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Snippets of Physics

23. Real Effects from Imaginary Time

T Padmanabhan

Some of the curious effects in quantum theory
and statistical mechanics can be interpreted by
analytically continuing the time coordinate to
purely imaginary values. We explore some of
these issues in this instalment.

T Padmanabhan works at In one of the previous instalments [1], we discussed how
IUCAA, Pune and is one can study the time evolution of a quantum wave

interested in all areas f t . th int 1 t . b
of theoretical physics, unction using a pa tegral propagator given by

especially those which
have something to do with K (QQa t?; ay, tl) = g €xp iA [path] ) (1)
gravity. paths

where A is the classical action evaluated along a path
connecting (q,t;) with (gq,t,) and we are using units
with f = 1. This path integral kernel allows you to
determine the wave function at time t, if it is known at
time t; through the integral

+o00
Y(qq,ty) = / dgy K (ga, ta; q1, 1)V (a1, 1) - (2)

o0

These expressions are quite general. But when the Hamil-
tonian H describing the system is time independent,

we can introduce the energy eigenfunctions through the

equation Hv,, = E,1,,. We have also seen in the earlier

instalment [1] that the kernel can be expressed in terms

of energy eigenfunctions through the formula

K(T,q9;,0,q1) = Z¢n(q2)¢2(ql)eXP(_iEnT) - (3)
Keywords n

Imaginary time, density matrix, . . . . .
gimary J So, if the energy eigenfunctions and eigenvalues are given
tunneling, black, hole tempera-

ture, Schwinger effect. one can determine the kernel.

1060 “’\/\A{\/\" RESONANCE | November 2009




SERIES | ARTICLE

directly by evaluating or approximating the path integral. The question arises
as to whether one can determine the energy eigenfunctions and eigenvalues by
‘inverting’ the above relation. In particular, one is often interested in the ground
state eigenfunction and the ground state energy of the system. Can one find this
if the kernel is known?

It can be done using an interesting trick which very often turns out to be more
than just a trick, having a rather perplexing domain of validity. To achieve
this, let us do the unimaginable by assuming that time is actually complex and
analytically continue from the real values of time t to purely imaginary values
7 = 1t. In special relativity such an analytic continuation will change the line
interval from Lorentzian to Euclidean form through

ds? = —dt? + dx? — dr? + dx2 . (4)

Because of this reason, one often calls quantities evaluated with analytic contin-
uation to imaginary values of time as ‘Euclidean’ quantities and often denotes
them with a subscript ‘E’ (which should not be confused with energy!). If we
now do the analytic continuation of the kernel in (3) we get the result

KE(TE>C]2; 0»91) = an(%)w;;(%) eXP(—EnTE) . (5)

Let us consider the form of this expression in the limit of Ty — oc. If the energy
eigenvalues are ordered as Ey < E; < .... then, in this limit, only the term with
the ground state energy will make the dominant contribution and remembering
that ground state wave function is real for the systems we are interested in, we
get,

Kg(Tg, q2;0,q1) ~ 1o(q2)v0(q1) exp(=EoTg); (Tg — 00) . (6)

Suppose we now put ¢, = ¢; = 0, take the logarithm of both sides and divide by
Tg, then in the limit of Ty — oo, we get a formula for the ground state energy:

Tr—o00 E

) 1
—Eg= lim [T—IDKE(TE,O;O,O)] . (7)

So if we can determine the kernel by some method we will know the ground state
energy of the system. Once the ground state energy is known we can plug it
back into the asymptotic expansion in (6) and determine the ground state wave
function.
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Very often, we would have arranged matters such that the ground state energy
of the system is actually zero. When E; = 0 there is a nicer way of determining
the wave function from the kernel by noting that

TlingoK(T, 0;0,q) = ¥o(0)¥o(q) o ¥o(q) - (8)
So the infinite time limit of the kernel — once we have introduced the imaginary
time — allows determination of both the ground state wave function as well as
the ground state energy. The proportionality constant of ¢, can be fixed by
normalising the wave function.

