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Snippets of Physics

17. Why does an Accelerated Charge Radiate?

T Padmanabhan

The fact that an accelerated charge radiates en-
ergy is considered an elementary textbook result
in electromagnetism. Nevertheless, this process
of radiation (and its reaction on the charged par-
ticle) raises several conundrums about which te-
chnical papers are written even today. In this
installment, we will try to understand why an
accelerated charge radiates in a simple, yet rig-
orous, manner.

The electric field of a point charge at rest at the origin
falls as (1/r2) and is directed radially outward from the
charge. If the charge moves with a uniform velocity v,
the field is given by

o (=)
r? (1 — (v2/c2) sin® )

1
B=-vxE, (1)
C

E = 3/2)
where 6 is the angle between the direction of motion
and the radius vector r which has the components (z —
V't,y, z). This expression —which is most easily obtained
by transforming the Coulomb field from the rest frame of
the charge to a moving frame using the Lorentz transfor-
mation properties of the electromagnetic fields — is more
complicated but still possesses two key properties of the
static charge. It falls as (1/r%) at large distances and

it is radially directed from the instantaneous position of
the charge.

The energy flow corresponding to the electromagnetic
field scales as the square of the electromagnetic field. If
the field falls as (1/r?), the energy flux will fall as (1/7*)
and, since the area of a spherical surface scales as 72, the
total energy flowing through a sphere at large distances
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When a charge is
accelerating,
something
dramatic happens.

In the case of an
accelerated
motion, the electric
field picks up a
transverse
component which
is perpendicular to
the radial direction.

from the charge falls as % x (1/r%) = (1/r?). Therefore,
one cannot transfer energy to large distances in this kind
of field. This is understandable because such a transfer
cannot take place in the rest frame of the charge — in
which we only have a static Coulomb field — and since we
expect such a physical process to be Lorentz invariant
it should not happen for a charge moving with uniform
velocity either.

But when the charge is accelerating, something dramatic
happens. The electric field, say, picks up an additional
term which falls only as (1/r) at large distances. The
change from the (1/r?) dependence to the (1/r) depen-
dence makes tremendous difference (and much of mod-
ern technology owes its existence to this fact). When
the field falls as (1/7) at large distances, the energy flux
will fall as (1/r2) and the total energy flowing through a
sphere at large distances from the charge, r? x (1/r?), is
a constant! Therefore, the fields arising from an acceler-
ated charge are capable of transmitting energy to large
distances from the charge. Clearly, it would be nice to
understand better how acceleration leads to such a shift
from (1/7%) to (1/7) dependence — which changes the
caterpillar to a butterfly.

There is also another peculiar feature that arises when
the charge undergoes an accelerated motion. The Cou-
lomb field of a charge at rest, and that of a charge mov-
ing with a uniform velocity, is radial. The electric field
vector in these cases points radially outward from the
charge. But in the case of an accelerated motion, the
electric field picks up a transverse component which is
perpendicular to the radial direction. Since a propagat-
ing electromagnetic plane wave, for example, will have
an electric field that is transverse to the direction of
propagation of the wave, this fact is crucial for identify-
ing the field generated by the acceleration with electro-
magnetic radiation.
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It turns out that there is a remarkably elegant and
simple way of understanding both these features, orig-
inally due to J J Thomson [1], which deserves to be
known better and possibly could replace the unimagina-
tive derivation using Lienard-Wiechert potentials in the
classrooms!. (This derivation is discussed, for example,
in [2] and also appears in the standard textbooks [3, 4]
though in these textbooks an impression is created that
the result is valid only for non-relativistic motion.) I
will describe this approach and its essential features.

To begin with, let us consider a few elementary facts
about Maxwell’s equations which connect the electro-
magnetic fields to the motion of the source. Since the
electric field is E = —(1/c)(0A /dt) — V ¢, we see that
the electric field has a component which depends lin-
early on (0A/0t). It is also well known that the source
for the vector potential A is the current j in the sense
that JA oc j. Therefore (0A /0t) will have a source that
depends on (9j/0t). Since j is linear in the velocity of
the charge, we conclude that the electric field will have
a source term which is linear in the time derivative of
the velocity, viz., the acceleration a.

