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Abstract. The multiple-quantum pathway description developed earlier for two-
dimensional single-quantum correlation spectroscopy (COsY ), is generalized and applied to the
two-dimensional multiple-quantum transitions (2D MQT) spectroscopy. The connectivity
classes of COSY are also generalized to MQT spectroscopy. The pathway description allows a
straightforward method of computation of the flip angle dependence of the intensity of various
peaks in two-dimensional correlation spectroscopy. It is shown that a variation of flip angle
allows distinction between various classes and types of transitions, as well as optimization of
experiment for selective detection of certain classes of peaks in 2D spectroscopy.
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1. Intreduction

Multiple quantum coherence spectroscopy has become an important tool in the hands
of NMR experimentalists in recent years. These coherences can be easily excited by
pulsed methods and are indirectly detected by coherence transfer to observable single
quantum transitions (Hatanaka et al 1975; Hatanaka and Hashi 1975; Vega et al 1976;
Vega and Pines 1977; Stoll et al 1977; Drobny et al 1979; Warren et al 1979, 1980a, b;
Warren and Pines 1981a, b; Tang and Pines 1980; Weitekamp et al 1981, 1982; Sinton
and Pines 1980). Two-dimensional methods form a natural choice for such techniques
(Aue et al 1976; Wokaun and Ernst 1977, 1978, 1979; Maudsley et al 1978; Miiller 1979;
Miiller and Ernst 1979; Bodenhausen 1981; Bax 1982; Brunner et al 1980; Minoretti et
al 1980; Bax et al 1980a, b; Freeman et al 1981; Jaffe et al 1982; Bain and Brownstein
1982; Bodenhausen et al 1980; Bax et al 1980c). It has been demonstrated that the
information content of two-dimensional (2D) experiments can be greatly enhanced by
~ variation of the flip angle of the pulse used for the coherence transfer. In particular it
has been demonstrated that the flip angle variation leads to identification of related
peaks (Mareci and Freeman 1983), sign of coupling constants (Hore et al 1983; Bax and
Freeman 1981) and characterization of coupling networks (Braunschweiler et al 1983).
Recently there have been several approaches to study the coherence transfer process
(Bain 1984; Ernst 1984; Bodenhausen et al 1984).

We have developed a multiple quantum pathway description for studying the flip
angle dependence of transitions in single quantum to single quantum 2D correlation
spectroscopy (cosy} (Albert Thomas et al 1983) which is generalized in this paper to
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include multiple quantum to single quantum correlation spectroscopy (MQT). Such a
multiple quantum pathway description allows computation of flip angle dependence in
a straightforward manner.

Using such a description it is possible to enhance the information content of 2D
experiments by varying the flip angle of the coherence transfer pulse. In the Mot
spectroscopy the transitions involving the observed spin are separated from those not
involving them and connectivity classes are identified. In cosy experiments this leads to
- a complete identification of connected transitions. We have further generalized the
connectivity classes of cosy to MQT spectroscopy and their flip angle dependence has
been studied using the pathway description. The pathway description is given in §2, the
type and connectivity classes are discussed in §3 and the optimization of the flip angle is
discussed in §4.

2. Pathway descriptions

The basic algorithm for excitation and detection of multiple quantum coherences using
2D NMR spectroscopy is shown in figure 1. The signal intensity in such an experiment is
calculated using the density matrix approach and is given by (Aue et al 1976; Bax 1982;
Albert Thomas and Anil Kumar 1984), '

Zabea O (Fo)a [ Py(@) o' (0°)ea [Py(@) e )

where (0°),; represents the multiple quantum coherence; the operator F is the detection
operator and [ P, («)] the propagator associated with the mixing pulse of angle « along
the y axis. The coherence cd evolves during t, with its characteristic frequency w,, and is
transferred to the single quantum coherence ab detected during t, with frequency w,,.
Equation (1) can be represented pictorially in an energy level diagram by a closed
pathway (figure 2a). The single quantum transition ab (shown with thick arrow) detects
the multiple quantum coherence cd (also shown with thick arrow), via the pathway b to
c and d to a. The pathways bd and ca on the other hand correlate the coherence ¢3,,
which has a frequency (— w,) in the w, domain, to ab. Often it is useful to distinguish
the +w; quadrants and therefore both these pathways will be considered in all
subsequent analysis. '