Of course, these ideas are useful only if we can compute the kernel without know-
ing the wave functions in the first place. This is possible — as we discussed in [1]
— whenever the action is quadratic in the dynamical variable. In that case, the
kernel in real time can be expressed in the form

K(ty, q5t1,q1) = N(ty,ta) exp [iA(ta, q25t1,q1)] (9)

where A, is the action evaluated for a classical trajectory and N (t5,t;) is a nor-
malization factor. The same ideas will work even when we can approzimate
the kernel by the above expression. We saw in the last instalment that in the
semi-classical limit the wave functions can be expressed in terms of the classical
action. It follows that the kernel can be written in the above form in the same
semi-classical limit. If we now analytically continue this expression to imaginary
values of time, then using the result in (8) we get a simple formula for the ground
state wave function in terms of the Euclidean action (that is, the action for a
classical trajectory obtained after analytic continuation to imaginary value of
time):

Volq) o< exp[—Ag (T = 00,0; Ty = 0,q)]
o exp [~ Ap (00,0;0,q)] - (10)

As an application of these results, consider a simple harmonic oscillator with
the Lagrangian L = (1/2)(¢*> — w?¢?). The classical action with the boundary
conditions ¢(0) = ¢; and ¢(7T") = gy is given by

w

— 2 2
./40 = m [(ql + qf) coswT — 2(]@(]]0] . (11)
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The analytic continuation will give the Euclidean action corresponding to i.4, to
be —Ag where

w

Aw— — =
B 9sinhwT

[(qz2 + q]%) coshwT — 2qiqf] . (12)
Using this in (10) we find that the ground state wave function has the form

wo(q) oc exp —[(w/2)q’] (13)

which, of course, is the standard result. You can also obtain the ground state
energy (1/2)hw by using (7). What is amazing, when you think about it, is that
the Euclidean kernel in the limit of infinite time interval has information about
the ground state of the quantum system. This is the first example in which
imaginary time leads to a real result!

The analytic continuation to imaginary values of time also has close mathematical
connections with the description of systems in thermal bath. To see this, consider
the mean value of some observable O(¢q) of a quantum mechanical system. If the
system is in an energy eigenstate described by the wave function v,,(¢), then the
expectation value of O(q) can be obtained by integrating O(q)|v,(¢)|* over ¢. If
the system is in a thermal bath at temperature 8!, described by a canonical
ensemble, then the mean value has to be computed by averaging over all the
energy eigenstates as well with a weightage exp(—f£,). In this case, the mean
value can be expressed as

© = 33 [wi@owria e

7 [ @aoa.00) (14)

where Z is the partition function and we have defined a density matriz p(q,q’)
by

p(a,4q")

S (0o () (15)
in terms of which we can rewrite (14) as

0) =2 (16)
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where the trace operation involves setting ¢ = ¢’ and integrating over ¢. This
standard result shows how p(q, ¢') contains information about both thermal and
quantum mechanical averaging. In fact, the expression for the density matrix in
(15) is just the coordinate basis representation of the matrix corresponding to
the operator p = exp(—fH). That is,

p(q,q") = (gle PH|q') . (17)

But what is interesting is that we can now relate the density matrix of a system
in finite temperature — something very real and physical — to the path integral
kernel in imaginary time. This is obvious from comparing (15) with (3). We find

that the density matrix can be immediately obtained from the Euclidean kernel
by:

p(¢.4") = Kx(B,4;0,4") . (18)

What is surprising now is that the imaginary time is being identified with the in-
verse temperature. Very crudely, this identification arises from the fact that ther-
modynamics in canonical ensemble uses e #H while the standard time evolution
in quantum mechanics uses e“®*#. But beyond that, it is difficult to understand
in purely physical terms why imaginary time and real temperature should have
anything to do with each other.

In obtaining the expectation values of operators which depend only on ¢ — like the
ones used in (14) — we only need to know the diagonal elements p(q, ¢) = Kr(f., ¢;
0,¢). The kernel in the right hand side can be thought of as the one corresponding
to a periodic motion in which a particle starts and ends at ¢ in a time interval 3.
In other words, periodicity in imaginary time is now linked to finite temperature.

Believe it or not, most of the results in black hole thermodynamics can be obtained
from this single fact by noting that the spacetimes representing a black hole, for
example, have the appropriate periodicity in imaginary time. Considering the
elegance of this result, let us pause for a moment and see how it comes about.
Consider a curved spacetime in general relativity which has a line interval

dr?

f(r)

where dL? represents metric in two transverse directions. For example, we saw in
a previous instalment [2] that the Schwarzschild metric representing a black hole
has this form with f(r) = 1— (r,/r), where 7, = (2GM/c*) = 2M (in units with
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G = c¢=1) and dL? represents the standard metric on a two sphere. The only
property we will actually need is that f(r) has a simple zero at some r = a with
f'(a) = 2k being some constant. In the case of the black hole metric, x = (1/27).
When we consider the metric near the horizon r ~ a, we can expand f(7) in a
Taylor series and reduce it to the form

di?
d32 = —21‘ildt2 + ﬁ + dLi s (20)

where | = (r — a) is the distance from the horizon. If we now make a coordinate
transformation from [ to another spatial coordinate = such that (kz)? = 2kl, the
metric becomes

ds? = —k222dt? + da? + dL? . (21)
This represents the metric near the horizon of a black hole.

