te th e in te g ra l w ith a c u t-o ® a t so m e
v a lu e k m a x = ¤ w ith ¤ 2 À E . T h e n w e g e t

1

¸
= ¡

1

4 ¼
ln

µ
E

¤ 2

¶

; (1 2 )

w h ich c a n b e in v e rte d to g iv e th e b in d in g e n e rg y to b e :

E = ¤ 2 e x p (¡ 4 ¼ = ¸ ); (1 3 )

w h e re th e sca le is ¯ x e d b y th e c u t-o ® p a ra m ete r. O f
c o u rse th is is w h a t w e w o u ld h a v e g o t if w e a c tu a lly
u se d a p o ten tia l w ith a le n g th sc a le.

T h e re is a w a y o f in terp re tin g th is resu lt ta k in g a cu e
fro m w h a t is d o n e in q u a n tu m ¯ e ld th eo ry. T h e e sse n tia l
id ea is to a c c ep t u p fro n t th a t th e th e o ry re q u ire s a n
e x tra sc a le w ith p ro p e r d im e n sio n s fo r its in te rp re ta tio n
a n d trea t th e c o u p lin g c o n sta n t a s a fu n c tio n o f th e sca le
a t w h ich w e p ro b e th e sy ste m . H a v in g d o n e th a t w e

a rra n g e m a tte rs so th a t th e o b serv ed re su lts a re a c tu a lly
in d ep e n d en t o f th e sca le w e h a v e in tro d u c ed . In th is
c a se , w e w ill d e¯ n e a p h y sica l c o u p lin g co n sta n t b y

¸ ¡ 1
p h y (¹ ) = ¸ ¡ 1 ¡

1

4 ¼
ln (¤ 2 = ¹ 2 ) = ¡

1

4 ¼
ln

µ
E

¹ 2

¶

; (1 4 )
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The breaking

down of naive

scaling arguments

and the

appearance of

logarithms are

rather ubiquitous

in such a case.

w h e re ¹ is a n a rb itra ry b u t ¯ n ite sc a le. O b v io u sly ¸ p h y (¹ )

is in d e p e n d e n t o f th e c u t-o ® p a ra m e ter ¤ . T h e b in d in g
e n erg y is n o w g iv en b y

E = ¹ 2 e x p (¡ 4 ¼ = ¸ p h y (¹ )) (1 5 )

w h ich , in sp ite o f a p p e a ra n ce , is in d e p e n d e n t o f th e sca le
¹ . T h is is sim ila r to o u r e q u a tio n (5 ) in th e e lec tro sta tic
p ro b le m , in w h ich w e in tro d u c e d a sca le a b u t Á (x ) w a s
in d ep e n d en t o f a .

In q u a n tu m ¯ e ld th e o ry a resu lt lik e th is w ill b e in te r-
p re ted a s fo llo w s: S u p p o se o n e p e rfo rm s a n e x p e rim en t
to m ea su re so m e o b se rv a b le q u a n tity (lik e th e b in d in g

e n erg y ) o f th e sy ste m a s w e ll a s so m e o f th e p a ra m e -
te rs d e sc rib in g th e sy stem (lik e th e co u p lin g c o n sta n t).
If th e ex p erim e n t is p e rfo rm e d a t a sc a le c o rre sp o n d -
in g to ¹ (w h ich , fo r e x a m p le , co u ld b e th e en e rg y o f
th e p a rtic les in a sca tterin g cro ss-se ctio n m e a su rem e n t,

sa y ), th e n o n e w ill ¯ n d th a t th e c o u p lin g co n sta n t th a t
is m ea su re d d e p e n d s o n ¹ . B u t w h en o n e v a rie s ¹ in a n
e x p re ssio n lik e (1 5 ), th e v a ria tio n o f ¸ p h y w ill b e su ch
th a t o n e g e ts th e sa m e v a lu e fo r E .

W h e n y o u th in k a b o u t it, y o u w ill ¯ n d th a t it m a k es a
lo t o f sen se. A fte r a ll th e p a ra m e ters w e u se to d e scrib e
o u r p h y sic a l sy ste m (lik e ¸ p h y ) a s w ell a s so m e o f th e
re su lts w e o b ta in (lik e th e b in d in g e n e rg y E o r a sca t-
te rin g c ro ss-se c tio n ) n ee d to b e d e term in ed b y su ita b le

e x p e rim en ts. In th e q u a n tu m m ech a n ica l p ro b le m s a lso
o n e ca n th in k o f sca tterin g o f a p a rticle w ith m o m e n -
tu m k (re p re sen te d b y a n in c id en t p la n e w a v e , sa y ) b y
a p o te n tia l. T h e re su ltin g sc a tte rin g cro ss-sec tio n w ill
c o n ta in in fo rm a tio n a b o u t th e p o ten tia l, e sp ec ia lly th e

c o u p lin g co n sta n t ¸ . If th e sc a tte rin g e x p e rim e n t in tro -
d u c e s a (m o m e n tu m o r len g th ) sc a le ¹ , th en o n e c a n
in d ee d im a g in e th e m e a su re d c o u p lin g c o n sta n t to b e
d e p e n d e n t o n th a t sc a le ¹ . B u t w e w o u ld e x p e c t p h y si-
c a l p re d ictio n s o f th e th e o ry (lik e E ) to b e in d ep en d en t
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o f ¹ . T h is is p re cise ly w h a t h a p p en s in q u a n tu m ¯ eld

th e o ry a n d th e to y m o d e l a b o v e is a sim p le illu stra tio n .

W e se e fro m (7 ) th a t, in D = 1 , th e c o u p lin g co n sta n t
¸ h a s th e d im e n sio n s o f L ¡ 1 so th e re is n o d i± c u lty in

o b ta in in g E / ¸ 2 . T h e o n e -d im e n sio n a l in te g ra l c o rre -
sp o n d in g to (1 0 ) is c o n v e rg e n t a n d y o u c a n e a sily w o rk
th is o u t to ¯ x th e p ro p o rtio n a lity c o n sta n t to b e 1 / 4 .
T h e lo g a rith m ic d iv e rg e n ce o c cu rs in D = 2 , w h ich is
k n o w n a s th e c ritic a l d im e n sio n fo r th is p ro b le m . T h e
b re a k in g d o w n o f n a iv e sc a lin g a rg u m en ts a n d th e a p -
p e a ra n c e o f lo g a rith m s a re ra th er u b iq u ito u s in su ch a
c a se . (T h e re a re o th er fa sc in a tin g issu e s in D ¸ 3 a n d
in sc a tte rin g b u t th a t is a n o th e r sto ry.)

T h e ex a m p les d isc u sse d h ere a re a ll e x p lo re d ex te n siv e ly
in th e lite ra tu re a n d a g o o d sta rtin g p o in t w ill b e th e
re fere n c es [1 -5 ].
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