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Snippets of Physics

20. Random Walk Through Random Walks — II

T Padmanabhan

We continue our exploration of random walks
with some more curious results. We discuss the
dimension dependence of some of the features of
the random walk, describe an unexpected con-
nection between random walks and electrical net-
works and finally discuss some remarkable fea-
tures of random walk with geometrically decreas-
ing step-length.

In the last instalment, we looked at several elementary
features of random walk and, in particular, obtained a
general formula for the probability Py (x), for the parti-
cle to be found at position x after N steps. This result,
in the case of random walk in a cubic lattice can be
written as the integral

™ APk 1 & !
Py(x) = /7r (QW)D[COS(k'X)] <BZCOS kj) . (1)

j=1

This result — for an arbitrary dimension D — might de-
cieve you into believing that the behaviour of random
walk in, say, D = 1,2,3 is all essentially the same. In
fact they are not, as can be illustrated by studying the
phenomenon known as recurrence.

Recurrence refers to the probability for the random walk-
ing partcle to come back to the origin, where it started
from, in the course of its perambulation, when we wait
forever. Let u, denote the probability that a particle
returns to the origin on the nth step and let R be the
expected number of times it returns to the origin.
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Clearly,
R=Y 2)
n=0

We can now distinguish between two different scenarios. If the series in (2)
diverges, then the mean number of returns to the origin is infinite and we say
that the random walk is recurrent. If the series is convergent, leading to a finite
R, then we say that the random walk is transient.

This idea can be reinforced by the following alternative interpretation of R. Sup-
pose u is the probability for the particle to return to the origin. Then the normal-
ized probability for it to return exactly k times is u*(1 — u). The mean number
of returns to the origin is, therefore,

R=> ka1 —u)=(1-u". (3)
k=1

Obviously, if R = oo, then u = 1, showing that the particle will definitely return
to the origin. But if R < oo, then u < 1 and we can’t be certain that the particle
will ever come back home.

Let us compute u, and R for random walks in D = 1,2,3 dimensions with the
lattice spacing set to unity for simplicity. From (1), setting x = 0, we have:

APk (1L !
un(x):/_ 2} <B;cosk‘j> . (4)

™

Doing the sum in (2) we get

o0 * 4Pk D -1
R:;%un:/_w 2P <1— Zcosk:j) . (5)

j=1

S|~

We want to know whether this integral is finite or divergent. Clearly, the diver-
gence, if any, can only arise due to its behaviour near the origin in k-space. Using
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the Taylor series expansion of the cosine function, we see that, near the origin we
have the behaviour:

dkidks...dkp , 5 ov-1 2D kP-ldk
R ~ 2D ki 4+ ks +-+k . (6
/kzO (2m)P ( pre " D) > 2m)P Jymo K (©)

The dimension dependence is now obvious. In D = 1,2 the integral is divergent
and R = oo; so we conclude that the random walk in D = 1,2 is recurrent and
the particle will definitely return to the origin if it walks forever. But in D = 3,
the R is finite and the walk is non-recurrent. There is a finite probabiltity that
the particle will come back to the origin but there is also a finite probability that
it will not. A drunken man will definitely come home (given enough time) but a
drunken bird on flight may or may not!

The mean number of recurrences in D = 3 is given by the Watson integral

3 ™ ™ ™ B
R = 2n)? / dkl/ dks / dks [1 — (cosky + cos kg 4 cos ks)] ", (7)
Q0 -7 —m -7

which is notoriously difficult to evaluate analytically [1]. Since the answer hap-

pens to be
1 11
R = V6 r—|r > r ° r{—|), (8)
32m3 24 24 24 24

you anyway need to look it up in a table so one might as well do the integral
numerically which is trivial in Mathematica. (Of course, if you like the challenge
of a definite integral, try it out. I do not know of a simple way of doing it; neither
do the experts in random walk I have talked to!) The result is R ~ 1.5164 giving
the return probability u ~ 0.3405.