So far we have not done anything non-trivial. Now we shall analytically con-
tinue to imaginary values of time with ¢ = 7 and denote k7 = 6. Then the
corresponding analytically continued metric becomes

ds? = £2d6? + dz? + dLQL . (22)

But do?+22d6? is just the metric on a two-dimensional plane in polar coordinates
and if it has to be well behaved at x = 0, the coordinate # must be periodic with
period 27. Since 6 = k7, it follows that the imaginary time 7 must be periodic
with period 27/k as far as any physical phenomenon is concerned. But we saw
earlier that such a periodicity of the imaginary time is mathematically identical
to working in finite temperature with the temperature

K 1 hcs

/8_1 = —_— p—
2 4nr,  8nGM ’

(23)

where the first equality is valid for a general class of metrics (with suitably defined
x by Taylor expansion) while the last two results are for the Schwarzschild metric
and in the final expression we have reverted back to normal units. This is precisely
the Hawking temperature of a black hole of mass M which we obtained by a
different method in a previous instalment [3]. Here we could do that just by
looking at the form of the metric near the horizon and using the relation between
periodicity in imaginary time and temperature. While these results have been

RESONANCE | November 2009 A/\/V\/\/\r 1065




SERIES | ARTICLE

verified by several other methods in the context of general relativity, a transparent
physical understanding is still lacking.

The imaginary time and Euclidean action also play an interesting role in the case
of tunneling. To see this, let us start with the expression for the classical action
written in a slightly different form:

A:/dtL:/dt(pq'—H)z/pdq—/Hdt. (24)

While using the action principle, we usually concentrate on trajectories with fixed
end points (t;,¢;) and (t5,¢5). When the Hamiltonian is independent of time, we
can also study classical trajectories of particles with a fixed value for energy E.
In this case, the second term in (24) becomes just £t and the non-trivial variation
actually comes from the first term. Expressing p as y/2m(E — V') for a particle
of mass m moving in a potential V', we get an action — closely related to what is
called ‘Jacobi action’ — given by

S:/pdq:/\/mdq. (25)

Aslong as F > V, this will lead to a real value for S. Tunneling occurs, however,
when E < V. To simplify matters a little bit, let us consider the case of a particle
with £ = 0 (which can always be achieved by a constant to the Hamiltonian)
moving in a potential V' > 0. In that case the action becomes pure imaginary
and is given by

s :i/mm—mq , (26)

and the corresponding branch of the semi classical wave function (studied in the
last instalment) will be exponentially damped:

¥ o exp(iS) = exp — (/\/Qm—qu) : (27)

This represents the fact that you cannot have a classical trajectory with £ = 0
in a region in which V" > 0.

It is however possible to have such a trajectory if we analytically continue to
imaginary values of time. In real time, the conservation of energy for a particle
with E = 0 gives (1/2)m(dg/dt)? = —V (q) which cannot have real solutions when
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V > 0. But when we set ¢t = —i7 this equation becomes (1/2)m(dg/d7)? = V(q)
which, of course, has perfectly valid solutions when V' > 0. So the tunneling
through a potential barrier can be interpreted as a particle moving off to imag-
inary values of time as far as the mathematics goes. The Euclidean action will
now be

SE:/\/Qm—qu. (28)

All that we need to do to obtain the tunneling amplitude is to replace i.S by —Sg
in the argument of the relevant exponential so that the wave function in (27)
becomes:

1 x expiS = exp — (/ \/Qm—qu) = exp(—9SE) . (29)

So we find that the tunnelling amplitude across the potential can also be related
to analytic continuation in the imaginary time and and the Euclidean action.

Finally we will use these ideas to obtain a really non-trivial phenomenon in quan-
tum electrodynamics, called the Schwinger effect, named after Julian Schwinger
who was one of the creators of quantum electrodynamics and received a Nobel
Prize for the same. In simplest terms, this effect can be stated as follows. Con-
sider a region of space in which there exists a constant, uniform electric field.
One way to do this is to set-up two large, parallel, conducting plates separated
by some distance L and connect them to the opposite poles of a battery. This
charges the plates and produces a constant electric field between them. Schwinger
showed that, in such a configuration, electrons and positrons will spontaneously
appear in the region between the plates through a process which is called pair
production from the vacuum.

