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A s o lu t io n t o t h e 3 -b o d y p r o b le m in g r a v ity , d u e

t o L a g r a n g e , h a s s e v e r a l r e m a r k a b le fe a t u r e s . I n

p a r t ic u la r , it d e s c r ib e s a s it u a t io n in w h ic h a p a r -

t ic le , lo c a t e d a t t h e m a x im a o f a p o t e n t ia l, c a n

r e m a in s t a b le a g a in s t s m a ll p e r t u r b a t io n s .

M o tio n o f b o d ie s u n d er th eir m u tu a l g ra v ita tio n a l a t-
tra c tio n is o f h isto ric a l, th e o re tic a l a n d ev en p ra c tic a l
(th a n k s to th e sp a c e -a g e a n d sa te llite s) im p o rta n c e. T h e

sim p le st ca se o f tw o b o d ie s { c o rre sp o n d in g to th e so -
c a lle d K e p le r p ro b le m { a lre a d y p o ssesses se v e ra l in te r-
e stin g fe a tu re s, lik e th e ex isten ce o f a n ex tra in te g ra l a n d
th e fa ct th a t th e tra je c to ry o f th e p a rticle in th e v e lo c -
ity sp a c e is a circ le (see , fo r ex a m p le , [1 ]). T h e situ a tio n

b e c o m es m o re in tere stin g , b u t a lso te rrib ly co m p lica ted ,
w h e n w e a d d a th ird p a rtic le to th e fra y. T h e 3 -b o d y
p ro b le m , a s it is c a lle d , h a s a ttra c te d th e a tte n tio n o f
se v e ra l d y n a m icists a n d a stro n o m e rs b u t, u n fo rtu n a tely,
it d o es n o t p o ssess a clo sed so lu tio n .

W h e n a n e x a c t p ro b le m ca n n o t b e so lv ed , p h y sic ists
lo o k a ro u n d fo r a sim p ler v ersio n o f th e p ro b le m w h ich
w ill a t le a st c a p tu re so m e fe a tu re s o f th e o rig in a l o n e.
O n e su ch c a se c o rre sp o n d s to w h a t is k n o w n a s th e re -
stricted th ree-bod y p ro blem w h ich co u ld b e d escrib e d a s
fo llo w s. C o n sid e r tw o p a rtic le s o f m a sse s m 1 a n d m 2

w h ich o rb it a ro u n d th e ir co m m o n ce n tre o f m a ss, e x -
a c tly a s in th e ca se o f th e sta n d a rd K e p ler p ro b le m . W e
n o w co n sid er a th ird p a rticle o f m a ss m 3 w ith m 3 ¿ m 1

a n d m 3 ¿ m 2 w h ich is m o v in g in th e g ra v ita tio n a l ¯ eld
o f th e tw o p a rticle s m 1 a n d m 2 . S in ce it is fa r less m a s-
siv e th a n th e o th er tw o p a rticle s, w e w ill a ssu m e th a t
it b e h a v e s lik e a te st p a rtic le a n d d o e s n o t a ® e ct th e



319RESONANCE  April 2009

SERIES  ARTICLE

o rig in a l m o tio n o f m 1 a n d m 2 . Y o u c a n se e th a t th is
is e q u iv a le n t to stu d y in g th e m o tio n o f m 3 in a tim e -
d e p e n d e n t ex te rn a l g ra v ita tio n a l p o ten tia l p ro d u c ed b y
m 1 a n d m 2 . G iv en th e fa c t th a t w e lo se b o th th e tim e
tra n sla tio n in v a ria n c e a n d a x ia l sy m m etry , a n y h o p e fo r
sim p le a n a ly tic so lu tio n s is m isp la c e d . B u t th ere is a
sp ec ia l ca se { d e scrib e d in th is in sta llm en t { fo r w h ich
a b e a u tifu l so lu tio n c a n b e o b ta in e d .

