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Few processes in nature are as ubiquitous as the
random walk which combines extraordinary sim-
plicity of concept with considerable complexity
in the final output. In this and the next install-
ment, we shall examine several features of this
remarkable phenomenon.

In 1785, the Dutch physicist Jan Ingenhauez, discoverer
of photosynthesis, put alcohol to good use by sprinkling
powdered charcoal on it and observing it under a mi-
croscope. The random motion of the charcoal particles
was probably the first observation of what we now call
Brownian motion. The name comes from Robert Brown
who published an extensive investigation of similar phe-
nomena in 1828. Eventually, this was heralded as an
evidence for the molecular nature of matter and was in-
strumental in the 1926 Nobel Prize in physics to Jean
Perrin for determining the Avogadro number.

It appears that the term ‘random walk’ was first coined
by Carl Pearson in 1905, the same year in which Einstein
published his paper on Brownian motion. Pearson was
interested in providing a simple model for the spread of
mosquito infestation in a forest — which goes to show,
right at the outset, the generality of the process! Pear-
son’s letter to Nature was answered by Lord Rayleigh
who had solved this problem earlier in the case of sound
waves in heterogeneous materials. Independently, Louis
Bachelor was developing the theory of random walks in
his remarkable doctoral thesis La theorie de la specu-
lation published in 1900. Here, random walk was sug-
gested as a model for financial time series which has,
until recently, helped physicists to get Wall Street jobs
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with the disastrous consequences we all now know only
too well! This brief glimpse at history already shows the
occurrence of random walk in widely different contexts
1, 2].

Let us begin by reviewing the simplest of all random
walks in which a particle moves from the origin, tak-
ing steps of length ¢, with each step being in a random
direction uncorrelated with the previous one. The dis-
placement of the particle after N steps is given by

N
X = an , (1)
n=1
where
’Xn’ = f; <Xn> = 0; <Xn : Xm> = €26nm : (2)

The first equation in (2) tells you that each step has a
constant magnitude. The second and third equations
(the symbol (...) denotes averaging over a probability
distribution quantify the uncorrelated nature of the di-
rections of the steps. From these, we can immediately
obtain the two key results of such a random walk. First,
(x) = 0. Further, we have

o? <x2>:<<2xn> >: Z(xn~xm>:]\7€2 .
| (3

This shows the key characteristic of the random walk
viz., that the root-mean-square displacement o grows

as VN.

We can think of ¢ as Az denoting the magnitude of
the displacement between any two consecutive steps. If
the time interval between the steps is At, then o
VN suggests that (Ax)2/At remains a constant in the
continuum limit. Clearly, a random walk corresponds

It appears that the
term ‘random walk’
was first coined by
Carl Pearson in 1905,
the same year in
which Einstein
published his paper
on Brownian motion.
Pearson was
interested in providing
a simple model for the
spread of mosquito
infestation in a forest.

The key
characteristic of the
random walk is that
the root-mean-
square displacement
o grows as (n)"2,
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A random walk
corresponds to a
curve without definite
slope in the
continuum limit and, in
fact, the continuum
limit needs to be
taken with some care.
This is one of the
many reasons why
random walks are
fascinating.

to a curve without definite slope in the continuum limit
and, in fact, the continuum limit needs to be taken with
some care. This is one of the many reasons why random
walks are fascinating.

To see how such a continuum limit emerges in this con-
text, it is better to generalize the concept of random
walk slightly by assuming that the probability for the
particle to take a step given by the vector Ay is given
by some function p(Ay) with the properties

(Ay") = /dDAy [Ay'p(Ay)] =0,

(Ay'Ay)) = /dDAy[AyiAy"'p(Ay)] = <(Ay)2>%j :

(4)

where i,7,... = 1,2,...D denote the components of the
vector. Let Py(x) be the probability that the net dis-
placement is x after V steps. Then, since the steps are
uncorrelated, we have the elementary relation:

Py(x) = / PP Ay Py_i(x — Ay)p(Ay) . (5)

To obtain the continuum limit, we will assume that a
Taylor series expansion of Py_j(x — Ay) is possible so
that we can write (assuming summation over repeated
indices):

PN(X) = /dDAy p(Ay){PN_l(X) — AyiﬁiPN_l(x)

1 . .
+§AyZAy]8i8jPN_1 (X) }

A 2
= Py_1(x)+ —<( y) >V2PN—1(X) ; (6)
2D
where we have used (4). In the continuum limit, we
will denote the total time which has elapsed since the

beginning of the random walk by ¢ = N At and define a
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continuum probability density by p(x,t) = p(x, NAt) =
Pn(x). Since we can take (dp/0t) as the limit [Py (x)—
Prn_1(x)]/At when At — 0, we get from (6) the result
dp 2

5 —EVP (7)
where we have defined a (‘diffusion’) coefficient K =
((Ay)?)/2DAt. The continuum limit exists if we can
treat K as a constant when At — 0. Clearly, this is
equivalent to (Ay)?/At being finite in the continuum
limit as we indicated earlier. This is quite different
from the usual continuum limits we are accustomed to
in physics in which the ratio of the differentials of the
same order are replaced by a derivative. This should
warn you that something nontrivial is going on.