The first question one would ask is how particles can appear out of nowhere.
This is natural since we haven’t seen tennis balls or chairs appear out of the
vacuum spontaneously. In quantum field theory, what we call ‘vacuum’ is actually
bristling with quantum fluctuations of the fields which can be interpreted in terms
of virtual particle-antiparticle pairs (see [4]). Under normal circumstance, such a
virtual electron-positron pair will be described by the situation in the left frame
of Figure 1. We think of an electron and positron being created at the event A
and then getting annihilated at the event B. In the absence of any external fields,
there is no force acting on these virtual pairs and they continuously appear and
disappear quite randomly in the spacetime.
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Figure 1. In the vacuum there will exist

virtual electron-positron pairs which are o

constantly created and annihilated as

shown in the left frame (a) An electron- space ;
positron pair is created at A and annihi-
lated at B with the positron being inter-
preted as an electron going backward in
time. The right frame (b) shows how, in
the presence of an electric field, this B Attt et il i
virtual process can lead to creation of
real electrons and positrons.

Consider now what happens if there is a electric field present in this region of
space. The electric field will pull the electron in one direction and push the
positron in the opposite direction since the electrons and positrons carry oppo-
site charges. In the process the electric field will do work on the virtual particle-
antiparticle pair and hence will supply energy to them. If the field is strong
enough, it can supply an energy greater than the rest energy of the two charged
particles which is just 2 x mc? where m is the mass of the particle. This allows
the virtual particles to become real. That is how the constant electric field be-
tween two conducting parallel plates produces particles out of the vacuum. It
essentially does work on the virtual electron-positron pairs which are present in
the spacetime and converts them into real particles as shown in the right frame
of Figure 1(b). One way to model this is to assume that the the particle tunnels
from the trajectory on the left to the one on the right through the semicircular
path in the lower half. The trajectories on the left and right are real trajectories
for the charged particle but the semicircle is a ‘forbidden’ quantum process. We
will now see how imaginary time makes this possible.

To do this, we begin with the trajectory in real time which will correspond to
relativistic motion with uniform acceleration g = ¢E/m. We have worked this
out in a previous instalment [3] and the result is given — with suitable choice of
initial conditions — by

z = (1/g)cosh(gr); t = (1/g)sinh(g7); 2% —t*>=1/g*. (30)

The trajectory is a (pair of) hyperbola in the t — z plane shown in Figure 1(b).
If we now analytically continue to imaginary values of 7 and ¢, the trajectory
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becomes a circle 2% 4+ t3 = 1/¢? of radius (1/g) and the parametric equations
become

z = (1/g) cos¥; t=(1/g)sinb; 0 =gy - (31)

By going from 6 = 7 to 6 = 27, say, we can get this to be a semicircle connecting
the two hyperbolas.

To obtain the amplitude for this process we have to evaluate the value of the
Euclidean action for the semicircular track. The action for a particle of charge ¢
in a constant electric field £ represented by a scalar potential ¢ = —FEx is given

by
A:—m/dT—l—qE/:cdt, (32)

where 7 is the proper time of the particle. So, on analytic continuation we get

1A= - im/dT—l—in/:cdt
— —m/dTE—l—qE/:cthE —Ag. (33)

The Euclidean action Ag in (33) can be easily transformed to an integral over
6 and noting that the integral over zdtg is essentially the area enclosed by the
curve, which is a semicircle of radius (1/g), we get

2 2

~ap = ~(m/a) [ a0+ (m/20) [ a8 = ~(m/20) (34)

The limits of the integration are so chosen that the path in the imaginary time
connects + = —(1/g) with = (1/g) thereby allowing a virtual semi-circular loop
to be formed as shown in Figure 1(b). Hence the final result for the Euclidean
action for this classically forbidden process is

™m 7Tm2

Ay = 22— , 35
B= o T 0B (35)

With the usual rule that a process with expiA gets replaced by exp(—Ag) when
it is classically forbidden, we find the amplitude for this process to take place to
be A o< exp(—Ag). The corresponding probability P = |.A|? is given by

P~ exp —(mm?/qE) . (36)
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This is the leading term for the probability which Schwinger obtained for the
pair creation process. (In fact, one can even obtain the sub-leading terms by
transfering paths which wind around several times in the circle but we will not
go into it; if you are interested, take a look at ref.[5]). Once again the moral is
clear. What is forbidden in real time is allowed in imaginary time!
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