90" 90 oly
T EVOLUTION DETECTION

Figure1. The first 90° pulse applied to the spin system in equilibrium creates single quantum
coherences which are transferred to multiple quantum coherences by the second 90° pulse
applied after a short time t(r <T;, T;).. The coherences evolve during time t, and are
transferred by the pulse of angle « into single quantum transitions detected during ¢,. A

~complete set of data (s(t,,t;)) is collected as a function of t; and t,. Double Fourier
transformation with respect to ¢, and t, yields a 2D MQT spectrum, S(w,, w,), with the o, axis
containing all the multiple quantum coherences and o, axis containing the correlated single
quantum transitions. While this algorithm also contains single quantum to single quantum
correlation information, a simpler two-pulse sequence, in which the first 90° pulse is absent, is
used for cosy (Aue et al 1976).
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Figure2. Schematicenergy level diagrams of a weakly coupled three spin half nuclei forming
a spin system of the type AMX. a. The multiple quantum coherence cd is detected via the single
quantum transition ab. The pathways are constructed by following the detected single
quantum transition and from the top of the SQT to either the top or the bottom of the MQT,
following the MQT and returning back to the bottom of sQT (These two paths are respectively
shown with dashed lines with filled arrows and by dash-dot lines with open arrows). b. Shows
the paths required for detection of TQ (AMx) coherence 1 — 8 via the sQT(M) 4 — 7 and the
paths required for detection of the DQ (aX) coherence 1 — 6 vig the sQT(X) 3 — 5.

The operator P,(¢)can be expressed for a system of N coupled spin 1/2 nuclei as (Anil
Kumar 1978),

Py(a) =

=

[cos(o/2)1 + 2i sin(/2) I,(j) ],

j=1

cos™ ~"(a/2) sin" (&/2) (I,)", ‘ )

i
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where I, (j) = 2i1,(j) and £ means sum over the product of spin operators over all
possible permutations of the I',(j) spin operators. For example if N =4 and n = 2,

Z[ H {I, m}] =I,(1) I, + I, (1) I, 3) + I, (1) I (4)

+1,(2) I3) + 1,(2) I,(4) + I,(3) I,(4). '(3)

The intensity of a 2D correlated peak with frequency coordinates w,, and w,, is
governed by the sum of the powers of the I), operators required to complete the
pathway. If the order of I, operators required to complete the pathway is (I3)" x (I})"

= (I,)" where m = n+n’, the following rules hold for weakly coupled spin systems.

(a) The intensity of a peak is proportional to ‘
(cos (ex/2))¥ =™ (sin(o/2))" | )

(b) For even order coherences detected via single quantum transitions the value of m
will be odd and vice versa.

(c) The order n of any path bc is given by the number of spins flipping in the path bc.
For example the path afa — aff is a n = 1 path while the path afo — pafisan =3
path although both these paths involve single quantum transitions. A path involving a
zero quantum transition has a minimum n of order 2. A n = 0 path is possible only
for b = c.

(d) The sign of intensity is given by (—1)"*'*", where I and I are the number of spins
lowering their states in the two paths and n is the order of the first path starting from the
top of the single-quantum transition of w, domain.

These rules are required to calculate the flip angle dependance of any peak in a 2D
correlated experiment. Figure 2a shows that in a three-coupled spin system amx, the
pathway connecting the double quantum coherence cd to the single quantum transition
ab involves one n = 1 path and one n = 2 path, yielding m = 3 and an intensity of
cos®(¢/2)sin3 (/2). On the other hand coherence dc observed vza ab involvesonen = 3
and the other n = 2 path, yielding an intensity of cos(/2)sin’ (¢/2). In figure 2b, the
triple quantum coherence 1 — 8 detected via single quantum coherence 4 — 7 requires
two n=1 paths in one quadrant and two n =2 paths in the other, yielding
cos*(/2) sin? («/2) and cos? (a/2)sin* (¢/2) respectively for peaks in +w,; and —w,
quadrants. In case of double quantum coherence 1 — 6 detected via the single quantum
transition 3 — 5 the paths are n = 2 and n = 1 yielding m = 3 in one quadrant. In the
other quadrant the pathsare n = 2and n = 1 or 3 yieldingm = 3 or 5 depending upon
whether the path 3 — 6 involves flipping of 1 or 3 spins. In the present example the path
involves flipping of 3 spins (n = 3) yielding m = 5.

