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One of the celebrated results in black hole physics
is that black holes have a temperature and they
emit a thermal spectrum of radiation. Though a
rigorous derivation of this result requires quan-
tum field theory, a flavour of the essential ideas
can be provided at an elementary level as indi-
cated here.

In classical general relativity, material can fall into a
black hole but nothing can come out of it. In the early
seventies, Bekenstein argued that this asymmetry can
lead to violation of second law of thermodynamics un-
less we associate an entropy with the black hole which
is proportional to its area. Thus black holes were at-
tributed entropy and energy (equal to Mc? where M is
the mass of the black hole) but it was not clear whether
they have a temperature. If a black hole has a non-zero
temperature, then it has to radiate a thermal spectrum
of particles and this seemed to violate the classical no-
tion that ‘nothing can come out of a black hole’.

In the mid-seventies, Hawking discovered that black
holes, when viewed in a quantum mechanical perspec-
tive, do have a temperature. (For a brief taste of history
related to this, see Box1). A black hole which forms due
to collapse of matter will emit — at late times — radia-
tion which is characterized by this temperature. The
rigorous derivation of this result requires a fair knowl-
edge of quantum field theory but I will present, in this
installment, a simplified derivation which captures its
essence.

Let us start with a simple problem in special relativity
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Box 1. A Little History

Entropy (which means, ‘inherent tendency’) is a familiar and important concept in thermodynamics. The three
laws of thermodynamics (nicely summarized as ‘You can’t win’, “You can’t break even’ and “You can’t quit
playing’) revolve around entropy. In particular we know that irreversible processes (like pouring cold milk on
hot tea) always increase the entropy of the universe. Around 1971, John Wheeler (see Box 2) posed the
following question to Jacob Bekenstein, then a graduate student at Princeton. He remarked to Jacob Bekenstein
that when a process like mixing hot and cold teas takes place leading to a common temperature, it conserves
the world's energy but increases the world's entropy. There is no way to erase or undo it. But let a black hole
swim by and let us drop the hot tea and the cold tea into it. ‘Then is not all evidence of my crime erased forever?’,
asked Wheeler. Soon Bekenstein came up with the answer. He told Wheeler that you can not remove entropy
from the universe by throwing it into a black hole. Instead, he claimed, the black hole already has an entropy,

and you only increase it when you drop tea into it.

In fact, prior to this, Stephen Hawking had proved that in any classical interaction the surface area of a black
hole’s horizon could only increase and never decrease. Bekenstein used this and claimed that the entropy of
a black hole is proportional to its area. Hawking, however, did not agree with this! In fact, he felt Bekenstein
had misused his discovery of the increase of the area of the event horizon. After all, Hawking had already noticed
and rejected the area-entropy idea on quite solid grounds: If we attribute entropy and energy to a black hole,
it will also have a non-zero temperature — but black holes cannot have a temperature, because they cannot
radiate. This was indeed the stand taken by the established physicists — especially, Hawking, Bardeen and
Carter —in 1972 Les Houches meeting on black holes. Over the summer of 1972, the three of them worked out
the four laws of black hole mechanics which identifies mathematically the surface gravity with the temperature.
But right up front, the paper makes it clear that the laws are ‘similar to, but distinct from’ those of
thermodynamics and the temperature, entropy should not be thought of as ‘real’!

It is a curious twist of fate that — a few years later, while still attempting to disprove Bekenstein’s ideas
categorically — it was Hawking who ended up discovering that black holes do have atemperature, they do radiate
and they have a real entropy as predicted by Bekenstein. And John Wheeler could not have got away pouring
the tea down the black hole!

but analyze it in a slightly unconventional way. Consider
an inertial reference frame S and an observer who is
moving at a speed v along the x-axis in this frame. If her
trajectory is © = wvt, then the clock she is carrying will
show the proper time 7 = /v, where y = (1—v%/c?)~/2,
Combining these results we can write her trajectory in
parametrized form as

tr)=q7;  z(r) =qor. (1)
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Box 2. John A Wheeler

While this issue was being
processed we came to know
of the sad demise of John
Archibald Wheeler (1911-
2008), one of the pioneer-
ing physicists of recent
times. He began his career
with atomic and particle
physics, and introduced
important concepts like S-
matrix, and helped build
one of the first models of
atomic nucleus along with
Neils Bohr. Later he turned
his attention to general rela-
tivity and helped revive the
interest of physicists in this
topic in 1960s, and as a
matter of fact, coined the
now household terms like
‘black hole’ and ‘worm-
hole’. He was for many
years at the University of
Princeton and taught many
famous physicists includ-
ing Richard Feynman. His
book Gravitation on gen-
eral relativity coauthored
with his students C Misner
and K Thorne is consid-
ered one of the definitive
texts in the subject, and
another book Spacetime
Physics written along with
E Taylor is one of the most
original and best introduc-
tory books on relativity.

