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Snippets of Physics
18. Perturbing Coulomb to Avoid Accidents!

T Padmanabhan

The Coulomb problem, which corresponds to mo-
tion in a potential that varies as r~!, has a pe-
culiar symmetry which leads to a phenomenon
known as ‘accidental’ degeneracy. This curious
feature exists both in the classical and quan-

tum domain and is best understood by study-
T Padmanabhan works at

IUCAA, Pune and is ing a more general potential and obtaining the
interested in all areas Coulomb problem as a limiting case.
of theoretical physics,
especially those which The motion of a particle in an attractive —(1/r) poten-
have something to do with tial is of historical and theoretical importance. The fact
gravity. that the classical bound orbits in such a potential are

ellipses played a crucial role in the historical study of
planetary motion and gravity. The Coulomb potential,
on the other hand, played a crucial role in the early days
of quantum theory in the study of hydrogen spectra. In
both the cases, it was soon realized that the (1/r) po-
tential has some very special features not shared by a
generic central potential. In this installment, we will
investigate several aspects of this problem from both
classical and quantum perspectives.

It turns out that a nice way of undersanding the pecu-
liar features of the Coulomb problem is to start with a
slightly more general potential — which does not have
these peculiar features — and treat the Coulomb prob-
lem as a special case of this more general situation. This
can be done in many different ways and I will choose to
study the dynamics under the action of the potential
given by
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which, of course, reduces to the attractive Coulomb potential when 3 — 07. For
the sake of definiteness, I will take o > 0 and 8 > 0 though most of the analysis
can be generalized to other cases.

Classical motion of a particle of mass m, in 3-dimensions, under the action of
U(r) is straightforward to analyze using the standard textbook description of a
central force problem. Just for fun, I will do it in a slightly different manner. We
know that, as with any central force problem, angular momentum J is conserved,
confining the motion to a plane which we will take to be § = 7/2. Using J =
mr%, the energy of the particle can be expressed as

1 L, J? a B
E:§m(r+m2r2)—?+r—2. (2)

Combining the two terms with (1/r?) dependence into C?/r?, where C? =
(J%/2m) + B and completing the square, we get the relation

a? 1 C a \?
Et—— = Zmi2t (= — =) =&, 3
MPTeE 2W+( 20) 3)

This suggests introducing a function f(¢) via the equations

\/gf":é'sinf(t); (%—%) = Ecos f(t) . (4)

Differentiating the second equation with respect to time and using the first equa-
tion will give you an expression for f Dividing this expression by QS = J/mr?
leads to the simple relation (df/d¢) = (2mC?/J?*)'/2. Hence, f is a linear func-
tion of ¢ and from the second equation in (4) we get the equation for the trajectory
to be

BT 1 (29) contwn ®)

where

w2:2_m02:(1+2m5>. (6)

Now that we have solved the problem completely, let us look at the properties of
the solution. To begin with, let us ask what kind of orbit we would expect given
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the known symmetries of the problem. A particle moving in 3 space dimensions
has a phase space which is 6-dimensional. For any time-independent central
force, we have constancy of energy E and angular momentum J. Conservation of
these four quantities (E, J;, Jy, J.) confines the motion to a region of 6 — 4 = 2
dimensions. The projection of this phase space trajectory on to zy-plane will, in
general, fill a two-dimensional region of space. So you would expect the orbit to
fill a finite two-dimensional region of this plane, if there are no other conserved
quantities. This is precisely what happens for a generic value of the conserved
quantities J and E. Because w will not be an integer, when ¢ changes by 27, the
cosine factor will pick up a term cos(27w) which will not be unity. In general,
the orbit will fill a 2-dimensional region in the plane between two radii r; and rs.

We can now see how the Coulomb problem becomes rather special. In this case,
we have f = 0 making w = 1. The curve in (5) closes on itself for any value
of J and E and, in fact, becomes an ellipse with the latus-rectum p = (2C?/«)
and eccentricity e = (26C'/a). You should verify that this is indeed the standard
textbook solution to the Kepler problem. So when f = 0, w = 1, the orbit
closes and becomes a one-dimensional curve rather than filling a 2-dimensional
region. This analysis shows how turning on a non-zero 3 completely changes the
topological character of the orbit.