For higher order spin systems, such as AMpx, the above pathway description similarly
allows computation of the flip angle dependence of MQT, in a straightforward manner.

3. Type and connectivity of transitions

Using the pathway description given in §2 the flip angle dependence of intensities in the
2D correlated (MQT and cosy ) spectroscopy have been calculated and relations between
various multiple (including single) quantum coherences of w, domain observed via the
single quantum transitions of w,, have been obtained. In order to facilitate the above
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discussion the connectivity definitions of cosy given by Aue et al (1976), are generalized
to include the MQ coherences, in the following manner.

3.1 Types of transitions

Transitions in 2D correlated spectra can be classified into (i) parallel (1), (i) progressive
(p), (iii) regressive (r) and (iv) mixed (pr) (contains mixture of progressive and regressive
only) types.

In the 2D MQ spectra all the four types are possible while only the first three are
possible in the 2D cosy spectra. The parallel types are generalized to include peaks in
which a MQ coherence is transferred to a participating spin. The progressive, regressive
and mixed types are those MQ coherences which are transferred to a non-participating -
spin and the mixed type appears with both progressive and regressive character.

In addition to the above classification, it is necessary, in the MQT, to specify the order
of MQ coherence (8) and the number of spins involved in that coherence (y). The
following notations completely specify peaks in the 2D correlated spectra.

ys6Q[ SIN ]—parallel type,
ys6Q[SpN ]—progressive type,
y56Q[SrN ]—regressive type,
y56Q[S(epnr)N ]—mixed type.
The above notations are read as, y-spin-6-quantum coherence observed via a SIN

type transition, where S is the effective number of spins changing their spin states in the

Table 1. Type of connectivity of some of the multiple quantum coherences of AMPX
detected via single quantum transitions, in 2D correlated spectroscopy.

Transitions

MQ in w; , SQin w, Notation* Type** Connectivity
(coaier = BPPL) , (oxororar — Poroner) AMP(X,),AM P X,) 3s30[34] C
(eoox — BBP) , (actfa — Pafar) AMP(X,),AM.P_X,) 3s30[314] U
(e — BBPa) , (acrf — Poarf) AMP(X,),AM_ P, X_) 3s3Q[44] U
(ccacior — BPPet) , (oroxorer — crarorff) AMP(X,), XA M,P.) 3s3Q[4rd] C
(accior — B fer) , (BB — BBBP) AMP(X,),X(A_M_P_)  3s3Q[4p4] C
(et — BPBa) , (corfor — o) AMP(X,), XA M.P.) 3s3Q[4(1p2r)4] U
(aocioc— BBB) , (@PBe— afBF)  AMP(X,),X(A,M_P_)  3s30[4(2p1r}d] U
(acfB — Poary) , (crarorex — Borrer) APXM,),AM,P.X,) 3s1Q[314] C
(oo — aapp) , {oofoc — Borfo) PXA.M,),AM,P_X,) 252Q13(1plr)4] u
(aocio— B, @PPou— BBBe)  PX(A,M,),AM_P_X,)  2520[4(1p1r)4] U
(aooer — oxBB) , (foef — afacr) PX(A M,), XA M_P,) 2s2Q[3i4] U
(¢Baf — aafB) , (tfof — ofoc) MPA X ), XA M_P,) 2s0Q[3(1plr)4], C

* The spins involved in the transitions are indicated outside the bracket, while those not involved are
indicated inside the bracket along with their spin states (Aue et al 1976); ** [ = spin flipping in sQ
transition is also involved in the MQ coherence; p, r, pr = Different spins flip in MQ and sQ coherences. For
example let the SQ coherence be an X transition and MQ.be AMP 3-spin-3 quantum coherence. Those of A, M,
or P spins which appear with polarization identical to X within the brackets are regressive and those A, M, or
P which appear with polarization opposite to X within the brackets are progressive; example AMP(X .},
X(A M_P,) is a 3s3Q[4(1p2r}4] type; ‘

C = Connected; U = Unconnected.
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two transitions constituting a peak in the 2D spectrum and N is the total number of
spins in the system. Some examples in table 1 explain the above notations.

