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Scaling arguments and dimensional analysis are
powerful tools in physics which help you to solve
several interesting problems. And when the scal-
ing arguments fail, as in the examples discussed
here, we are led to a more fascinating situation.

Let us begin this time by revisiting a problem which
is beaten to death in standard textbooks in electrody-
namics — except that we will do it in a slightly different
manner and get ourselves all tied up in knots. Consider
an infinite straight line charge located along the y—axis
with the charge density per unit length being A\. We are
interested in determining the electric field everywhere
due to this line charge.

The standard solution to this problem is ridiculously
simple. You first argue, based on the symmetry, that the
electric field at any given point is in the x — z plane and
depends only on the distance from the line charge. So we
can arrange the coordinate system such that the point at
which we want to calculate the field is at (x,0,0). If we
now enclose the line charge by an imaginary concentric
cylindrical surface of radius x and length L, the outward
flux of electric field through the surface is 272 L E which
should be equal to 47 times the charge enclosed by the
cylinder, which is 4rLA. This immediately gives £ =
(2X/z). [You would have noticed to your surprise that I
am using the cgs units; the SI people should replace 47
by (1/€g).] Dimensionally, electric field is charge divided
by square of the length and since A is charge per unit
length, everything is fine.
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We will now do it differently and in — what should be —
an equivalent way. We want to compute the electrosta-
tic potential ¢ at (z,0,0) due to the line charge along
the y—axis and obtain the electric field by differentiat-
ing. Obviously, the potential ¢(x) can only depend on
xz and A and must have the dimension of charge per unit
length. If we take ¢ ~ A"z™, dimensional analysis im-
mediately gives n = 1 and m = 0, so that ¢(z) « X and
is independent of ! The potential is a constant and the
electric field vanishes! We are in trouble.

An explicit computation of the potential from first prin-
ciples makes matters worse. An infinitesimal amount
of charge d¢g = Ady located between y and y + dy will
lead to an electrostatic potential dg/r at the field point,
where 7 = (22 + y?)1/2. So the total potential is given
by
+o0 +o00

by _y, _d

Y
:A —_——— .
oo 2%+ y? 0o Vri+4y?

Changing variables from y to v = y/z, the integral be-
comes

¢(x)

o qy
0 V1+u?

This result is clearly independent of x and hence a con-
stant which is what dimensional analysis told us. Much
worse, it is an infinite constant since the integral di-
verges at the upper limit. What is going on in such a
simple, classic, textbook problem?

¢(x) = 2A (2)

As a first attempt in getting a sensible result, let us cut-
off the integral at some length scale y = A. (You may
think of the infinite line charge as the limit of a line
charge of length 2A with A > z.) Using the substitution
y = xsinh # and taking the limit A > z, we get
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The problem has to
do with logarithms
which allow a
dimensionless
function like In (x/2A)
to occur in the
electrostatic potential
without the electric
field depending on
the arbitrary scale A.

¢(x) =

2/\/A dy oxsinn! (2 2/\1<$)

———— = 2\sin — | = =2 \In(—

0 2+ 1y? x 2N/
(3)

where we have used A > x in arriving at the final equal-
ity. This potential does diverge when A — oo. But note
that the physically observable quantity, the electric field
E = —V¢ is independent of the cut-off parameter A and
is correctly given by E, = 2\/z. By introducing a cut-
off, we seem to have saved the situation.

It is now clear what is going on. As the title of this
article implies, the problem has to do with logarithms
which allow a dimensionless function like In(x/2A) to
occur in the electrostatic potential without the electric
field depending on the arbitrary scale A. This requires
additivity on the A dependence; that is we need a func-
tion f(x/A) which will reduce to f(z) + f(A). Clearly
only a logarithm will do. Once we know what is hap-
pening, it is easy to figure out other ways of getting a
sensible answer. One can, for example, obtain this result
from a more straightforward scaling argument by con-
centrating on the potential difference ¢(z)—¢(a), where
a is some arbitrary scaling distance we introduce into the
problem. From dimensional analysis, it follows that the
potential difference must have the form ¢(z) — ¢(a) =
AF(xz/a), where F' is a dimensionless function. Evaluat-
ing this expression for a = 1, say, in some units we get
AF(z) = ¢(x) — ¢(1). Substituting back, we have the
relation ¢(z) — ¢(a) = ¢(x/a) — ¢(1). This functional
equation has the unique solutions ¢(z) = Alnz + ¢(1).
Dimensional analysis again tells you that A o« A. But,
of course, scaling arguments cannot determine the pro-
portionality constant. However, one can compute the
potential difference by the explicit integral
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¢(x) — ¢la) = QA/Ooody (\/:E;Jr 2 \/a21+ yQ) :
(4)

