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Obtaining the classical limit of quantum mechan-
ics turns out to be conceptually and operationally
non-trivial and, even today, some of the experts
consider this issue to be unsettled. There is a
function, originally devised by Wigner, which
plays a key role in this aspect and throws some
light on the way the classical world emerges from
the quantum description.

Quantum physics is nothing like classical physics and it
is probably not an exaggeration to say that we just get
used to quantum physics, without really understanding
it, as we learn more about it! There are several concep-
tual and technical problems involved in taking the clas-
sical limit of a quantum mechanical description and we
will concentrate on one particular aspect in this install-
ment. We will not worry too much about the conceptual
issues — however interesting they are — but will, instead,
concentrate on certain technical aspects.

Let us begin with a simple one-dimensional problem
in quantum mechanics in which a particle of mass M
evolves under the influence of a potential V (Q). Classi-
cally, such a system is described by the action functional

A= /Ldt; L= %MQ2 -V(Q) . (1)

The equations of motion can be obtained by varying
this action with respect to the coordinate and we get
Q + V'(Q) = 0. We also know that the system can be
equivalently described using the Hamiltonian H (P, Q) =
(P?/2M)+V and the Hamilton—Jacobi equation for the
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system is given by

0A " 0A
e + {%, Q] =0 (2)
which is solved by the action, treated as a function of the variables at upper limit
of integration in (1). When we solve the equations of motion we typically obtain
the trajectory of the particle @(¢) from which we can obtain the momentum
P(t) = MQ(t). Given Q(t) and P(t) we can determine the functional form
P = P(Q) thereby obtaining the trajectory of the particle in the phase space.
(This is, of course, unique only locally, since in general, e.g., for periodic motions,
one will be led to multiple- valued functions.) The trajectory in the phase space
tells you that you can assign to the particle a position ¢ and momentum P
simultaneously.

Let us move on to quantum theory. Since uncertainty principle prevents our
assigning simultaneously the position and momentum to a particle, we can no
longer describe the system in terms of a trajectory either in real space or in phase
space. Instead we have to invoke a probabilistic interpretation and describe the
quantum state of the system in terms of a wave function ¥. This wave function
satisfies the standard Schrodinger equation

i = —=———+V(Q) = B¢, (3)

where the second equality holds if we are interested in stationary states with the
time evolution described by the factor exp(—iEt/h). For the sake of simplicity,
we shall assume that this is the case. We also know that the classical behaviour
— trajectories and all — has to emerge from this equation in the limit of ; — 0.
The question is: How do we go about taking this limit?

It is worth thinking about this issue a little bit before jumping on to the standard
text book description. The Schrédinger equation in (3) is a differential equation
with h appearing as a parameter. If you haven’t read textbooks, you might have
thought that one would expand ¢ in a Taylor series in A like ¥ = ¥ + by + B2,
..., plug it into the equation and try to solve it order by order in . The ¥, 9;...
will all have weird dimensions since / is not dimensionless; this, however, is not a
serious issue. The key point is that, in such an expansion, we are assuming v to
be analytic in i with ¢ describing the classical limit. This idea, however, does
not work, as you can easily verify. In fact, we would have been in a bit of trouble
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if it had worked since we will then have to interpret ¢y as some kind of ‘classical’
wave function. The way one obtains classical limit is fairly non-trivial which we
will now describe.

We will begin by writing the wave function in the form

(@) = R(Q) exp[iS(Q)/ ] (4)

which is just the standard representation of a complex number in terms of the
amplitude and phase. Substituting into (3) and equating the real and imaginary
parts, we get the two equations

(R?S")' =0, (5)
and

S/Q h2 R
R 4 - FE=——.
2M +V(Q) 2M R (6)

These two equations can be manipulated to give a single equation for S (when
S"#0). We get

jw V@ -E=1VE [d—[l/@]] . (7)

The Schrodinger equation is completely equivalent to the two real equations in
(5) and (6). Anything you can do with a complex wave function 7 you can also
do with two real functions R and S. But, of course, Schrodinger equation is linear
in ¢ while equations (5) and (6) are nonlinear, thereby hiding the principle of
superposition of quantum state, which is a cornerstone of quantum description.

Equation (7) suggests an alternate route for doing the Taylor series expansion in
h. We can now try to interpret the left-hand side of (7) as purely classical and the
right-hand side as giving ‘quantum corrections’. In such a case, we can attempt
a Taylor series expansion in the form

S(Q) = So(Q) + B*S1(Q) + -+ . (8)

This means that the leading behaviour of the wave function is given by exp(iSy/h)
which is non-analytic in h. It does not have a Taylor series expansion in powers
of i which is a different kettle of fish when it comes to series expansion in terms
of a parameter in a differential equation. Also note that the time-independent
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Schrédinger equation depends only on A% and not on £; so the second term in the
Taylor series starts with h? and not with 7.