In the case of D = 1,2 it is also easy to obtain wu, explicitly by combinatorics.
In 1-dimension, the particle can return to the origin only if it has taken an even
number of steps, half to the right and half to the left. The probability for this is
clearly

1
U2n = QHCn o - (9)
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For sufficiently large n, we can use Sterling’s approximation for factorials (n! ~
V27n e ™n™) to get us, ~ 1/+/7n. The series in (2) involves the asymptotic sum
which is divergent:

m:;u%%;\/;_n:oo. (10)

Obviously, the 1-dimensional random walk is recurrent.

Interestingly enough the result for D = 2 is just the square of the result for
D = 1. The integral in (4) becomes for D = 2:

1 1 ™ s "
un(x) = (27T)D 2_n/_ dkl/_ dkg (COS kl -+ cos kg) . (11)

If you now change variables of integration to (ki + k2) and (ky — ko) it is easy to
show that this integral becomes the product of two integrals giving

1 2
- {2—(1] , (12)

which is the square of the result for D = 1. Now the series in (2) will be dominated
asymptotically by

1
mmz%:oo, (13)

making the D = 2 random walk recurrent again. You might guess at this stage,
that in 3-D, the asymptotic series will involve sum over n=3/2 (and hence will
converge) making the 3-D random walk non-recurrent. This is partially true and
the 3-dimensional series is bounded from above by the sum over n=%/2. But the
3-dimensional case is not the product of three 1-dimensional cases.

We now turn our attention to another curious result. Summing Py(x) over all
N one can construct the quantity P(x) which is the probability of reaching x.
Using (1) and doing the geometric sum, we find in D = 2, this quantity to be:

P(x) = /_7; /_7; d{;ﬁ? [cos(k - x)] (1 - %(coskl + cos z@)) B . (14)
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Consider now the expression

R= 3P - plo) = [ [ S Bl (15)

2 72 [1— $(cosky + cosks)

Incredibly enough this provides the solution to a completely different problem! It
gives the effective resistance between a lattice point x and the origin in an infinite
grid of 1-ohm resistors connected between the lattice sites. Let us see how this
comes about by analysing the grid of resistors.

Let a node x in the infinite planar square lattice be denoted by two integers
(m,n) and let a current I,,, be injected at that node. The flow of current will
induce a voltage at each node and, combining Kirchoff’s and Ohm’s laws for the
1-ohm resistors, we can write the relation:

Im,n = (Vm,n - Vm+1,n) + (Vm,n - Vm—l,n) + (Vm,n - Vm,n-i—l) + (Vm,n - Vm,n—l)
= 4Vm,n - Vm+1,n - Vm—l,n - Vm,n+1 - Vm,n—l; (16)

where V), ,, is the potential at the node (m,n) due to the current. This equation
can again be solved by introducing the Fourier transform on the discrete lattice.
If we write

1 K K .
Ly = —/ / dky kg (ky, kg)el(mhrtnke) (17)
7 4772 —m) =7

1 m m .
Vinn = H/ / dkq dksy V(/-Cl, 1162)ez(mkn-i—nk:z)7 (18)

then one can obtain from (16) the result in the Fourier space:

I(k‘l, k‘g) = 2V(k51, k‘g) [2 — COS(kl) - COS(/CQ)] . (19)
Suppose we now inject a current of 1 amp at (0,0) and —1 amp at (N, M ). Then
In = 6mm — Om—mn—n, leading to

I(k‘l, k;Q) — | _ o~ UMki+Nk2) 7 (20)

so that (19) gives the voltage to be
1 — o—i(Mk1+Nks)

2 — cos(ky) — cos(ks)
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The equivalent resistance between nodes (0,0) and (M ,N) with a flow of unit
current is just the voltage difference between the nodes:

Ryonv = Voo — Vun

Lo |
= R/_ /_ dkflde V(k}l, k‘g) [1 _ eZ(M/ﬂ-Hsz)]

1 [ 1 (] — e~ ¥ (Mk1+Nk2)y (1 _ oi(Mk1+Nkg)
= — / / dky dks L1d-e J(1—e )
dr2 | ), 2 2 — cos(ky) — cos(ks)

1 T [" 1-— MEk Nk
- _/ / by dly 2= SO Er + Vo) (22)
A2 | ). 2 — cos(ky) — cos(ka)

which is exactly the same as the integral in (15)!