It is easy to see that this integral is finite. You can work
it out by fairly straightforward procedures and obtain
the result

o) - 6(a) = —2AIn(x/a). (5)

The numerical value of ¢(z) in this expression is inde-
pendent of the length scale a introduced in the prob-
lem. In that sense the scale of ¢ is determined only by
A which, as we said before, has the correct dimensions.
But to ensure finite values for the expressions, we need
to introduce an arbitrary length scale @ which is the key
feature I want to emphasize in this discussion. It turns
out that such phenomena, in which naive scaling argu-
ments breakdown due to the occurrence of logarithmic
function, is a very general feature in several areas of
physics especially in the study of renormalization group
in high energy physics. What we have here is a very el-
ementary manifestation of this result. In all these cases
we need to smuggle into the problem a length scale to
make some unobservable quantities (like the potential)
finite but arrange matters such that observable quan-
tities remain independent of this scale which we bring
in.

If you thought this was too simple, here is a more so-
phisticated occurrence of a logarithm for essentially the
same reason.

Consider the Schrodinger equation in two dimensions
for an attractive Dirac delta function potential V(x) =
—Vp6(x) with Vy > 0. The vector x is in two dimen-
sional space and we look for a stationary bound state

It turns out that such
phenomena, in which
naive scaling
arguments break
down due to the
occurrence of
logarithmic function,
is a very general
feature in several
areas of physics
especially in the study
of renormalization
group in high energy
physics.
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wavefunction ¢ (x) which satisfies the equation

(_j_mw _ WX)) b(x) = —|E(x),  (6)

where —|E| is the negative bound state energy. Rescal-
ing the variables by introducing A = 2mVy/h? and & =
2m/|E|/h?, this equation reduces to

(V24 A8(x)) v(x) = E(x). (7)

We could have done everything up to this point in any
spatial dimension. In Ddimension, the Dirac delta func-
tion §(x) has the dimension L~". The kinetic energy op-
erator V2, on the other hand, always has the dimension
L=2. This leads to a peculiar behaviour when D = 2.
We find that, in this case, A is dimensionless while £ has
the dimension of L~=2. Since the scaled binding energy &
has to be determined entirely in terms of the parameter
A, we have a problem in our hands. There is no way
we can determine the form of £ without a dimensional
constant — which we do not have.

To see the manifestation of this problem more clearly,
let us solve (7). This is fairly easy to do by Fourier
transforming both sides and introducing the momentum
space wavefunction ¢(k) by

(k) = /d2x ¥ (x) exp(—ik - x). (8)

The left-hand side of leads to the term [—k?¢(k)+ A (0)],
while the right-hand side gives £¢(k). Equating the two
we get

AY(0)

d(k) = K2+ &

(9)

We now integrate this equation over all k. The left-hand
side will then give (27)%1(0) which can be cancelled out
on both sides by assuming 1 (0) # 0. (This is, of course,
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needed for ¢(k) in (9) to be nonzero and hence is not
an additional assumption.) We then get the result

1 d%k 1 d?s
= = . (10)
a2 | K24+ & 4n?2 | 241

The second equality is obtained by changing the integra-
tion variable to s = k/\/g This equation is supposed
to determine the binding energy £ in terms of the pa-
rameter in the problem A but the last expression shows
that the right hand side is independent of £! This is
similar to the situation in the electrostatic problem in
which we got the integral which was independent of x.
In fact, just as in the electrostatic case, the integral on
the right hand side diverges, confirming our suspicion.

> =

Of course, we already know that determining £ in terms
of A is impossible due to dimensional mismatch.