T h is c o rre sp o n d s to a situ a tio n in w h ich a ll th e th ree
p a rtic le s m a in ta in th e ir re la tiv e p o sitio n s w ith re sp ec t
to o n e a n o th er b u t ro ta te rig id ly in sp a ce w ith a n a n -
g u la r v e lo c ity ! ! In fa c t, th e th ree p a rtic le s a re lo c a te d

a t th e v e rtic e s o f a n e q u ila te ra l tria n g le irresp e ctiv e o f
th e ra tio o f th e m a sse s m 1 = m 2 . If y o u th in k a b o u t it,
y o u w ill ¯ n d th a t th is so lu tio n , ¯ rst fo u n d b y L a g ra n g e,
is q u ite eleg a n t a n d so m ew h a t co u n ter-in tu itiv e . H o w
d o y o u b a la n c e th e fo rce s, w h ich d ep en d o n m a ss ra tio s,

w ith o u t a d ju stin g th e d ista n ce ra tio s b u t a lw a y s m a in -
ta in in g th e e q u ila te ra l co n ¯ g u ra tio n ? W h a t is m o re , th e
lo c a tio n o f m 3 h a p p e n s to b e a t th e lo c a l m a xim u m o f
th e e® ec tiv e p o te n tia l in th e fra m e co -ro ta tin g w ith th e
sy ste m . T ra d itio n a lly , th e m a x im a o f a p o te n tia l h a v e

b a d p re ss d u e to th e ir ten d en c y to in d u ce in sta b ility . It
tu rn s o u t th a t, in th is so lu tio n , sta b ility c a n b e m a in -
ta in e d (fo r a re a so n a b le ra n g e o f p a ra m e ters) b e c a u se
o f th e ex isten ce o f C o rio lis fo rc e { w h ich is o n e o f th e
th in g s m a n y stu d en ts d o n o t h a v e a n in tu itiv e g ra sp o f.
I w ill n o w o b ta in th is so lu tio n a n d d e sc rib e its p ro p e r-

tie s le a v in g (a s u su a l!) th e d e ta ile d a lg eb ra fo r y o u to
w o rk o u t.

If th e se p a ra tio n b e tw e en m 1 a n d m 2 is a , th e sta n d a rd

K ep le r so lu tio n te lls u s th a t th e y c a n ro ta te in circ u -
la r o rb its a ro u n d th e ce n tre o f m a ss w ith th e a n g u la r
v e lo c ity g iv e n b y

! 2 =
G (m 1 + m 2 )

a 3
: (1 )

Traditionally, the

maxima of a

potential have bad

press due to their

tendency to induce

instability.
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S in ce L a g ra n g e h a s sh o w n th a t a rig id ly ro ta tin g so -
lu tio n e x ists w ith th e th ird b o d y , w e w ill sa v e w o rk
b y stu d y in g th e p ro b le m in th e c o o rd in a te sy stem co -

ro ta tin g w ith th e m a sses, in w h ich th e th re e b o d ie s w ill
b e a t re st. W e w ill ¯ rst w o rk o u t th e e q u a tio n s o f m o tio n
in a ro ta tin g fra m e b efo re p ro c e ed in g fu rth e r.

T h is is m o st e a sily d o n e b y sta rtin g fro m th e L a g ra n g ia n

fo r a p a rticle L (x ; _x ) = (1 = 2 )m _x 2 ¡ V (x ) a n d tra n sfo rm -
in g to a ro ta tin g fra m e b y u sin g th e tra n sfo rm a tio n la w
v in e rtia l = v ro t + ! £ x . T h is le a d s to th e L a g ra n g ia n o f
th e fo rm

L =
1

2
m v 2 + m v ¢ (! £ x ) +

1

2
m (! £ x )2 ¡ V (x ) (2 )

a n d eq u a tio n s o f m o tio n

m
d v

d t
= ¡

@ V

@ x
+ 2 m v £ ! + m ! £ (x £ ! ) (3 )

W e se e th a t th e tra n sfo rm a tio n to a ro ta tin g fra m e in -
tro d u ce s tw o a d d itio n a l fo rc e te rm s in th e rig h t-h a n d
sid e o f (3 ) o f w h ich th e 2 m (v £ ! ) is c a lle d th e C o rio lis

fo rc e a n d m ! £ (x £ ! ) is th e m o re fa m ilia r c en trifu g a l
fo rc e . T h e C o rio lis fo rc e h a s th e fo rm id e n tic a l to th e
fo rc e ex e rted b y a m a g n e tic ¯ e ld (2 m = q )! o n a p a rtic le
o f ch a rg e q . It fo llo w s th a t th is fo rc e c a n n o t d o a n y w o rk
o n th e p a rticle sin ce it is a lw a y s o rth o g o n a l to th e v e -

lo c ity . T h e c en trifu g a l fo rce , o n th e o th er h a n d , c a n b e
o b ta in e d a s th e g ra d ie n t o f a n e ® e c tiv e p o te n tia l w h ich
is th e th ird te rm in th e rig h t-h a n d sid e o f (2 ).