The final equation we have obtained, of course, is the dif-
fusion equation which can also be written as (9p/dt) =
—V - J, where the current J = —KVp arises due to
a gradient in the particle density. (In this form we can
even consider a situation with spatially varying diffusion
coefficient K.) This indicates that diffusive processes in
physics can be modelled at the microscopic level by a
random walk of the discrete constituent element. The
diffusion equation is also unique in the sense that it is
not invariant under time reversal; diffusion gives you a
direction of time which is another remarkable fact that
arises in the continuum limit.

Being a linear equation, the diffusion equation (7) can
be solved by Fourier transforming both sides. Denot-
ing the Fourier transform of p(x,t) by p(k,t) it is easy
to show that p(k,t) = exp(—Kk?t). Taking a Fourier
transform, we get the fundamental solution to the diffu-
sion equation (which is essentially the Green’s function)
to be

2
e z® /4Kt

(4n Kt)P/2 - (®)

p(X, t) =

The diffusion
equation is
unique in the
sense that it is not
invariant under
time reversal.
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The effect of a
large number of
collisions is to
make the star
perform a random
walk in the
velocity space.

This shows how particles located close to the origin at
t = 0 spread in the course of time. The mean square
spread is clearly proportional to Kt which is the residue
of the discrete result o2 < N.

The diffusion of a particle need not always take place
in the real 3-dimensional space. An interesting phe-
nomenon which occurs in plasmas as well as gravitat-
ing systems — in which long-range, inverse square forces
act between particles — involves diffusion in the wveloc-
ity space. A simple version of this can be described as
follows. Consider a nearly homogeneous distribution of
gravitationally interacting particles (e.g., stars in a glob-
ular cluster). When two stars scatter off each other with
an impact parameter b, each one undergoes a typical ac-
celeration G'm /b? acting for a time b/v. As a result of
one such scattering, a typical star will acquire a ‘kick’ in
the velocity space of magnitude 6v; ~ Gm/bv, dv; <K v.
The effect of a large number of such collisions is to make
the star perform a random walk in the velocity space.
The net mean-square velocity induced by collisions with
impact parameters in the range (b,b + db) in a time in-
terval At will be the product of the mean number of
scatterings in time At and (6v,)?. The former is given
by the number of scatterers in the volume (27b db)(vAt).
Hence

bv

((6v1)%) = (27bdb) (vAt) n (G—m) : (9)

where n is the number density of scatterers. The total
mean-square transverse velocity due to all stars is found
by integrating over b within some range (b1, bs):

b2 22
<(6UL)2>total ~ At/ (2mbdb) (vn) (CZ?T)

by
21nG2m? b
_ 2mnGtml (_2) (10)
(% bl

We again see the signature of random walk in (6v%) o
At. The logarithmic factor shows that we cannot take
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b1 = 0,bs = o0 and one needs to use some physical cri-
teria to fix by and by. It is reasonable to take by >~ R,
the size of the system; as regards by, notice that the
velocity change per collision can become comparable
to v itself when b ~ b, ~ (Gm/v?) and our diffusion
approximation breaks down. It is, therefore, reason-
able to take by ~ b, ~ (Gm/v?). Then (by/b;) =~
(Rv?/Gm) = N (Rv?/GM) ~ N for a system in virial
equilibrium. From (10) we see that this effect is impor-
tant over time-scales (At) which is long enough to make
((51)1)2>t0ta1 ~ 2. Using this condition and solving for
(At) we get:

1)3

(At)gc = 2rG?m2nIn N (11)

This is the time scale for gravitational relaxation in such
systems (or electromagnetic relaxation in plasmas) and
the In N factor arises due to diffusion in velocity space.

The entire process can be described by a diffusion equa-
tion in velocity space — or so it would seem at first sight.
A moment of thought, however, shows that if we de-
scribe the process by a diffusion equation in velocity
space, it will make the root-mean-square velocities of
every particle in the system to increase as Vt as time
goes on; this violates some sacred notions in physics
[3]. This is one key difference between diffusing in real
space compared to velocity space and there must exist
a process which prevents this.

This process is called ‘dynamical friction’. To under-
stand it, consider a particle (‘star’) which moves with
a velocity V' that is significantly larger than the root-
mean-square speed of the cloud of stars around it. In
the rest frame of the fast star, on the average, other stars
will be streaming past it and will be deflected towards
it. This will produce a slight density enhancement of
stars behind the fast star. This density enhancement
produces the necessary force to reduce the speed V' of

There is one key
difference between

diffusing in real space
compared to velocity

space and there must
exist a process which

prevents this.
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If we take both the
processes into
account, the
evolution in the
velocity space is
described by an
equation which is a
variant of what is
called the Fokker—
Planck equation.

the star. This dynamical friction ensures that no run-
away disaster occurs in velocity space.