In the argument given above, we linked the nature of the orbit to the number
of conserved quantities for the motion. Given the fact that 3 = 0 reduces the
dimension of the orbital space by one, we expect to have one more conserved
quantity in the problem when 3 = 0 but not otherwise. To discover this constant,
consider the time derivative of the quantity (p x J) in any central force f(r)r.
We have

d
a(px.]) = pr:fiT)rx(erf)
= ™) — 07
,
d /r
2
= - —(-]. 7
o () )
That is,
d df
— X J) = — 2 8
where r is the unit vector in the radial direction. The miracle of inverse square
force is now in sight: When f(r)r? = constant = —«, we find that the vector
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(called Runge—Lenz vector though it was originally discovered by Hamilton!):
A=pxJ—amt (9)

is conserved. But we needed only one constant of motion while we now have got
3 components of A which will prevent the particle from moving at alll Such an
overkill is avoided because A satisfies the following two, easily verified, relations:

A? =2mJ%E +a*m? AJ=0, (10)

where £ = p?/2m — a//r is the conserved energy for the motion. The first relation
tells you that the magnitude of A is fixed in terms of other constants of motion
and the second one shows that A lies in the orbital plane. These two constraints
reduce the number of independent constants in A from 3 to 1, exactly what we
needed. It is this extra constant that keeps the planet on a closed orbit.

The ultimate test of our analysis is whether we can find the orbit in (5) for the
case of f = 0 without integrating any differential equation. This is, of course,
true. To find the orbit, we only have to take the dot product of (9) with the
radius vector r and use the identity r.(p x J) = J.(r x p) =J2. This gives

Ar=Arcos¢ =J? —amr, (11)
or, in a more familiar form, the conic section:

(J2/am)

A
=1+ —cos9¢. (12)
r am

As a bonus we see that A is in the direction of the major axis of the ellipse and
its magnitude is essentially the eccentricity of the orbit: e = A/am. For this
reason, A /ma is called the eccentricity vector.

Having developed all these formalisms starting from U (r) in (1) we can close the
circle by asking what happens to the eccentricity vector when we add a 3/72 term.
Obviously, if you add a 1/7® component to the force, (which can arise, for example,
from the general relativistic corrections to Newton’s law of gravitation or because
the Sun is not spherical and has a small quadrupole moment) J and E are still
conserved but not A. If the perturbation is small, it will make the direction of A
slowly change in space and we will get a ‘precessing’ ellipse, which will of course
fill a 2-dimensional region. For the potential in (1) we find, using (8), that the
rate of change of Runge-Lenz vector is now given by A = —(28m /r)(d/dt)(x/r).
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The change AA per orbit is obtained by integrating Adt over the range (0,7),
where T is the period of the original orbit. Doing one integration by parts and
changing the variable of integration from ¢ to the polar angle ¢, we get AA per
orbit to be

d
orblt QBm/ r3 d; (13)

Let us take the coordinate system such that the unperturbed orbit originally
had A pointing along the z-axis. After one orbit, a AA, component will be
generated and the major axis of the ellipse would have precessed by an amount
A¢p = AA,/A. The AA, can be easily obtained from (13) by using y = rsin ¢,
converting the dependent variable from r to uw = (1/r) and substituting (du/d¢) =
—(A/J?*)sin¢ (which comes from (12)). This gives the angle of precession per
orbit to be

Ao = % QBm / smgb—dgb = —27;#. (14)

Since we have the exact solution in (5), you can easily verify that this is indeed
the precession of the orbit when /72 is treated as a perturbation. The Runge-
Lenz vector not only allows us to solve the (1/7) problem, but even tells us how
an r~2 perturbation makes the orbit precess!

We will next consider the quantum version of the same problem. In this case, we
first need to solve the Schrédinger equation for the potential in (1). It turns out
that this is indeed possible and the analysis proceeds exactly as in the case of nor-
mal hydrogen atom problem. Once the angular dependence is separated out using
the standard spherical harmonics Yy, (0, ¢), the radial part of the wavefunction
R(r) will satisfy the differential equation

2 2m h? B«
R'+ R + 2 {E—er2£(£+1)—r—2+?}R:0, (15)

where the prime denotes derivative with respect to » and E(< 0) is the energy
cigenvalue. Introducing a new variable p by p = 2(—2mFE)Y?r/h and two new

constants s and n by
1/2
m
— 16
(%) - (16)
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the radial equation can be rewritten as:

d’R  2dR 1 1
( n M)Rzo_

dp? ~ pdp 2

R - (17)

This equation is identical to the standard radial equation for the hydrogen atom
as you can ascertain by checking it up in any standard textbook. The quantization
condition for energy levels now follows in a straightforward manner and you will
find that p = (n — s — 1) must be a positive integer or zero for well-behaved
solutions to exist. (The s is taken to be the positive root of the quadratic equation
in (16).) This allows us to obtain the energy levels to be

—2
202 gmp1"?
_E= O;izm {2p+1+ [(2€+1)2+ Zﬂ . (18)

In the quantum mechanical case, this is the key result we are after since there
are no orbits to be determined.