An alternative way of understanding this result is as
follows: A charge ¢ moving with uniform velocity v is
equivalent to a current j = ¢v. This current will produce
a magnetic field (in addition to the electric field) which
scales in proportion to j. [f a =v # 0, it will produce a
nonzero (9j/0t) and hence a nonzero (9B/dt). Through
Faraday’s law, the (0B/0t) will induce an electric field
which scales as (9j/0t). (That is, if (9j/0t) changes
by factor 2, the electric field will change by factor 2.)
It follows that an accelerated charge will produce an
electric field which is linear in (9j/0t) = qa. (This, of
course, is in addition to the usual Coulomb term which
is independent of a and falls as r=2.)

Further, since the wave equation [JA o j propagates

Since jis linear in
the velocity of the
charge, we
conclude that the
electric field will
have a source
term which is
linear in the time
derivative of the
velocity, viz., the
acceleration a.
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Before we do more
sophisticated
mathematics, let us
try a bit of
dimensional analysis
to determine the
electric field which
arises from the
acceleration.

Dimensional
analysis plus the
fact that E must be
linear in g and a,
implies the r
dependence for
the radiation term.

information at the speed of light, we also know that the
electric field at an event (¢,x) is determined entirely by
the behaviour of the source at the event (tg,x’), where
t—tgr = (1/c)|x —x'| = (r/c). Tt is usual to call tg the
‘retarded time’.

Before we do more sophisticated mathematics, let us try
a bit of dimensional analysis to determine the electric
field which arises from the acceleration. We know that
the electric field has to be determined by the charge of
the particle ¢, velocity of light ¢, acceleration a and the
distance r (with a and r calculated at the retarded time).
In general, the field will also depend on the velocity of
the particle at the retarded time but we will choose a
Lorentz frame in which the charge was at rest at the
retarded time thereby eliminating any v dependence. We
next use the fact that the electric field, which is linear
in 0dj/0t, should be linear in both ¢ and a to write:

p=c) L -co(L)(2). ©

cnym r2 chypm—2

where C' is a dimensionless factor, depending only on
the angle # between r and a, and n and m need to
be determined. (Since v .= 0 in the instantaneous rest
frame, the field cannot depend on the velocity.) From
dimensional analysis, noting that £ has the dimensions
of ¢/r? (Gaussian units, sorry!) it immediately follows
that (a/c"r™ %) must be dimensionless, leading to n =
2,m = 1. So we get the result:

E=C () 5. (3)

Thus, dimensional analysis plus the fact that E must
be linear in ¢ and a, implies the ' dependence for the
radiation term.

While this result shows why a term linear in acceleration
will also have a (1/r) dependence, it does not really tell
us how exactly it comes about. Moreover, dimensional
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analysis cannot determine the nature of the dimension-
less function C'(9). The argument due to J J Thomson
[1] does both of these in an elegant way and I will de-
scribe a slightly modified version of the same.

Let us consider a charged particle A moving along some
arbitrary trajectory z(¢). We are interested in the elec-

tric field, say, produced at an event P(t,x) by this charge.

Since the characteristics of the wave equation shows that
information propagates at the speed of light from the
source point to the field point, we already know that
the field at P will be determined by the properties of
the trajectory at the retarded time tg. Further, the
electric field can only depend on the position z(tr), ve-
locity z(tr) and the acceleration Z(tgr) at the retarded
time but not on higher time derivatives. (This follows
from the fact that the source for electromagnetic field
only involves up to the first time derivative of the cur-
rent which will be proportional to the acceleration.) We
will now choose our Lorentz frame such that the charge
was at rest at the origin of the spacetime coordinates at
the retarded time tg = 0. Let the acceleration of the
charge be a = Z(tr) at this instant. We will rotate the
coordinate system so that a is along the x-axis.

We now consider another charged particle B which was
at rest, at the origin, from t = —oco to t = 0 and under-
goes constant acceleration a along the z-axis for a short
time At. For ¢t > At, it moves with constant velocity
v = aAt along the z-axis. Let us study the electric
field produced by this charge B at some time t > At.
Since At is arbitrarily small, we have aAt < ¢ and we
can use the non-relativistic approximation throughout.
Since the trajectory of this charge matches identically
i position, velocity and acceleration with the trajectory
of the charged particle we are originally interested in, it
follows that both of them will produce identical electric
fields at P. This was the key insight of Thomson. As
we shall see, the field produced by B is fairly trivial to

Since the trajectory of
this charge matches
identically in position,
velocity and
acceleration with the
trajectory of the
charged particle we
are originally
interested in, it follows
that both of them will
produce identical
electric fields at P .
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Figure 1.
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The key point is
that this field is
radially directed
from the
instantaneous
position of the
charged particle.

calculate and hence we can obtain the field due to A.