If we take both the processes into account, the evolution
in the velocity space is described by an equation which is
a variant of what is called the Fokker—Planck equation.
A simplified version of this is given by

af(v,t o (0?0
—fét’ ) =5 {7% + (ow)f} . (12)
The first term on the right-hand side has the standard
form of a diffusion current proportional to the gradi-
ent in the velocity space. As time goes on, this term
will cause the mean-square velocities of particles to in-
crease in proportion to ¢t inducing the ‘random walk’ in
the velocity space. Under the effect of this term, all
the particles in the system will have their < v? > in-
creasing without bound. This unphysical situation is
avoided by the presence of the second term (awvf) which
describes the dynamical friction. The combined effect
of the two terms is to drive f to a Maxwellian distribu-
tion with an effective temperature (kgT) = (¢%/a) and
(0f/0t) = 0. In such a Maxwellian distribution the gain
made in (Av?) due to diffusion is exactly balanced by
the losses due to dynamical friction. When two parti-
cles scatter, one gains the energy lost by the other; on
the average, we may say that the one which has lost the
energy has undergone dynamical friction while the one
which gained energy has achieved diffusion to higher v
The cumulative effect of such phenomena is described
by the two terms in (12).

The above points can be easily illustrated by explicitly
solving (12). Suppose we take an initial distribution
f(v,0) = 6(v—wp) peaked at a velocity vy. The solution
of (12) with this initial condition is easy to find:
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flo,t) = { a )} v exp {_a(v — voe—at)Q}

mo2(1 — e—20t o2(1 — e—20%)
(13)
which is a Gaussian with the mean < v >= vge~* and
dispersion < v? > — < v >%= (0?/a)(1—e~2°"). At late
times (¢t — o00), the mean velocity < v > goes to zero
while the velocity dispersion becomes (62/a). Thus the
equilibrium configuration is a Maxwellian distribution
of velocities with this particular dispersion, for which
df /ot = 0. To see the effect of the two terms individu-
ally on the initial distribution f(v,0) = é(v—1v¢), we can
set a or o to zero. When a = 0, we get pure diffusion:

oo = () e {-2)

Nothing happens to the steady velocity vg; but the veloc-
ity dispersion increases in proportion to ¢ representing a
random walk in the velocity space. On the other hand,
if we set 0 = 0, then we get

foeo(v,t) = 6(v — voe ™). (15)

Now there is no spreading in velocity space (no diffu-
sion); instead the friction steadily decreases < v >.

Going back to the discrete case, we can make another
useful generalization of (5) by assuming that p(Ay) it-
self depends on N so that the fundamental equation
becomes

Py(x) = / 4Py Px_1(x — Ay)pw(Dy) . (16)

This equation, which is a convolution integral, is trivial
to solve in Fourier space in which the convolution in-
tegral becomes a product. If we denote by Py(k) and
pn (k) the Fourier transforms of Py(x) and py(Ay) then

The equilibrium
configuration is a
Maxwellian
distribution of
velocities with this

particular dispersion,

for which of/ ot = 0.

RESONANCE | July 2009 W

645



SERIES | ARTICLE

Once again, it is
possible to make

some general
comments if the

individual probability
distributions p_(A'y)

satisfy some
reasonable
conditions.

this equation becomes Py(k) = Py_1(k)pn(k). Iterat-
ing this N times and normalizing the initial probability
by assuming the particle was at the origin we immedi-
ately get

Pr(i) = [T alk) - (1)

Doing an inverse Fourier transform we find the solution
to our problem to be

Pn(x) :/%eik'xgpn(k) . (18)

Once again, it is possible to make some general com-
ments if the individual probability distributions p,(Ay)
satisfy some reasonable conditions. Suppose, for sim-
plicity, that p,(Ay) is peaked at the origin and dies
down smoothly and monotonically for large |[Ay|. Then,
its Fourier transform will also be peaked around the ori-
gin in k-space and will die down for large values of |k]|.
Further, because the probability is normalized, we have
the condition p,(k = 0) = 1. When we take a product of
N such functions, the resulting function will again have
the value unity at the origin. But as we go away from
the origin, we are taking the product of N numbers each
of which is less than unity. So clearly when N — oo,
the product of p,(k) will have significant support only
close to the origin.