The infinite grid of square lattice resistors is a classic problem and the effective
resistance between two adjacent nodes is a ‘trick question’ that is a favourite of
examiners. The answer (0.5 ohm) can be found by trivial superposition but such
tricks are useless to find the effective resistance between arbitrary nodes. In fact,
the effective resistance between two diagonal nodes of the basic square — the (0,0
and (1,1), say — is given by the integral

T [ [ 1 — cos(ky + ka)
Ri1=— dk; dk . 23
BT Yy /_7r /_7r Py cos(ky1) — cos(ka) (23)

This is doable, but not exactly easy, and the answer is 2/7. (Next time someone
lectures you about the power of clever arguments, ask her to use them to get this
answer, which has a 7 in it!)

But why does this work? What has random walk on a lattice to do with resistor
networks? There are different levels of sophistication at which one can answer this
question and an entire book [2] dealing with this subject exists. The mathematical
reason has to do with the fact that both the random walk probability to visit a
node and the voltage on a node (which does not have any current injected or
removed) are harmonic functions. These are functions whose value at any given
node is given by the average of the value of the function on the adjacent lattice
sites. This is obvious in the case of random walk because a particle which reaches
the node (m,n) must have hopped to that node with equal probability from one
of the neighbouring nodes (m £ 1,n = 1). In the case of a resistor network, the
same result is obtained from (16) when I,,,, = 0. If you now inject the voltages 1
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and 0 at two specific nodes A and B, then the voltage at any other node X can
be interpreted as the probability that a random walker starting at X will get to
A before B. One can then use this interpretation to make a formal connection
between voltage distribution in an electric network and a random walk problem.
The interested reader can find more in the book [2] referred to above.

Having done all these in the lattice, we now go back to the random walk in
full space for which we had obtained the result in the last installment, which,
specialised to one dimension, is given by:

e = [ o ““Hpn | (24)

We want to consider a situation in which the steps are random and uncorrelated
but their lengths are decreasing monotonically. (This is what will happen if the
drunkard gets tired as he walks!) In particular, we will assume that each step
length is a fraction A of the previous one with A < 1 and the first step is of unit
length. It is clear that Py(z) is now given by

Py(z) = /Z g%eikzgcos(k/\") . (25)

We can now study the limit of N — oo and ask how the probability P(z) = Px(z)
is distributed. This fuction shows incredibly diverse properties depending on the
value of A\ and is still not completely analysed. I will confine myself to a simple
situation, referring you to the literature if you are interested [3].

Let us first consider the case when A\ = 1/2. In this case the relevant infinite
product is given by

10—0[ ﬁ _ sin k . (26)

(This is a cute result which you might want to prove for yourself; All you need
to do is to write cos(k/2") = (1/2)[sin(k/2""1)/sin(k/2")], take a product of N
terms cancelling out the sines and then take the limit N — oo.) Since the fourier
transform of (sin k/k) is just a uniform distribution, we get the tantalising result
that P(z) is just a uniform distribution in the interval (—1, 1) and zero elsewhere!
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This trick which has been used to get (26) also works for A = 271/2 2714 etc.
For example, when A = 2712 the infinite product is

e in k sin \/§k:
cos(k/2™?) = St _ . 27
[Teostn/27) = =22 27)

The Fourier transform of this involves a convolution of two rectangular distribu-
tions and is easily seen to be a triangular probability distribution. (I will let you
explore the general case of A\ = 27V/%) Tt turns out that the infinite product of
cos(kA™) is extraordinarily sensitive to changes in A. For almost every A in the
interval (0.5,1) this product is square integrable. But once in a while, it is not
so. Further, if A < (1/2), the support for P(x) happens to be the Cantor set.
The really bizarre behaviour occurs when X is the golden ratio ¢ = (V5 — 1)/2.
Clearly, there are enough surprises in store in the study of random walks.
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