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Electromagnetic fields carry not only energy and
momentum but also angular momentum. The
angular momentum of the field can lead to some
curious results like the one which is described
here.

You would have certainly learnt that the electromag-
netic field possesses energy and momentum. The usual
expressions for energy per unit volume (U) and momen-
tum per unit volume (P) are

1 1

U=—(E*+ B?); P=—(ExB) (1)

8w e
For example, the expression for energy density is used
in elementary courses to study the energy stored in a
capacitor or in a solenoid, while the expression for elec-
tromagnetic momentum is required to study the radia-
tion pressure of the electromagnetic waves and related
phenomena.

What is not stressed adequately in textbooks is that the
electromagnetic fields — and pretty simple ones at that
— also possess angular momentum. Just as the electro-
magnetic field can exchange its energy and momentum
with charged particles, it can also exchange its angu-
lar momentum with a system of charged particles, often
leading to rather surprising results. In this installment,
we shall explore one such example.

A simple configuration in which exchange of angular mo-
mentum occurs is shown in Figure 1, discussed in Vol-
ume I1 of Feynman lectures in Physics [1]. A plastic disk,
located in the z—y plane, is free to rotate about the ver-
tical z-axis. On the disk is embedded a thin metallic
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Solenoid with
magnetic flux ®

S

Ring of total
charge Q

ring of radius a carrying a uniformly distributed charge
Q. Along the z-axis, there is a thin long current-carrying
solenoid producing a magnetic field B contributing a to-
tal flux ®. This initial configuration is completely static
with a magnetic field B confined within the solenoid and
an electric field E produced by the charge located on
the ring. Let us suppose that the current source is dis-
connected leading the magnetic field to die down. The
change in the magnetic flux will lead to an electric field
which will act tangential to the ring of charge thereby
giving it a torque. Once the magnetic field dies down,
this torque will result in the disk spinning about the z-
axis with a finite angular momentum. The question is
where does this angular momentum come from?

Feynman presents a detailed discussion about this prob-
lem but it is obvious that the angular momentum in the
initial field is what appears as the mechanical angular
momentum of the rotating disk in the final stage. What
is really important and interesting is to work this out
and explicitly verify that the angular momentum is con-
served (which Feynman unfortunately doesn’t do!). I
will describe this calculation as well as some interesting
issues which arise from it in this installment[2].

Figure 1. The initial con-
figuration of solenoid and a

plastic disk.

The question is
where does this
angular
momentum come
from?
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The angular
momentum in the

initial field is related to

the mechanical

angular momentum in

the final stage.

The angular momentum of the final rotating disk is easy
to compute. The rate of change of angular momentum
dL/dt¢ due to the torque acting on the ring of charge
is along the z-axis and so we only need to compute its
magnitude. This is given by

U gr- @ fpa-- L8

de 2mc Ot
Here E is the tangential electric field generated due to
the changing magnetic field and the last equality follows
from Faraday’s law. Integrating this equation and not-
ing that the initial angular momentum of the disk and
the final magnetic flux are zero, we get

Q
L = — ®jitial- (3)

21c
It is interesting that the final angular momentum de-
pends only on the total flux and not on other configu-

rational details.

We now need to show that the initial static electromag-
netic configuration had this much of stored angular mo-
mentum. I will first do this in a rather unconventional
manner and then indicate the connection with the more
familiar approach. To do this, let us recall that the
canonical momentum of a charge ¢ located in a mag-
netic field is given by p — (¢/c)A, where A is the vector
potential related to the magnetic field by B = V x A
and p is the usual kinematic momentum. This suggests
that one can associate with charges located in a mag-
netic field, a momentum (g/c)A. For a distribution of
charge, with a charge density p, the field momentum per
unit volume will be (1/¢)pA. Hence, to a charge distri-
bution located in a region of vector potential A, we can
attribute an angular momentum

La= %/dsx p(x)[x x A(x)]. (4)
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In our problem, the charge distribution is confined to a
ring of radius @ and there is negligible magnetic field in
the location of the charge. But the vector potential will
exist outside the solenoid and the above expression can
be non-zero. To compute this, let us use a cylindrical
coordinate system with (r, 6, z) as the coordinates. We
will choose a gauge in which the vector potential has
only the tangential component; that is, only Ay is non-
zero. Using

%A-dl—(l), (5)

where ® is the total magnetic flux, we get 2rrAdy = ®
for a line integral of A around any circle. Hence Ay =
®/(27r). This can be written in a nice vectorial form as

P
A =

— 55(ax 1), (6)

where z is the unit vector in the z-direction. When we
substitute this expression in equation(4) and calculate
the angular momentum, the integral gets contribution
only from a circle of radius a. Using further the identity,
r x (2 x r) = 2r?, we get the result that

Q .
La = — Puitialz, (7)
27e
which is exactly the final angular momentum that we

computed in equation (3). Rather nice!