Why does this approach work while ¢ = g + by + h*s ..., does not lead to
sensible results? The reason essentially has to do with the fact that, in proceeding
from quantum physics to classical physics, we are doing something analogous to
obtaining the ray optics from electromagnetic waves. One knows that this can
come about only when the phase of the wave is non-analytic in the expansion
parameter, which is essentially the wavelength in the case of light propagation.
So you need to bring in some extra physical insight to obtain the correct limit.

While ¢ is non-analytic in h, we have now translated the problem in terms of R
and S which are (assumed to be) analytic in & so that the standard procedure
works. To the leading order, we will ignore the right-hand side of (7) and obtain
the equation

12

2](:4+V(Q)—E:0. (9)

(This might seem pretty obvious but there is a subtlety lurking here which we
will comment on later.) To the same order of accuracy, we find that R(Q)
155(Q)|~Y/2. Putting it together and noting the fact the two independent solutions
will involve £S5§, we can write the solution to the Schrédinger equation to this
order of accuracy by

o = Crew [390@)| + o | @] | a0

where C; and Cy are arbitrary constants. To this order of accuracy, the (9) is

just the Hamilton—-Jacobi equation for the action A = Sy so that we can identify
the phase of the wavefunction with So/h. The condition of validity for this WKB
approximation is not difficult to determine by comparing the terms which were
ignored with those which were retained. We find that this condition is equivalent

to
O

IMAV'| < 2M[E - V(Q)])** . (12)
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So, as long as we are far away from the turning points in the potential (where
E =V (Q)), one can satisfy this condition.

Though we approached this result from a desire to obtain the classical limit,
mathematically speaking, it is just an approximation to the differential equation
usually known as WKB approximation. This fact is strikingly evident in the
context of quantum mechanical tunneling which, of course, has no classical anal-
ogy. Nevertheless, we can get a reasonable approximation to the wave function
in a classically forbidden form by taking E < V(Q) in (9). In this range, say,
a < @ < bin which £ < V(Q), the Sy becomes purely imaginary and is given by

b b
So=V2M[\/E-V(Q) dQ = ivV2M| \/V(Q)- EdQ. (13)

The wave function in (10) becomes exponentially decreasing (or increasing) —
without oscillatory behaviour — in this classically forbidden range. This is valid,
again, as long as we are away from the turning point.

Let us now get back to the question we started with, viz., how to get the classical
limit. To do this we need to understand why the wave function in (10) has
anything to do with the classical limit. The conventional answer is as follows:
Let us consider for simplicity a situation with C's = 0. In that case the probability
distribution associated with the wave function varies as

— 2 1

P =W pay (14
where S{(Q) = P(Q) is the classical momentum of the particle at Q. If we
now interpret the probability to catch a particle in the interval (Q,Q + dQ) as
proportional to the time interval dt = dQ/V (Q) (where V(@) is the velocity of
the particle when it is at @) then the expression in (14) can be given some kind of
a classical interpretation. This is, however, not completely satisfactory because,
as we said earlier, we associate the classical limit with a deterministic trajectory
in phase space. There is a way of obtaining this result which brings us to the
discussion of the Wigner function.

The Wigner function F'(Q,p,t) corresponding to a wave function ¢ (Q,t) (which
could, in general, be time dependent) is defined by the relation

F(Q,p, t)= /ooduw* (Q —%hu,t) e~ Py (Q + %hu,t) : (15)

— 00
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The integrand measures the correlation between ¥ and ¥* in a Fourier trans-
formed space with variable p. This function has several remarkable properties
which we will now discuss. The basic idea is to see whether one can think of F
as a probability distribution function in the phase space with position (@) and
momentum (p) as coordinates.

To begin with, if you integrate F' over the momentum variable p, and use the fact
that the integral of exp(ipu) over p is a Dirac delta function in u, you get

o0
[ CIX TR (16)
— 00

This shows that when marginalized over p, we do get the probability distribution
@ which is quite nice. Further, it is also easy to see that if you integrate F' over
Q@ you get the result

o0
| aer@pn=lowok. (1)
— 00

where ¢(p,t) is the Fourier transform of ¢(Q,t¢). From the standard rules of
quantum mechanics, we know that ¢(p,t) gives the probability amplitude in the
momentum space. Therefore (17) tells us that — when marginalized over the co-
ordinate Q — the Wigner function F' gives the probability distribution in the mo-
mentum space. So clearly, F' satisfies two nice properties we would have expected
out of a probability distribution. It simultaneously encodes both coordinate space
and momentum space probabilities in a state represented by .

It is also possible to obtain an equation satisfied by F' which is similar to the
continuity equation that we expect probability distributions to satisfy. Direct
differentiation of (15) and some clever manipulation will allow you to obtain an
equation of the form

OF p 0F dVOF W4V 9*F

— == 4+, 18
ot Mo dQ dp  24dQ3 op? (18)
where - -- denotes terms which are higher order in A. This equation allows you
to draw two interesting conclusions. To begin with, if the potential is at most
quadratic in coordinates, the right-hand side vanishes and we get exactly the
continuity equation in the phase space with the semi-classical identifications
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Figure 1.

Q = p/m and p = —V’. Next, this interpretation holds even for arbitrary poten-
tials up to linear order in h. If we can ignore the h? in the right-hand side we
again get the continuity equation in phase space.