W e a re n o w re a d y to ¯ n d th e rig id ly ro ta tin g so lu tio n in

w h ich a ll th e th re e p a rticle s a re a t rest in th e ro ta tin g
fra m e in w h ich (3 ) h o ld s. W e w ill ch o o se a c o o rd in a te
sy ste m in w h ich th e test pa rticle is a t th e o rigin a n d
d e n o te b y r 1 ; r 2 th e p o sitio n v ec to rs o f m a sse s m 1 a n d
m 2 . T h e p o sitio n o f th e c en tre o f m a ss o f m 1 a n d m 2

w ill b e d en o ted b y r so th a t

(m 1 + m 2 )r = m 1 r 1 + m 2 r 2 : (4 )

The Coriolis force

has the form identical

to the force exerted

by a magnetic field

(2m/q)on a particle

of charge q.
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To work out the

exact position of

equilibrium, one

has to solve a fifth-

order equation

which will lead to

three real roots.

In th e so lu tio n w e a re lo o k in g fo r, a ll th ese th ree v e cto rs
a re in d e p e n d e n t o f tim e in th e ro ta tin g fra m e a n d th e
C o rio lis fo rc e v a n ish e s b e c a u se v = 0 . S in ce m 1 a n d
m 2 a re a lre a d y ta k e n ca re o f (a n d a re a ssu m ed to b e
o b liv io u s to m 3 ), w e o n ly n e ed to sa tisfy th e eq u a tio n o f
m o tio n fo r m 3 w h ich d e m a n d s:

G m 1

r 3
1

r 1 +
G m 2

r 3
2

r 2 = ! 2 r : (5 )

Y o u sh o u ld n o w b e a b le to se e th e e q u ila te ra l tria n g le
e m e rg in g . If w e a ssu m e r 1 = r 2 , a n d ta k e n o te o f (4 ),
th e le ft-h a n d sid e o f (5 ) c a n b e re d u c e d to (G = r 3

1 )(m 1 +
m 2 )r w h ich is in th e d ire ctio n o f r . If w e n e x t se t r 1 =
a , th is e q u a tio n is id e n tic a lly sa tis¯ ed , th a n k s to (1 ).
(T h e co g n o sce n ti w o u ld h a v e re a lize d th a t m a k in g th e
lo c a tio n o f th e te st p a rticle th e o rig in is a n a lg e b ra ic a lly
c le v e r th in g to d o .) T h is a n a ly sis c le a rly sh o w s h o w th e

m a ss ra tio s g o a w a y th ro u g h th e p ro p o rtio n a lity o f b o th
sid es to th e ra d iu s v e c to r b e tw ee n th e ce n tre o f m a ss
a n d th e test p a rticle .

T o m a k e su re w e c a tch a ll th e eq u ilib riu m so lu tio n s, w e

c a n d o th is a b it m o re fo rm a lly . W e d e¯ n e th e v ec to r q

b y th e re la tio n m 1 r 1 ¡ m 2 r 2 = (m 1 + m 2 )q . A little b it
o f a lg eb ra ic m a n ip u la tio n a llo w s u s to w rite (5 ) a s:

G (m 1 + m 2 )

2 r 3
1 r 3

2

£
(r 3

1 + r 3
2 )r + (r 3

2 ¡ r 3
1 )q

¤
=

G (m 1 + m 2 )

a 3
r :

(6 )

F o r th is e q u a tio n to h o ld , a ll th e v ec to rs a p p e a rin g in it
m u st b e c o llin e a r. O n e p o ssib ility is to h a v e r a n d q to
b e in th e sa m e d ire ctio n . It th e n fo llo w s th a t r 1 ; r 2 a n d r

a re a ll c o llin ea r a n d th e th re e p a rticles a re in a stra ig h t

lin e . T h e e q u ilib riu m co n d itio n ca n b e m a in ta in ed a t
th re e lo c a tio n s u su a lly c a lle d L 1 ; L 2 a n d L 3 . T o w o rk
o u t th e e x a c t p o sitio n o f eq u ilib riu m , o n e h a s to so lv e a
¯ fth -o rd er eq u a tio n w h ich w ill lea d to th ree re a l ro o ts.
W e a re, h o w e v e r, n o t in te reste d in th e se (a t le a st, n o t in
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th is in sta llm en t!) th o u g h L 2 o f th e S u n { E a rth sy stem
h a s lo ts o f p ra c tic a l a p p lic a tio n s.