The nontrivial assumption we will now make is that
pn(k) has a smooth curvature at the origin of the Fourier
space and is not ‘cuspy’. Then, near the origin in Fourier
space, we can approximate

1
pa(k) =1 — 5@2!@2 ~ e~ (1/2)aik (19)
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with some constant «,. Hence the product becomes

al 1, N
Epn(k) = exp —§k2 ;ai = exp —502142 . (20)

where we have defined

| N
2 _ 2
ot = E a; . (21)

n=1

In this limit, the final Fourier transform in (18) is trivial
and will give a Gaussian in z with (2?) oc N.

An observant reader would have noticed that we have
essentially proved a variant of the central limit theorem
for the sum (x; + x2 + ... + xy) of N independently
distributed random variables each having its own prob-
ability distribution p,(x,). In fact, the joint probability
for these variables to be in some given interval is given
by the product of p,(x,)d’x, over all n = 1,2,...N.
The probability for their sum to be x is given by

Py(x) = /ﬂpn(xn)denép <x — an> . (22)

where the Dirac delta function ensures that the sum
of the random variables is x. Writing the Dirac delta
function in Fourier space, we immediately get

dPk a
R =l |  ERSC R
n=1

N

- [ 1m0, 2

which is identical to the result we obtained earlier in
(18).

A classic example in which our analysis (and central
limit theorem) fails is given by the case in which each

An observant reader
would have noticed
that we have
essentially proved a
variant of the central
limit theorem for the
sumx, + X, + ...+ X,
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The key reason for
the central limit
theorem to fail in
this case is that the
Lorentzian
distribution has a
diverging second
moment.

of the probability distributions p,(Ay) is given by a
Lorentzian

(/)

P = Gy

(24)
The Fourier transform now gives p,(k) = exp(—p3|k|).
Clearly our approximation in (19) fails for this function
since it is ‘cuspy’ due to a linear term in |k| near the
origin. We can, of course, carry out the analysis in (18)
to get

) = [k e, vem _ _ (VB/m)
PN( ) /(27_[_)[) ’XP + (NQﬂQ) . (25)

We have the result that the probability distribution for
the final displacement is identical to the probability dis-
tribution of individual steps when the latter is a Lorent-
zian — except for the (expected) scaling of the width.
The key reason for the central limit theorem to fail in
this case is that the Lorentzian distribution has a di-
verging second moment. You should remember this the
next time you think of full width at half maximum of a
Lorentzian as ‘similar to’ the width of a Gaussian! There
are physical situations, (e.g., one called anomalous dif-
fusion), which can be modelled along these lines. They
are characterized by random walks in which every once
in a while the particle takes a large step because of the
slow decrease in the probability p(Ay).

Very often one considers random walk on a lattice of spe-
cific shape, the simplest being the D-dimensional cube.
Here the particle hops from one site of the lattice to
another nearby site along any one of the axes with the
lattice spacing taken to be unity for simplicity. In this
case the Fourier integrals in (18) will become Fourier
series and we get:

Pux) = [ S leost e [T . (26)
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where all the integrals are in the range (—7,7) and x  Suggested Reading

is a vector with integer valued components. If p, (k) is

independent of n and hops in all directions from any site  [11 Anentertaining discussion
are equally likely, then p(k) = (1/D)(cos ki + cos ko + of history is available in B

e d Hughes, Random Walks
-+-coskp) and we get and Random

Environments, Vol.1, Ox-

D N
™ de 1 ford, 1965.
PN(X> = / 5 D [COS(k : X)] 5 E COS kj . Also see E W Montroll and
-m ( 7T> j=1 M F Shlesinger, On the
(27) wonderful world of ran-

dom walks, in Studies in
Statistical Mechanics, ed-

As a test, we can reproduce the standard result for one- ited by J L Lebowitz and
dimensional lattice using (27). In this case x = J, with E W Montroll, North-Hol-

. .. . . land, Vol.11, Amsterdam,
J being a positive or negative integer. After N steps

when the particle has taken ny, steps to the left of origin |, ;9022;,11 Rudnick and
and nRr Steps to the l"ight, we have niy, + Ny = N and George Gaspari, Elements
ng — ny, = J. Solving, we get ng = (1/2)(N + J), ny, = of the Random Walk, Cam-
(1/2)(N — J). The probability that out of N steps np, :;i)‘lge University - Press,

were to the left and ng were to the right is the same as

. . . . . . [3] Thereis an interesting his-
getting, say, ny, heads while tossing N coins and is given

tory associated with this is-

by sue, involving S Chandra-

sekhar; see T Padmana-

Pu(J) = L N C. — L N! bhan, Stellar Dynamics and

N( ) - 2N nL — 2N ((1/2)(N—|—J))'((1/2)(N— J))l ’ Chandra, Current Science,
(28) Vol.70, p.784, 1996.

You can amuse yourself by proving that this is also given
by the integral in (27) for D = 1,

Pu(n) = [ G leos(ineos i) (20

as it should. The result in (27) will be useful in the next | Address for Correspondence
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