The ‘news’, that the charge was accelerated at t = 0,
could have only travelled to a distance » = ¢t in time t.
Thus, at » > ct, the electric field should be that due to
a charge located at the origin as shown in Figure la:
E=-"L¢  (for r > ct). (4)
r2
At r S et, the field is that due to a charge moving with
velocity v along the z-axis, given by (1). The key point
is that this field is radially directed from the instanta-
neous position of the charged particle. When v < ¢,
which is the situation we are interested in, this is again
a Coulomb field radially directed from the instantaneous
position of the charged particle (see Figure 1b) :

q,2 r (for r < ct). (5)
,

E =

Around r = ct, there exists a small shell of thickness
(cAt) in which neither result holds good. It is clear that
the electric field in the transition region should interpo-
late between the two Coulomb fields. The crucial ques-
tion is how to do this making sure that the flux of the
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electric field vector through any small box in this region
vanishes, as it should to satisfy Maxwell’s equations. As
we shall see below, it turns out that this requires the field
lines to appear somewhat as shown in Figure2. One can
explicitly work out this condition and prove that tan § =
~vtan ¢, where v = (1 —v?/¢?) ™2, (You should try this
out; it is done in detail in [3].) In the non-relativistic
limit that we are considering, § ~ ¢ making the field
lines parallel to each other in the inside and outside
regions; that is, QP is parallel to RS. (This is easy to
understand because the radial field is just the Coulomb
field both in the outside and in the inside region. For
the flux to be conserved, these two field lines should
be parallel to each other.) What is really interesting
is that we now need a piece of electric field line PR
interpolating between the two Coulomb fields. This is
clearly transverse to the radial direction and all that we
need to do is to prove that its magnitude varies as 1/r.
Let us see how this comes about.

The situation is described in detail in Figure 3 which is
self-explanatory. Let F| and E; be the magnitudes of

Figure 2.

What is really
interesting is that
we now need a
piece of electric
field line PR
interpolating
between the two
Coulomb fields.
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Figure 3.

(a) The electric field due to
a charged particle which
was accelerated for a small
time interval At. For t > At
the particle is moving with
a uniform non-relativistic
velocity @ along the x-axis.
At r > ct, the field is that of
a charge at rest in the ori-
gin. Atr <c(t- At), the field
is directed towards the in-
stantaneous position of the
particle. The radiation field
connects these two Cou-
lomb fields in a small re-
gion of thickness cAt.

(b) Pill box construction to
relate the normal compo-
nent of the electric field
around the radiation zone.

the electric field parallel and perpendicular to the direc-
tion r'. From the geometry, we have

EJ_ UJ_t

B At )

But v; = ay At and ¢t = (r/c) giving

ﬂ _ (aLAt> (T/C) _ (L) <7)
E” n cAt - c? .

The value of E) can be determined by using Gauss the-

orem to a small pill box, as shown in the small inset in

Figure 3. This gives Ey = E, = (¢/r?); thus we find

that
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This is the radiation field located in a shell at r = ct,
which is propagating outward with a velocity c¢. The
above argument clearly shows that the origin of the r 1
dependence lies in the necessity to interpolate between
the two Coulomb fields. We have thus determined the
electric field generated due to the acceleration of the

charge and have shown that it is transverse and also
falls as (1/r)!

We can express this result more concisely in the vector
notation as

)

where n = (r/r) and the subscript ‘ret’ implies that
the expression in square brackets should be evaluated at
t" =t —r/c. Comparison with equation (3) shows that
C (0) = sinf. The full electric field in the frame in which
the charge s instantaneously at restis E = Ecoul + Erad.
We emphasise that this result is exact in the Lorentz
frame in which the charge was at rest at the retarded
time. (One does not have to make a non-relativistic ‘ap-
proximation’ because v = 0 automatically takes care of
it!). If we now make a Lorentz transformation to a frame
in which the particle was moving with some velocity
v = 7z(tr) at the retarded time, then we can obtain the
standard, fully relativistic, expression with the velocity
dependence. This is algebraically a little complicated
because one needs to make a Lorentz transformation in

1.
E.q(t,r) = 2[;n X (N X a)let,

an arbitrary direction since v and a will not, in general,
be in the same direction. (This is done in [5] if you are
interested.) Thus J J Thomson’s idea is quite capable
of giving us the complete solution to the problem.
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