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Snippets of Physics

3. Quantum Mechanics on the Run’
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How does one study quantum mechanics in an
accelerated frame? The answer to this question
leads to some surprising insights into the solu-
tions of the Schrodinger equation for harmonic
oscillator!

In any inertial frame (S), the wave function describ-
ing a free particle of unit mass satisfies the standard
Schrédinger equation
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where we have used units in which A = 1 and have con-
fined our attention to one dimension with a coordinate
z. Consider now another observer (S), who is mov-
ing along the z-axis in an arbitrary manner. This ob-
server can use a coordinate x with z = z + [(t), where
[(t) is an arbitrary function of time. (In the spirit of
non-relativistic mechanics, we assume that the time co-
ordinate is the same for both the observers.). Viewed
from S, the origin of S moves with the trajectory I(t).
What happens to the Schrodinger equation and its solu-
tions in this accelerated frame? Somewhat surprisingly,
standard textbooks do not discuss this issue. It turns
out that the coordinate transformations to non-inertial
frames provide some interesting insights into quantum
mechanics which we will discuss in this installment.

One way to attack this problem is as follows: We know
that the free particle Lagrangian L = (1/2)f2 expressed
in terms of the z coordinate is just L = (1/2)(i+0)%in S.
(The overdot denotes the time derivative.) Expanding
the square and manipulating the expression a little, we
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can rewrite the Lagrangian in the form
1, - d g df 1,
L:§:c —l(t)x—l—at [K—l—:cl} :L+E; K:§ .
(2)
In classical mechanics, we know that two Lagrangians
related by the L = L+ (df(z,t)/dt) will lead to the same
equations of motion. So, the accelerated observer could
ignore the (df/dt) term in the Lagrangian in (2) and
just use the Lagrangian L = (1/2)i% — [(t)x to describe
the physics. This makes sense, because L describes a
particle moving under the action of a (time dependent)
force a(t) = I(t). This is precisely the pseudo-force one
expects to see in the accelerated frame.

The corresponding quantum theory, based on the La-
grangian L, however, will lead to the Schrodinger equa-

tion: 5 92
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which, in general, can be difficult to solve. Our first task
is to understand the physics behind this equation.

To do this, let us take a closer look at the quantum
mechanics based on the two Lagrangians related by a
total time derivative, like L = L + (df(x,t)/dt). The
extra term does change the form of canonical momentum
[p = 0L/0z] and Hamiltonian [H = pi — L]. Using
(df/dt) = (0f/Ot)+a(df/0x), it is easy to see that the
new momentum and Hamiltonian are related to the old
ones by:

p=p+0f/0x)=p+f;, H=H-—(df/ot)=H — f.

(4
What happens to a solution (¢, z) of the Schrodinger
equation in quantum theory, when we go from L to L?
Clearly, ¥ has to change such that the expectation values
of the operators p = —id/0dx, H = i0/0t change accord-
ing to equation (4). It is easy to see that this requires
1 to be modified by a phase factor: ¥ — ¢ = e'f1). For
example,

Transformation of
Schrodinger
equation to non-
inertial frames can
provide same
interesting insights
to quantum
mechanics.
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<p>new = /dfmﬂ* [_Z(a/aj)] '(/;

4 . 0
= /dxz/}* [eilf[—i((?/@x)]e’f} = (p)oa + a—i, (5)
where we have used the standard result:
e U [—i(8/0x))e = —i(0)dx) + f. (6)

[Note that (0/0%); = (9/0x), etc.] Thus the addition
of a total time derivative to the Lagrangian, L — L =
L + (df/dt), leads to the wave function picking up a
phase factor ¥ — ¢ = e*f 1.

We can use these results to solve the Schrodinger equa-
tions of the form in (3) with an arbitrary time-dependent
function a(t)! Suppose we have solved the Schrédinger
equation (1) for a free particle and it has a solution
Vtree(Z,1). The corresponding solution in the acceler-
ated coordinates, of course, can be obtained by just a
shift * — = = x + I(t), so that VY = Vel + 1,1) in
the new coordinates. But since, L is related to L by the
addition of a total time derivative term, the solution v
differs from the solution ¢ of (3) only by a phase factor!
That is, 1 = Ygee(r +1,t) = /9y, Thus we can now
write a solution to (3) as a free particle solution with a
shift in z and an addition of a phase:

D(t,x) = Ppree [z + 1(2), t]exp —i(K + 1),  (7)

where Ve 18 any solution to the free particle Schrodinger
equation. [Of course, you can directly verify that the
function in (7) solves (3).] Hence you can now solve (3)
for any given a(t)!