One can, at this stage, take the point of view that the
problem is simply ill-defined and one would be quite cor-
rect. The Dirac delta function, in spite of the nomencla-
ture, is strictly not a function but what mathematicians
call a distribution. It is defined as a limit of a sequence of
functions. For example, suppose we consider a sequence
of potentials

Vi(x)=— V°2 exp [—@1 : (11)

where x is a 2-D vector and ¢ is a parameter with the di-
mension of length. In this case, we will again get (7) but
with the Dirac delta function replaced by the Gaussian
in (11). But now we have a parameter o with the dimen-
sion of length and one can imagine the binding energy
being constructed out of this. When we take the limit
o — 0, the potential in (11) reduces to one proportional
to the Dirac delta function. (This is what we meant by
saying the delta function is defined as a limiting case of
sequence of functions. Here the functions are Gaussians

The Dirac delta
function, in spite of
the nomenclature,
is strictly not a
function but what
mathematicians
call a distribution.
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The essential idea is

proper dimensions for

to accept that the
theory requires an
extra scale with

its interpretation and

constant a function of

treat the coupling

the scale at which we

probe the system.

in (11) parametrized by . When we take the limit of
o — 0 the function reduces to delta function.) The
trouble is that, when we let o go to zero, we lose the
length scale in the problem and we do not know how to
fix the binding energy. Of course, no one assured you
that if you solve a differential equation with an input
function V(x;0) which depends on a parameter o and
take a (somewhat dubious) limit of ¢ — 0, then the
solutions will also have a sensible limit. So one can say
that the problem is ill-defined.

Rather than leaving it at that, we want to attempt here
something similar to what we did in the electrostatic
case. Let us evaluate the integral with a cut-off at some
value kpae = A with A2 > €. Then we get

1 1 &

which can be inverted to give the binding energy to be:
E = N exp(—47/)), (13)

where the scale is fixed by the cut-off parameter. Of
course this is what we would have got if we actually
used a potential with a length scale.

There is a way of interpreting this result taking a cue
from what is done in quantum field theory. The essential
idea is to accept up front that the theory requires an
extra scale with proper dimensions for its interpretation
and treat the coupling constant as a function of the scale
at which we probe the system. Having done that we
arrange matters so that the observed results are actually
independent of the scale we have introduced. In this
case, we will define a physical coupling constant by

1 1 E
—1 —1 2 2
Apy(#t) = A7 — —In(A%/p%) = ——In (E) , (14)
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where 4 is an arbitrary but finite scale. Obviously App, (1)
is independent of the cut-off parameter A. The binding
energy is now given by

€ = p® exp(—4m/ Apny (1)) (15)

which, in spite of appearance, is independent of the scale
. This is similar to our equation (5) in the electrostatic
problem, in which we introduced a scale a but ¢(x) was
independent of a.

In quantum field theory a result like this will be inter-
preted as follows: Suppose one performs an experiment
to measure some observable quantity (like the binding
energy) of the system as well as some of the parame-
ters describing the system (like the coupling constant).
If the experiment is performed at a scale correspond-
ing to p (which, for example, could be the energy of
the particles in a scattering cross-section measurement,
say), then one will find that the coupling constant that
is measured depends on p. But when one varies p in an
expression like (15), the variation of App, will be such
that one gets the same value for £.

When you think about it, you will find that it makes a
lot of sense. After all the parameters we use to describe
our physical system (like Ap,) as well as some of the
results we obtain (like the binding energy £ or a scat-
tering cross-section) need to be determined by suitable
experiments. In the quantum mechanical problems also
one can think of scattering of a particle with momen-
tum k (represented by an incident plane wave, say) by
a potential. The resulting scattering cross-section will
contain information about the potential, especially the
coupling constant A. If the scattering experiment intro-
duces a (momentum or length) scale p, then one can
indeed imagine the measured coupling constant to be
dependent on that scale . But we would expect physi-
cal predictions of the theory (like £) to be independent

The breaking
down of naive
scaling arguments
and the
appearance of
logarithms are
rather ubiquitous
in such a case.
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of p. This is precisely what happens in quantum field
theory and the toy model above is a simple illustration.

We see from (7) that, in D = 1, the coupling constant
A has the dimensions of L~! so there is no difficulty in
obtaining £ o A%2. The one-dimensional integral corre-
sponding to (10) is convergent and you can easily work
this out to fix the proportionality constant to be 1/4.
The logarithmic divergence occurs in D = 2, which is
known as the critical dimension for this problem. The
breaking down of naive scaling arguments and the ap-
pearance of logarithms are rather ubiquitous in such a
case. (There are other fascinating issues in D > 3 and
in scattering but that is another story.)

The examples discussed here are all explored extensively
in the literature and a good starting point will be the
references [1-5].
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