If w e d o n o t w a n t r a n d q to b e p a ra lle l to ea ch o th er,
th e n th e o n ly w a y to sa tisfy (6 ) is to m a k e th e co e ± c ien t
o f q v a n ish w h ich req u ires r 1 = r 2 . S u b stitu tin g b a ck ,
w e ¯ n d th a t e a ch sh o u ld b e e q u a l to a . S o w e g et th e
rig id ly ro ta tin g eq u ila tera l c o n ¯ g u ra tio n o f th re e m a sse s

w ith :

r 1 = r 2 = a : (7 )

O b v io u sly , th ere a re tw o su ch c o n ¯ g u ra tio n s co rresp o n d -
in g to th e tw o e q u ila te ra l tria n g le s w e c a n d ra w w ith th e
lin e jo in in g m 1 a n d m 2 a s o n e sid e. T h e lo ca tio n s o f th e
m 3 c o rre sp o n d in g to th e se tw o so lu tio n s a re ca lle d L 4

a n d L 5 , g iv in g L a g ra n g e a to ta l o f ¯ v e p o in ts.

In cid e n ta lly, th e re a re se v e ra l ex a m p les in th e so la r sy s-
te m in w h ich n a tu re u se s L a g ra n g e 's in sig h t. T h e m o st

fa m o u s a m o n g th e m is th e co lle ctio n o f m o re th a n a
th o u sa n d a ste ro id s ca lled T ro ja n s w h ich a re lo c a te d a t
th e v erte x o f a n e q u ila te ra l tria n g le , th e b a se o f w h ich is
fo rm ed b y S u n a n d J u p ite r { th e tw o la rg e st g ra v ita tin g
b o d ies in th e so la r sy ste m . S im ila r, b u t less d ra m a tic,
fea tu re s a re fo u n d in th e L 5 p o in t o f S u n { M a rs sy stem

a n d in th e sa tellite s o f S a tu rn . T h e e n tire c o n ¯ g u ra tio n
g o e s a ro u n d in rig id ro ta tio n sin c e th e o rb it o f J u p ite r
is a p p ro x im a tely c irc u la r.

T h e e x iste n c e o f su ch re a l life so lu tio n s tells u s th a t th e
e q u ila te ra l so lu tio n m u st b e sta b le in th e sen se th a t if
w e d isp la c e m 3 fro m th e e q u ilib riu m p o sitio n L 5 slig h tly,
it w ill c o m e b a ck to it. (It tu rn s o u t th a t th e o th e r th ree
p o in ts L 1 ; L 2 ; L 3 a re n o t.) O u r n e x t jo b is to stu d y th is

sta b ility ; fo r th is a d i® e re n t c o o rd in a te sy ste m is b e t-
te r. It w ill a lso h elp to re sc a le v a ria b le s to sim p lify life.
W e w ill n o w ta k e th e o rig in o f th e ro ta tin g c o o rd in a te
sy ste m to b e a t th e loca tio n o f th e cen tre o f m a ss o f m 1

a n d m 2 w ith th e x -a x is p a ssin g th ro u g h th e tw o m a sse s

The existence of real

life solutions tells us

that the equilateral

solution must be

stable in the sense

that if we displace m
3

from the equilibrium

position L
5

slightly, it

will come back to it.
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a n d th e m o tio n c o n ¯ n e d to th e x { y p la n e .