— Editor

These equations give us her position in the space-time
when her clock reads 7.

Let us suppose that a monochromatic plane wave exists
at all points in the inertial frame. We represent it by
the function ¢(t, ) = exp —iQ(t — x/c). This is clearly
a plane wave of unit amplitude — as you will see soon,
that we don’t care about the amplitude — and frequency
() propagating along the positive z-axis. At any given
z, it oscillates with time as e 7™, so ) is the frequency
as measured in S. Our moving observer, of course, will
measure how the ¢ changes with respect to her proper
time. This is easily obtained by substituting the tra-
jectory t(7) = y7;x(7) = o7 into the function ¢(¢,z)
obtaining ¢[7] = ¢[t(7), z(7)]. A simple calculation gives

¢[t(7),2(7)] = ¢lr] = exp [-iT (1 —v/c)] =

1—v/c

1+wv/c 2)

exp —1i |78

Clearly, the observer sees the wave changing over time

with a frequency

1—v/c

Q=0 —.
1+wv/c

(3)

So an observer moving with uniform velocity will per-
ceive a monochromatic wave as a monochromatic wave
but with a Doppler shifted frequency; this is, of course, a
standard result in special relativity derived in a slightly
different manner.

The real fun begins when we use the same procedure for
a uniformly accelerated observer along the x-axis. If we
know the trajectory ¢(7), z(7) of a uniformly accelerated
observer, in terms of the proper time 7 shown by the
clock she carries, then we can determine ¢[t(7), z(7)] =
é[r] and answer this question. So we first need to
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determine the trajectory t(7), z(7) of a uniformly accel-
erated observer in terms of the proper time 7. Remem-
bering that the equation of motion in special relativity
is d(myv)/dt = F, we can write the equation of mo-
tion for an observer moving with constant acceleration
g along the z-axis as

d v
Ly (4)
dt \/1 — v2/c?

This equation is trivial to integrate since g is a constant.
Solving for v = dz/dt and integrating once again, we can

get the trajectory to be a hyperbola
- AP =t g? (5)

with suitable choices for initial conditions. We also know
from special relativity that when a stationary clock reg-
isters a time interval d¢, the moving clock will show a
smaller proper time interval dr = dt[1 — (v%(t)/c?)]Y/?,
where v(t) is the instantaneous speed of the clock!. De-
termining v(¢) from (5), one can determine the relation
between the proper time 7 shown in a clock carried by

the accelerated observer and ¢ by:

t 2 t/ t
7':/ dt’\ll—v (2) — Sginh! (g_) (6)
0 C g C

Inverting this relation one can find ¢ as a function of 7.
Using (5) we can then express z in terms of 7 and get

the trajectory of the uniformly accelerated observer to
be

2
z(r) = ~ cosh <£> ;o t(r) = £ sinh <£> . (7
g ¢ g ¢
This is exactly in the same spirit as the trajectory in (1)
for an inertial observer except that we are now talking
about a uniformly accelerated observer. You should be
able to fill the gaps in the algebra!

' This formula s valid for clocks
in arbitrary state of motion, in-
cluding accelerated motion. |
stress this because students
sometimes think this result is
valid only for inertial motion of
the clock.
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We can now proceed exactly in analogy with (2) to fig-
ure out how the accelerated observer will view the mono-
chromatic wave. We get:

olt(r),z(1)] = ¢[7] = expig [Q exp <—%>} = expif(T).
(8)

Unlike the case of uniform velocity, we now find that the
phase (1) of the wave itself is decreasing exponentially
with time! Since the instantaneous frequency of the
wave is the time derivative of the phase, w(7) = —df/dr,
we find that an accelerated observer will see the wave
with an instantaneous frequency that is getting expo-
nentially redshifted:

w(r)=Qexp— <%> . 9)
Since this is not a monochromatic wave at all, the next
best thing is to ask for the power spectrum of this wave
which will tell us how it can be built out of monochro-

2 Thisis whatanengineerwould  matic waves of different frequencies?. We will take the

have done to analyse a time 1, gywer spectrum of this wave to be P(v) = | f(v)|?, where

dependent signalt f(v) is the Fourier transform of ¢(t) with respect to ¢:

o(1) = / T e, (10)

Evaluating this Fourier transform is a nice exercise in
complex analysis and you can do it by changing to the
variable Q exp[—(gt/c)] = z and analytically continuing
to Im z. You will then find that:

F(v) = (¢/g) ()" T(ive/g)e ™%, (11)

where I' is the standard Gamma function. Taking the
modulus |f(v)]* using the identity T'(z)I'(—z) =
—m/xsin(nx), we get

1 27
IO = s 6= =
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This leads to the the remarkable result that the power,
per logarithmic band in frequency, is a Planck spectrum
with temperature kgT = (hg/2wc). The characteris-
tic wavelength corresponding to this frequency is c¢?/g
which happens to be about 1 light year for Earth’s grav-
ity — so the scope of experimental detection of this result
is slim®. Also note that though f(v) in (11) depends on
Q, the power spectrum |f(v)|? is independent of Q. It
does not matter what the frequency of the original wave
was!