With these notations the intensity formulae given for cosy by Aue et al (1976) are
generalized, to include the MQ coherences, in the following manner.

The parallel type (I) peaks have intensity, in one of the quadrants of w,, proportional

to:
° (sin(o/ 27+ (cos(af2) P =057+, | 5)
and in the other quadrant, proportional to:

(sin(ae/2))25 -7~ (cos(a/2))?N ~@S—r=Dh), . (6)

~_ The progressive, regressive and mixed type (p, r, pr) peaks have intensity propor-
" tional to:

(sin(@/2)y~7~" (cos(a/2) PN ~E 7=, (7)
in both the quadrants of w,.

3.2 Connectivity rules

Using the pathway description of §2, and the above classification, the following
connectivity rules are obtained in correlated spectroscopy of weakly-coupled non-
symmetrical spin systems.

(i) Whenever a particular peak has identical absolute intensity in the + ®; and — oy,
quadrants, (which is reflected by the identical m values in the + w, quadrants) then that
peak represents a coherence transfer to a non-participating spin and is of type p, r or pr.
For example DQ (ax ) coherences detected via a M single quantum transition have m = 3
~ inboth the quadrants in an AMX spin system. In cosy every cross peak between different
spins is of type p or r and has identical intensity in + w, quadrants.

The p, r and pr type peaks can further be distinguished, depending on the S value;
(@) when y = (N —1), S can only take a value equal to N. All such coherences within
the same order have the same flip angle dependence. Connectivity of transitions in
such cases plays no role in the intensities. (b) Wheny < (N —1), S can take values y + 1,
42, ... N.In cosy (y=1) all transitions of this class which have S =y+1 are
connected. Thus the connected p, r, transitions of cosy follow the lowest total order
pathway (sum of m values in + w, quadrants) (Albert Thomas et al 1983). For MQT
(y > 1) however, while all connected transitions follow the lowest total order pathway
there are some unconnected transitions which also follow the lowest total order
pathway.

(ii) The peaks which do not have identical intensity in + , quadrants, are of [ type,
and can also be further distinguished depending on the S value. (@) when y = N, S can
only take a value equal to N. This case represents the highest quantum peaks and peaks
such as 3-spin-1QT in a three-spin-system, 4-spin-2QT or 4-spin-0QT in a four-spin-
system etc. Each of such coherences has the same flip angle dependence to all sQrs along
@,, which may be different for a different coherence along w, of the same order. The
connectivity of transitions plays no role in these cases as well. (b) when y < N, S takes
values y, y+1,... N. When y = 1, i.e., in the cosy spectrum all diagonal peaks have
§ =1 and follow total pathway of lowest order. All other I type peaks in cosy (auto
peaks) have S > 1, and represent unconnected transitions. When y > 1 i.e. in the MQT
spectrum, peaks for which S = y include all connected transitions and some uncon-
‘nected transitions in higher order spin systems. For example in the AMx case, the DQ (AX)
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coherences seen on A have two 2I3 type peaks both of which are connected to the
concerned DQ coherence while in the AMPX case TQ (aMP) seen on A have four 314 type
peaks, only 2 of which are connected.

Thus, in general in 2D correlated spectroscopy peaks arising from connected
transitions follow a total pathway of lower order.

From the above rules it is clear that a variation of flip angle of the coherence transfer
pulse, enables one to distinguish the various classes of transitions in MQT and CosY
spectroscopy. In particular, in the cosy spectra the connectivity of transitions can be
established by such a variation.

4. Optimization of the flip angle

Pathways involving higher order paths are attenuated in intensity as the flip angle o is
reduced below 90°, (equation (4)), while they are enhanced for an increase of the flip
angle above 90°. It is thus possible to selectively enhance and distinguish types of
transitions by a variation of the flip angle. Depending on the type of information
desired the flip angle can be optimized for maximum information, both in 2D cosy
spectra and 2D MQr spectra.