You will also notice that [¢|? = |[{gee(x + 1(t),1)[%, sO
that the probability just gets shifted by the classical
trajectory [(t) as we would have expected. If ¢ repre-
sents, say, a dispersing wave packet centered around the
origin, the new probability distribution will represent a
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wave packet moving along the trajectory —I(¢) with the
same dispersion.

We will now apply this result to two simple examples,
to illustrate its power. As a first example, consider a
particle moving in a uniform force field with a = con-
stant. The Hamiltonian H = (1/2)p* + az is time in-
dependent and hence allows for stationary states which
satisfy Hop = E¢gr. The eigenfunction ¢g, however,
happens to be Airy function! in z-space. This, however,
is one problem in which the momentum space represen-
tation of the operators with # = i(9/9dp) turns out to
be easier to handle! The Schrodinger equation in the
p-representation is now ia(0¢/0p) = (E — p*/2)¢. Inte-
grating this equation and then Fourier transforming we
get the solution in the z-representation to be

on(z) = / " dpexpilp(e — Efa) + (F*/6a)].  (8)

o0

which is indeed an integral representation for the Airy
function [1].

Let us now solve the same problem by our approach.
We begin with the simplest free particle solution to the
Schrédinger equation, which are the momentum eigen-
functions ¥gee(t, ) = exp(—ipx + ip*t/2). We next ob-
tain the solution to (3) by the simple transformation
x — x + I(t), where [ = a = constant and the addition
of a phase as indicated in (7). This gives the solution:

Y = exp —i[z(p—at)+ (1/2)pat® — (1/2)p*t — (1/6)a’t"].
(9)
(You can directly verify that this function satisfies (3)).

This is, of course, not an energy eigenfunction. However,
a Fourier transform of this expression with respect to t

op(r) = /00 dt ¥ (t,z) expiEt (10)

o)

1 Airy function is a special func-
tion Ai(x) which is a solution of

the equation y" — xy = 0.
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This analysis
provides a way of
understanding the
coherent excited

states of a harmonic

oscillator.

will give the energy eigenfunctions for a particle moving
in a uniform force field. Changing the variable of inte-
gration from ¢ to & = (at — p), you will find that various
terms cancel out nicely, leading to

dp(r) / d¢ expilé(x — E/a) + (£%/6a)], (11)
which are the same energy eigenfunctions as in (8) ex-
cept for an unimportant phase.

Our approach also leads to another interesting result,
which occurs in the case of the quantum harmonic oscil-
lator. The ground state of a harmonic oscillator is de-
scribed by a Gaussian wave function with the probability
distribution |¢o(z)]? o exp[—wz?. We also know that
the harmonic oscillator admits coherent states with the
probability distribution |¢4(z)|* o< exp[—w(z—A coswt)?],
which is obtained by just shifting the ground state prob-
ability distribution by x — x — A coswt. What is more
suprising is that such coherent states exist even for the
excited states of the oscillator with the same shift! The
existence of such states is a bit of a mystery in the
conventional approach to quantum mechanics but our
analysis gives an interesting insight into this issue.

To understand this, let us apply the transformation z —
T = x + I(t) to the harmonic oscillator Lagrangian L =
(1/2)(i? — w?z?). Elementary algebra shows that the
new Lagrangian has the structure

L=(1/2)(i% — w?2?) — ([ + )z + %, (12)

where [ is again a function determined by [(¢) but its ex-
plicit form is not important. Let us now choose [(¢) to be
a solution to the classical equation of motion [+w?l = 0.
To be specific, we will take | = —A coswt. If you want,
you can think of this as shifting to a frame which is
oscillating with the particle. We then see that the sec-
ond term in (7) vanishes and L has the same form as
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the original harmonic oscillator Lagrangian except for
the total derivative. (This miracle occurs only for the
quadratic potential!) The solutions to the Schrodinger
equation are, therefore, the same as the standard so-
lutions to the harmonic oscillator problem with a shift
r — = + [(t) and an extra phase factor!

Furthermore, the probabilities do not care for the phase
factor and we have the result || = |[v(z + [(t),1)]?.
If ¢ is the ground state then this shift leads to the
standard coherent state. But if you take the nth ex-
cited state of the oscillator ¥, (z,t), shift the coordinate
and add a phase, then we get another valid solution
efap,(x — Acoswt,t). As far as the probability goes,
| (x — Acoswt, t)]* merely traces the original proba-
bility distribution with the mean value oscillating along
the classical solution. In our approach, we see that a
harmonic oscillator gets mapped back to a harmonic os-
cillator when we move to a frame with [ + w?l = 0 with
just a shift in = (and a phase which is irrelevant for
the probabilities). That is why such coherent states ex-
ist even for the excited states of the harmonic oscillator.
Hopefully our analysis makes this result somewhat more
transparent.
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