The moral of the story is simple: An exponentially red-
shifted complex wave will have a power spectrum which
is thermal with a temperature proportional to the ac-
celeration — which causes the exponential redshift in the
first place. This is the key to a quantum field theory
result, due to Unruh, that a thermometer which is uni-
formly accelerated will behave as though it is immersed
in a thermal bath.

There are two issues [ have glossed over to get the correct
result. First, I defined the Fourier transform in (10) with
e while the frequency of the original wave was e ¥,
So one is actually talking about the negative frequency
component of a wave which has a positive frequency in
the inertial frame. Second — and closely related issue — is
that I have been working with complex wave modes, not
just the real parts of them. Both these can be justified
by a more rigorous analysis when these modes actually
describe the vacuum fluctuations in the inertial frame
rather than some real wave. But the essential idea — and

even the essential maths — is captured by this analysis.

So what about the temperature of black holes? Well,
black holes produce an exponential redshift on the waves
which propagate from close to the gravitational radius
to infinity. To make the connection we need to recall
two results from a previous article of this series*: First,

3 Incidentally, this gives a rela-
tion between earth’s gravity and
its orbital period around the sun;
one of the cosmic coincidences
which does not seem to have
any deep significance.

4 T Padmanabhan, Schwarzs-
child Metric at a Discounted
Price, Resonance,VVol.13,No.4,
p.312, 2008.
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A thermometer
which is uniformly
accelerated will
behave as though
it is immersed in a
thermal bath.

the line element of a black hole is

2GM
ds? = (1 — ) 2dt?—

c2r

c2r

2GM\ !
(1— ) dr® —r* (d¢? +sin®0d¢*) . (13)

Second, if w(r) is the frequency of radiation emitted by
a body of radius r and w., is the frequency with which
this radiation is observed at large distances, then wo, =
w(r)(1 — 2GM/c*r)'/2. Consider now a wave packet of
radiation emitted from a radial distance r. at time ¢, and
observed at a large distance r at time t. The trajectory
of the wave packet is, of course, given by ds? = 0 in (13)
which, when we use df = d¢ = 0, is easy to integrate.
We get

ct—t)=r—re+

2G' M | ( 1—2GM/c*r )
2

c 1—2GM/c?r,
AGM .
— e+ — 1n(°" ) (14)
c w(r)

for 7. 2 2GM/c?, r > 2GM/c® This gives the fre-
quency of radiation measured by an observer at infinity
to be exponentially redshifted:

w(t) o< exp — (3 /AGM) = K exp —(gt/c), (15)

where K is a constant (which turns out to be unimpor-
tant) and we have introduced the quantity

g=c"J4GM = GM/(2GM /c*)? (16)

which gives the gravitational acceleration G M /r? at the
Schwarzschild radius r = 2G M /c? and is called the sur-
face gravity. Once you have the exponential redshift,
the rest of the analysis proceeds as before. An ob-
server detecting the exponentially redshifted radiation
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at late times (t — o), originating from a region close to
r = 2G' M /c?, will attribute to this radiation a Planckian
power spectrum given by (12) which becomes:

hg he?

kT = — = .
2rce 8tG M

(17)

This result lies at the foundation of associating a tem-
perature with a black hole.

Once again, the extra (nontrivial) issues are related to
the question of what is the origin of the complex wave
mode in the case of a black hole. The answer is the same
as in the case of an accelerated observer we discussed
earlier with one interesting twist. Think of a spherical
body surrounded by vacuum. In quantum theory, this
vacuum will have a pattern of fluctuations which can be
described in terms of complex wave modes. Suppose the
body now collapses to form a black hole. The collapse
upsets the delicate balance between the wave modes in
the vacuum and manifests — at late times — as thermal
radiation propagating to infinity.

Given the expression in (17) for the temperature T'(M)
of the black hole and the energy (M c?), one can formally
integrate the relation dS = dE /T to obtain the entropy
of the black hole:

s /M d(M c?) 2GM\° (GR\ " 14mry

— = —_— =TT e = — y

kg o T(M) c? 3 4 L%
(18)

where ry = 2G M /c? is the horizon radius of the black
hole and Lp = (Gh/c*)'/? is the so-called Planck length.
The entropy (which should be dimensionless in sensible
units with kg = 1) is just one quarter of the area of the

horizon in units of Planck length. Getting this factor
1/4 is a holy grail in models for quantum gravity — but
that is another story.
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