It is again clear that the nature of energy levels changes depending on whether
B =0or f # 0. When 8 # 0 we find that the energy levels depend both on p
and ¢. That is, if we keep p fixed and change ¢, the energy of the state changes
because it depends on both the quantum numbers. On the other hand, when
B =0, (16) tells us that s = ¢. Therefore, the factor inside the curly bracket in
(18) reduces to

(2n —20—2) + 14 (20+1) = 2n . (19)

In this limit, the energy depends only on the principle quantum number n and
becomes independent of the angular quantum number ¢. The states with same
n and different ¢ become degenerate which is the origin of the phrase ‘accidental
degeneracy of the Coulomb potential’. In a way, this is similar to the classical
orbits closing in the case of § = 0. As I said before, starting from the potential
in (1), solving the problem completely and then taking the limit of 5 — 0 helps
us to distinguish such ‘accidental’ results from more generic results.

In the classical Coulomb problem, we could find the orbit purely algebraically
using the Runge-Lenz vector without solving a differential equation. Can we
do the same thing in the case of quantum mechanics? Can we find the energy
levels of the hydrogen atom without explicitly solving the Schrodinger equation?
It turns out that this is indeed possible as was first shown by Pauli in 1926.
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Unfortunately, the operator algebra which is involved is fairly intense and hence
I will just indicate the flow of logic. (One good place to look up the details of the
algebra is in [1].)

We begin by defining an operator M = A /m corresponding to the classical
Runge-Lenz vector (divided by m for convenience). Classically p x J = —J X p;
but this is not true in quantum mechanics because of the nontrivial commutation
relation. Hence the appropriate operator needs to be defined as
1 r
M=—(pxJ—-Jxp)—a—, (20)
2m r
where each term is now an operator. By explicit computation, you can verify
that the following identities are satisfied:

M,H]=0;: J - M=M-J (21)

and

2H
M? =a® +=—(I*+ J%) . (22)
m
You can easily see the correspondence between these operator relations and the
classical properties of the Runge-Lenz vector given by (10). Further we have the
commutation rules, which can be directly obtained from the definition:

[JZ, JJ] = ZfLEUka, [MZ, JJ] = ZfLEZJkMk, [MZ, MJ] = —Qz(h/m)HeUka . (23)

The first one is standard; the second reflects the fact that the components of M
behave as a vector under spatial rotations. The really nontrivial one is the third
commutation rule which — by a series of manipulations — allows us to deduce the
eigen values of H. I will now outline this procedure.

We first note that, since H, M, J are constants (in the sense that they all commute
with the Hamiltonian), we can confine ourselves to a sub-space of a Hilbert space
that corresponds to a particular eigenvalue E(< 0) of the Hamiltonian H. In that
case we can replace H by its eigenvalue in the third commutation relations in (23).
We then rescale M by M’ = (—m/2E)Y?M so that the last two commutation
relations in (23) can be expressed in the form

[M;, J;] = iheiji My; [M], M) = iheije i | (24)
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showing that they constitute a closed set. This set can be separated by the usual
trick of defining two other operators I = (1/2)(J+M’),K = (1/2)(J —M’) which
will satisfy the commutation relations:

[1;, I;] = iheijily; (K], K} = ihejiky, (25)

with other commutators vanishing. From our knowledge of the angular momen-
tum operators, we know that the spectra of I? and K ? are given by j(j+1)R%, k(k+
1)h? where (j,k) = 0,1/2,1.... But since I> — K? = J-M = 0, we only need to
consider the subspace with j = k. Then the operator

(1/2)(J* + M"?) = (1/2)(J* — (m/2E)M?) = —ma*/4E — (1/2)h* ,  (26)
(where the last relation arises from (22)) will have the spectrum 2k(k + 1)h*. We

thus see that F is quantized in the form:

’)ﬂ()z2

= a1 (27)

which is the standard result.(I will leave it to you to prove that we also get the

standard result for the spectrum of J2.) So, once again, the existence of an extra
conserved quantity allows us to solve the problem completely.
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