M ea su rin g a ll m a sses in term s o f th e to ta l m a ss m 1 + m 2 ,
w e ca n d en o te th e sm a lle r m a ss b y ¹ a n d th e la rg er b y
(1 ¡ ¹ ). S im ila rly , w e w ill m e a su re a ll d ista n c e s in te rm s
o f th e se p a ra tio n a b e tw ee n th e tw o p rim a ry m a sse s a n d
ch o o se th e u n it o f tim e su ch th a t ! = 1 . (If th e se a p p e a r
stra n g e fo r y o u , ju st w rite d o w n th e e q u a tio n s in n o rm a l

u n its a n d re -sc a le th e m ; su ch trick s a re w o rth le a rn in g .)
T h e p o sitio n o f m 3 is (x ; y ) a n d r 1 a n d r 2 w ill d e n o te
th e (sca la r) d ista n c e s to m 3 fro m th e m a sse s (1 ¡ ¹ ) a n d
¹ re sp ec tiv e ly . (N o te th a t th ese a re n o t th e d ista n c e s
to m 3 fro m th e o rig in .) It is n o w e a sy to see th a t th e

e q u a tio n s o f m o tio n in (3 ) red u c e to th e se t:

Äx ¡ 2 _y = ¡
@ ©

@ x
; Äy + 2 _x = ¡

@ ©

@ y
; (8 )

w h e re

© = ¡
1

2
(x 2 + y 2 ) ¡

(1 ¡ ¹ )

r 1

¡
¹

r 2

(9 )

is th e e ® ec tiv e p o ten tia l in th e ro ta tin g fra m e w h ich
in clu d e s a te rm fro m th e ce n trifu g a l fo rc e. T h e o n ly
k n o w n in te g ra l o f m o tio n is th e ra th e r o b v io u s o n e c o rre -
sp o n d in g to th e e n erg y fu n c tio n (1 = 2 )v 2 + © = c o n sta n t.

A little th o u g h t sh o w s th a t r © = 0 a t L 4 a n d L 5 , co n -
¯ rm in g th e e x iste n c e o f a sta tio n a ry so lu tio n . T o stu d y
th e sta b ility , w e n o rm a lly w o u ld h a v e ch eck e d w h eth e r
th e se c o rre sp o n d to m a x im a o r m in im a o f th e p o ten tia l.
A s w e sh a ll se e (F igu re 1 ), it tu rn s o u t th a t L 4 a n d L 5

a c tu a lly c o rre sp o n d to m a x im a , so if th a t is th e w h o le
sto ry L 4 a n d L 5 sh o u ld b e u n sta b le.

B u t, o f c o u rse, th a t is n o t th e w h o le sto ry sin c e w e

n e ed to ta k e in to a c co u n t th e C o rio lis fo rce te rm co r-
re sp o n d in g to (2 _y ; ¡ 2 _x ) in (8 ). T o se e th e e ® e ct o f
th is term c le a rly , w e w ill ta k e th e C o rio lis fo rc e term
to b e (C _y ; ¡ C _x ) so th a t th e re a l p ro b le m co rresp o n d s
to C = 2 . B u t th is trick a llo w s u s to stu d y th e sta b ility
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Figure 1. A contour plot of

the potential(x,y) when 

= 0.3. The L
4

and L
5

are at

the potential maxima. One

can also see the saddle

points L
1
, L

2
, L

3
along the

line joining the two primary

masses.

fo r a n y v a lu e o f C , in p a rticu la r fo r C = 0 , to se e w h a t
h a p p e n s if th e re is n o C o rio lis fo rc e . W e n o w h a v e to d o
a T a y lo r se rie s ex p a n sio n o f th e te rm s in (8 ) in th e fo rm
x (t) = x 0 + ¢ x (t); y (t) = y 0 + ¢ y (t) w h ere th e p o in t
(x 0 ; y 0 ) co rresp o n d s to th e L 5 p o in t w ith y 0 > 0 . W e a lso
n e ed to e x p a n d © u p to q u a d ra tic o rd e r in ¢ x a n d ¢ y

to g e t th e e q u a tio n s g o v e rn in g th e sm a ll p ertu rb a tio n s
a ro u n d th e e q u ilib riu m p o sitio n . T h is is stra ig h tfo rw a rd

b u t a b it te d io u s. If y o u w o rk it th ro u g h , y o u w ill g e t
th e e q u a tio n s

d 2

d t2
¢ x =

3

4
¢ x +

Ã
3

p
3

4

!

(1 ¡ 2 ¹ ) ¢ y + C
d

d t
¢ y ;

(1 0 )

d 2

d t2
¢ y =

9

4
¢ y +

Ã
3

p
3

4

!