4.1 Mor

Figure 3 shows schematically the flip angle dependence of triple-quantum (TQ ), double-
quantum (pQ), zero-quantum (zQ) and three-spin-one-quantum (TsQ) coherences, ina
2D correlated spectrum of an AMX spin system. Clearly seenin this spectrum are the
connectivity features outlined in §3, viz; the transitions between non-participating
spins have identical intensities in the +w, quadrants and the participating spin
transitions have the total order of pathway lower if they share a common energy level
between w, and @, domains. The intensities of these peaks have flip angle dependence
given by sin™ (¢/2) cos ~™(a/2); where m is the order of the pathway. The functional
form of sin™(¢/2) cos® ~™(et/2) for m = 0 to 6 is plotted in figure 4. It is noted that (i) all
transitions have equal intensities for o = 90° and (ii) sin(o;/2) cos® (0/2) has its maximum
at a = 45° with the value approximately twice that for a = 90°. DQ and zqQ coherences
transferred to a connected single quantum coherence of a participating spin have
intensities proportional to sin(e/2) cos® (#/2). These can thus be either enhanced in
intensity in one of the w; quadrants by use of o = 45° or selectively detected by using
a = 15°. For & = 15° all other MqQts have much lower intensity and the concerned DQ
and zq have intensities approximately same as for a = 90°. (iii) As a corollary, the
unconnected pQ and zQ coherences of participating spins can be enhanced in intensity
by using a = 135° or selectively detected by using o = 165°.

4.2 cosy

The flip angle dependence in the cosy spectrum of AMX spin systems is given in figure 5.
It is seen that all cross peaks between different spins have identical intensity in the + @,
quadrants while the auto and diagonal peaks have different intensities in the two
quadrants. Further it is seen that use of a flip angle greater than 90° enhances
unconnected cross peaks between different spins. Simultaneously however, auto peaks
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Figure 5. Schematic 2D cosy spectrum of an AMX spin system for a mixing pulse of angle o.
Notation for symbols same as in figure 3. Symmetric half of the spectrum is not drawn.

of type 33 are enhanced in both the quadrants with auto peaks of type 23 enhanced
only in one of the quadrants. The diagonal peaks are reduced significantly in both the
quadrants. It is seen that an optimum flip angle of 130° yields a cosy spectrum with
maximum contrast between the reduced diagonal peaks and the unconnected cross
peaks. The intensity distribution for o = 150° is shown in figure 6. Itis clear that sucha
spectrum has the desired information of cross peaks with much less chance of
cancellation of cross peak intensities due to poor spectral or digital resolution,
compared to an experiment with o = 90°. This complements the SUPER COSY method
suggested recently (Anil Kumar et al 1984).

5. Conclusions

The pathway description provides a straightforward method of computing flip angle
dependence of various multiple quantum coherences in the 2D MQT and the 2D cosy
spectroscopy. Using this flip angle dependence it is possible to distinguish various
“connectivity classes of the coherences detected via the single quantum transitions.
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Figure 6. . Schematic 2D cosy spectrum of an AMX spin system for a mixing pulse of angle
a = 150°. The diagonal peaks are reduced in intensity in both quadrants and are absent. The
negative , quadrant has all peaks of the same absolute intensity, which are of value
approximately half that for « = 90° (Filled inner circles indicate negative intensity).

Monitoring the amplitudes of peaks in the + @, quadrants allows distinction between
coherence transfer between participating spins and non-participating spins. It is shown
that, in general, transfer of a multiple quantum coherence to a connected single
quantum transition takes place vig a lower order pathway. The intensity of such
transitions can be enhanced compared to others, by the use of a flip angle of the
coherence transfer pulse lower than 90°. In cosy spectroscopy, all the connected
transitions take lower order paths compared to unconnected transitions and can be
exclusively detected by the use of a low flip angle. On the other hand, use of a large flip

angle a = 150° allows selective detection of only unconnected transitions and
elimination of diagonal peaks.
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