This elementary derivation, as well as the expression
for electromagnetic angular momentum in equation (4)
raises several intriguing issues. On the positive side, it
makes vector potential a very tangible quantity, some-
thing which we learnt from relativity and quantum me-
chanics but could never be clearly demonstrated within
the context of classical electromagnetism. In the process,
it also gives a physical meaning to the field momentum
(¢/c)A which is somewhat mysterious in conventional
approaches. On the flip side, one should note that A, by

The derivation gives a
physical meaning to
the field momentum

(g/c)A which is

somewhat mysterious

in conventional
approaches.
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We would like to
have a definition of
electromagnetic
angular
momentum which
is gauge invariant.

the very definition, is gauge dependent and one would
have preferred a definition of electromagnetic angular
momentum which is properly gauge invariant.

It is, of course, possible to write down another expres-
sion for the electromagnetic angular momentum which is
more conventional. Given the density of electromagnetic
momentum, P, we can define the corresponding angular
momentum density as x x P. Integrating it over all space
should give the angular momentum associated with the
electromagnetic field. Since the momentum density P
involves only the electric and magnetic fields, the result-
ing expressions are automatically gauge invariant. This
leads to a definition of angular momentum given by

Ly = L d*z[x x (E x B)], (8)
4dre

which just replaces the momentum density pA /c in equa-
tion (4) by (E x B/4nc). It is trivial to verify that, as
momentum densities, these two expressions are unequal
in general. But what is relevant, as far as our computa-
tion goes, is the integral over the whole space of these
two expressions. If these two expressions differ by terms
which vanish when integrated over whole space, then
we have an equivalent gauge invariant definition of field
angular momentum.

It turns out that this is indeed the case in any static
configuration if we choose to describe the magnetic field
in a gauge which satisfies V- A = 0. One can then show
that

1 1 oV Be
—(ExB)*=—(E x (V x A))Y = pA®
(B xB)" = —(Bx (VX A))* = pA+——.

(9)
where V5 is a complicated second rank tensor built out
of field variables. We are using the convention that re-
peated Greek indices (like § in the above last term of
the above expression) are summed over 1,2,3. While
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one can provide a proof of equation (9) using vector
identities (you should try it out!), it is a lot faster and
neater to use four-dimensional notation and special rel-
ativity to get this result. Such a derivation is outlined
in the appendix for those who are familiar with the four-
dimensional notation. Given the result in (9), it is easy
to see that in our example we will get the same result
irrespective of whether we use Ly or Lgy. This is be-
cause, when we integrate the expressions in (9) over all
space, the term involving VA can be converted to a
surface term at infinity which does not contribute.

Appendix

Let me briefly outline the derivation of (9) for those who
are familiar with the four-dimensional notation. We be-
gin with the expression for the momentum density of
the electromagnetic field in terms of the stress tensor
T of the electromagnetic field (with the convention
that Latin letters range over 0,1,2,3). To simplify the
expressions we will also use the notation 9; = (9/9x),
etc. The T component of this tensor is proportional
to the energy density of the electromagnetic field, while
the 7% is proportional to the momentum density P¢.
More precisely,

70 — (B x B)* = P, (10)
4

On the other hand, the electromagnetic stress tensor can
be written in terms of the four-dimensional field tensor
F in the form T = —(1/4r)F*9Fy5. We will manipu-
late this expression using the facts that (i) the configu-
ration is static and (ii) the vector potential satisfies the
gauge condition V - A = 9,A% = 0, to prove (9).

Using the definition of the field tensor in terms of the
four-vector potential, I;; = 0;A; — 0;A;, we can write
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1 1
T = —EFO‘BFOB = _E(aO‘Aﬁ — 0P A% Fyg,
1 1 IPF,
— (0 APVFy + — P (FypA®) — A 98
1 1 9PF,
= ——(—8%APAsAY) + —OP(FypAY) — A2 "9
47T( A 0) + A7 ( 03 ) A
(11)

To arrive at the second line we have done an integra-
tion by parts and to obtain the third line we have used
0pAg = 0 since the configuration is time independent.
We next use the result 85F05 = -V -E = —47p in the
last term and another integration by parts in the first
term, using the gauge condition V-A = 9,A% = 0. This
gives

1
TS = pA® + 4—35[,4030‘,45 — A%9P Ay (12)
™

We thus find that
VP = i[AoaaAﬂ — AP A
47
(13)
which proves the equivalence between the two expres-
sions for electromagnetic momentum density (cP and
pA) when used in integrals over all space, provided the
second term vanishes sufficiently fast. For the case we
are discussing, this is indeed true.

cPY = pA® + GBVBO‘;

=2

we.”

“Tobesure, when the pioneer in science sendsforththegroping feelers
of his thoughts, he must have a vivid intuitive imagination, for new
ideas are not generated by deduction, but by an artistically creative
imagination.”

“Scientific reasoning does not differ from ordinary everyday thinking
inkind, but merely in degree of refinement and accuracy, more or less
as the performance of the microscope differs from that of the naked

— Max Planck
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