(1 ¡ 2 ¹ ) ¢ x ¡ C
d

d t
¢ x : (1 1 )
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We conclude that the

motion is unstable if

C <
p

3 ; in particular,

in the absence of the

Coriolis force (C=0),

the motion is

unstable because

the potential at L
5

is

actually a maximum.

There is even a US-

based society called

the ‘L
5

society’, which

was keen on space

colonization based

on L
5
!

T o ch e ck fo r sta b ility , w e try so lu tio n s o f th e fo rm ¢ x =
A ex p (¸ t); ¢ y = B ex p (¸ t) a n d so lv e fo r ¸ . A n e lem e n -
ta ry c a lc u la tio n g iv e s

¸ 2 =
3 ¡ C 2 § [(3 ¡ C 2 )2 ¡ 2 7 ¹ (1 ¡ ¹ )]1 = 2

3
: (1 2 )

S ta b ility re q u ire s th a t w e sh o u ld n o t h a v e a p o sitiv e re a l
p a rt to ¸ ; th a t is, ¸ 2 m u st b e re a l a n d n e g a tiv e . F o r ¸ 2

to b e rea l, th e te rm in (1 2 ) c o n ta in in g th e sq u a re ro o t

sh o u ld h a v e a p o sitiv e a rg u m en t w h ich re q u ire s

(C 2 ¡ 3 )2 > 2 7 ¹ (1 ¡ ¹ ): (1 3 )

F u rth er, if b o th ro o ts o f ¸ 2 a re n e g a tiv e , th e n th e p ro d -
u c t o f th e ro o ts m u st b e p o sitiv e a n d th e su m sh o u ld b e

n e g a tiv e . It is e a sily se e n th a t th is re q u ire s th e c o n d itio n
C >

p
3 . T h u s w e c o n clu d e th a t th e m o tio n is u n sta b le

if C <
p

3 ; in p a rtic u la r, in th e a b se n ce o f th e C o rio lis
fo rc e (C = 0 ), th e m o tio n is u n sta b le b e ca u se th e p o -
te n tia l a t L 5 is a ctu a lly a m a x im u m . B u t w h en C >

p
3

a n d in p a rticu la r fo r th e re a l c a se w e a re in tere ste d in
w ith C = 2 , th e m o tio n is sta b le w h en c o n d itio n in (1 3 )
is sa tis¯ e d . U sin g C = 2 w e c a n re d u c e th is c o n d itio n
to ¹ (1 ¡ ¹ ) < (1 = 2 7 ). T h is lea d s to

¹ <

Ã
1

2
¡

r
2 3

1 0 8

!

¼ 0 :0 3 8 5 : (1 4 )

T h is c rite rio n is m e t b y th e S u n { J u p ite r sy ste m w ith
¹ ¼ 0 :0 0 1 a n d b y th e E a rth { M o o n sy stem w ith ¹ ¼
0 :0 1 2 . S ta b ility o f T ro ja n s is a ssu re d . In fa c t, th e
L 5 s a n d L 4 s a re th e fa v o u rite s o f sc ie n c e ¯ c tio n w rite rs
a n d so m e N A S A sc ie n tists fo r settin g u p sp a ce c o lo n ies.
(T h e re is e v e n a U S -b a se d so c ie ty c a lle d th e L̀ 5 so cie ty ',
w h ich w a s k ee n o n sp a ce c o lo n iz a tio n b a se d o n L 5 !)

S o h o w d o e s C o rio lis fo rc e a c tu a lly sta b iliz e th e m o tio n ?
W h e n th e p a rtic le w a n d ers o f th e m a x im a , it a c q u ire s
a n o n -z ero v e lo c ity a n d th e C o rio lis fo rc e in d u c es a n
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Figure A

B o x 1 . G e o m e t r ic a l P r o o f o f L a g r a n g e 's E q u ila t e r a l S o lu t io n