Before we rejoice, one has to face up to a rather damaging property of F which
prevents us from making the probabilistic interpretation rigorous. The key trou-
ble is that F' is not positive definite and since we do not know how to interpret
negative probabilities, we cannot use F' as a probability distribution in phase
space. One simple way to see that F' can become negative is to compute it for
some well-chosen state. For example, Figure 1 gives the Wigner function corre-
sponding to the first excited state of a harmonic oscillator. We have, in suitably
chosen units, the results:

AN\ /4
0 (Q) = (;) Qe*(Q2/2); (19)
F(Q.p) = 4(Q2+p2—%> em e (20)

It is clear that F' can go negative.

This does not, however, prevent us from using the Wigner function in suitable
limits as an approximation to classical probability distribution. In particular,
the Wigner function corresponding to the semi-classical wave function in (10) is
quite easy to interpret. Let us first consider the case with Cy; = 0 when the wave
function becomes

C .
V(@) = <\/5_6> exp(iSo/h) - (21)
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Substituting this into (15) and evaluating the integrals — retaining up to the
correct order, which is necessary since v itself is approximate — we can easily
show that

2
P(Q.p) = 11 6( 95

G

This result, when we think of F' as a probability distribution, has a nice inter-
pretation. The Dirac delta function tells you that when the particle is at @, its
momentum is sharply peaked at 05p/0@ which is exactly what we would have
expected if the particle was moving along a classical trajectory. Further, the prob-
ability to find the particle around @ is proportional to (1/5’(Q)) which again can
be interpreted in terms of the time d¢t = dQ/V (Q) which the particle spends in
the interval (@, Q + dQ).

) + O(h?) . (22)

The key point is that, for the semi-classical wave function we determined in (10),
the Wigner function gives strongly correlated probability distribution in phase
space. In fact, if you take the Dirac delta function literally, it gives a unique p for
every (). This is the characteristic of a classical trajectory and, from this point of
view, the Wigner function provides a natural interpretation for the semi-classical
wave function we have obtained. Note that the probability distribution is not
peaked around any single trajectory but once you pick a @, it gives you a unique
p. This correlation between momentum and position is the key feature of classical
limit. This interpretation continues to hold even when we keep Cs # 0. In this
case we get

_ |G ~ 95 |Co? 95 >
F@’p)‘rsa(cz)r‘s(p acy)* rsa<c2>|‘5(“8@)+o(“ (23)

The Wigner function has a term which represents interference between the two
independent solutions but this term is O(h*) and does not contribute at the
leading order. This Wigner function is now peaked at two different values of
momenta p = £95¢/0Q and corresponds to motion along forward and backward
direction in the coordinate space. In the phase space, F will now be peaked on
two families of trajectories.

These properties are obviously special to the semi-classical wave function we have
chosen. If you take a classically forbidden region in which the wave function is
exponentially damped, rather than oscillatory, you will find a completely different
behaviour for the Wigner function. In fact, in such a ‘purely quantum mechanical’
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situation, you will find that the Wigner function factorizes into a product of two
functions, one dependent on @ and the other dependent on p with F/(Q,p) =
F1(Q)F5(p). This shows that the momentum and position are totally uncorrelated
in such a state which clearly is the other extreme of the semi-classical state in
which the momentum is completely correlated with position.

The same decoupling of momentum and position dependence occurs for many
other states. One simple example is the ground state of the harmonic oscillator
for which you will find that the Wigner function factorizes into two products,
both Gaussian in position and momentum. So the ground state of the harmonic
oscillator is as non-classical as a state could get in this interpretation.

Finally, let us get back to the subtlety which I mentioned earlier in ignoring the
right-hand side of (6) which is a closely related issue. For this approximation to
be valid, we must have
h? R"

lim ——=0. (24)

—02M R
It is easy to construct states for which this condition is violated! As a simple
example, consider the ground state of a system in a bounded potential which will
be described by a real wave function. In this case ¢y = R and S = 0. From (6)
we now see that

h? R"
—— =V - F. 25
The limit in (24) cannot now hold, in general. Clearly our analysis fails for the
ground state of a quantum system. To see this explicitly, consider again the
ground state of a harmonic oscillator:

(26)

$(Q) = N exp {—M“ 2]

2h

Being an exact solution to the Schrodinger equation the amplitude and phase
(which is zero) of this wave function satisfies (5) and (6). A straightforward
computation now shows — not surprisingly — that
R 1 1
—— = —Muw?Q* - —hw . (27)
2M R 2 2
When we take the limit A — 0, the second term on the right-hand side vanishes
but not the first term! This means there are quantum states for which we cannot
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the oscillator.
greater detail.

Suggested Reading

naively take the right-hand side of (6) to be zero and determine the classical limit.
Interestingly enough, this is also true for the time-dependent, coherent states of
You may want to amuse yourself by analyzing this situation in

Some of the pedagogical details regarding Wigner functions can be found in the article, W B Case, Am. J. Phys.,

Vol.76, p.937, 2008.
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