If you like matters geomet rical, you might ¯nd the following proof interesting. In F ig u re
A, the triangle ABL5 is Lagrange's equilateral t riangle of unit side with mass ¹ located
at A, mass (1 ¡ ¹ ) located at B, and the test part icle located at L5 . The centre of mass
of the primary bodies is C and all the three masses rotate rigidly around C. We need
t o prove that t he resultant of the gravitational attraction along L5 A and L5 B will be
precisely along L5 C and will have a magnitude equal to t he (outward) centrifugal force
acting on L5 . With our choice of units, ! 2 = 1 and the centrifugal force is numerically
t he same as the length L5 C. To prove t his, draw DE perpendicular to CL5 and drop
p erp endiculars AD and BE as shown. Also draw a p erp endicular from A to BE (shown
by dashed line) . If AD is equal to x and EB is equal to x + y , it follows from elementary
geomet ry that L5 F= x and FC= y (1 ¡ ¹ ) . We can also writ e DL5 and L5 E as (1 ¡ ¹ ) l

and ¹ l respectively for some l.

To prove that forces match at L5 , we need to show that t he component of the gravitational
force along L5 D due t o the mass ¹ is balanced by the component of the gravitational force
along L5 E due to the mass (1 ¡ ¹ ) . This leads to the condition ¹ (1 ¡ ¹ ) l = (1 ¡ ¹ ) ¹ l

which is true. (While taking cosines and sines of angles, recall that t he equilateral
t riangle has unit side. ) Next consider the component of the force along L5 C. The sum
of the two gravitational forces along L5 C is given by ¹ x + (1 ¡ ¹ ) (x + y ) which should
balance t he outward cent rifugal force equal to the lengt h of L5 C, viz. , x + y (1 ¡ ¹ ) . Since
¹ x + (1 ¡ ¹ ) (x + y ) = x + y (1 ¡ ¹ ) , we are again through with the proof. This proves that
one can achieve force balance in the equilateral con¯guration for any value of ¹ . The
fact that C divides AB in the inverse ration of the masses is, of course, crucial.
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a c c ele ra tio n in th e d irec tio n p erp en d ic u la r to th e v e lo c -
ity . A s w e n o te d b efo re, th is is ju st lik e th e m o tio n in a
m a g n e tic ¯ e ld a n d th e p a rtic le ju st g o es a ro u n d L 5 . T h e

id ea th a t a fo rc e w h ich d o es n o t d o w o rk c a n still h e lp in
m a in ta in in g th e sta b ility m a y a p p e a r a b it stra n g e b u t
is c o m p lete ly p la u sib le . In fa c t, th e a n a lo g y b e tw ee n
C o rio lis a n d m a g n etic fo rce s te lls y o u th a t o n e m a y b e
a b le to a ch iev e sim ila r re su lts w ith m a g n etic ¯ eld s to o .

T h is is tru e a n d o n e e x a m p le is th e so -ca lle d P̀ e n n in g
tra p ', w h ich y o u m ig h t lik e to rea d a b o u t w ith th e c u r-
re n t in sig h t.

T o b e a b so lu te ly co rrec t a n d fo r th e sa k e o f ex p erts w h o

m a y b e re a d in g th is, I sh o u ld a d d a co m m e n t re g a rd -
in g a n o th e r p e c u lia rity w h ich th is sy ste m p o sse sse s. A
m o re p re c ise sta te m e n t o f o u r re su lt o n sta b ility is th a t,
w h e n (1 4 ) is sa tis¯ e d , th e so lu tio n s a re n o t lin ea rly u n -
sta ble. T h e ch a ra c te riz a tio n \ n o t u n sta b le" is q u a lī e d

b y sa y in g th a t th is is a resu lt in lin ea r p e rtu rb a tio n th e -
o ry . A fa irly c o m p le x p h e n o m en o n (w h ich is to o so -
p h istic a te d to b e d isc u sse d h e re, b u t see [2 ] if y o u a re
in te rested ) m a k e s th e sy stem u n sta b le fo r tw o p re c ise
v a lu e s o f ¹ w h ich d o sa tisfy (1 4 ). T h e se v a lu e s h a p p e n

to b e (1 = 3 0 )[1 5 ¡
p

2 1 3 ] a n d (1 = 9 0 )[4 5 ¡
p

1 8 3 3 ]. (Y es,
b u t I sa id th e p h en o m e n o n is co m p le x !) W h ile o f g re a t
th e o re tic a l v a lu e, th is is n o t o f m u ch p ra ctica l re le v a n ce
sin ce o n e c a n n o t ¯ n e-tu n e m a sse s to a n y p re cise v a lu es.


