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Snippets of Physics

16. Lagrange has (more than) a Point!
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A solution to the 3-body problem in gravity, due
to Lagrange, has several remarkable features. In
particular, it describes a situation in which a par-
ticle, located at the maxima of a potential, can
remain stable against small perturbations.

Motion of bodies under their mutual gravitational at-
traction is of historical, theoretical and even practical
(thanks to the space-age and satellites) importance. The
simplest case of two bodies — corresponding to the so-
called Kepler problem — already possesses several inter-
esting features, like the existence of an extra integral and
the fact that the trajectory of the particle in the veloc-
ity space is a circle (see, for example, [1]). The situation
becomes more interesting, but also terribly complicated,
when we add a third particle to the fray. The 3-body
problem, as it is called, has attracted the attention of
several dynamicists and astronomers but, unfortunately,
it does not possess a closed solution.

When an exact problem cannot be solved, physicists
look around for a simpler version of the problem which
will at least capture some features of the original one.
One such case corresponds to what is known as the re-
stricted three-body problem which could be described as
follows. Consider two particles of masses m; and mso
which orbit around their common centre of mass, ex-
actly as in the case of the standard Kepler problem. We
now consider a third particle of mass mg with mg < m;
and m3 < my which is moving in the gravitational field
of the two particles m; and mso. Since it is far less mas-
sive than the other two particles, we will assume that
it behaves like a test particle and does not affect the
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original motion of m; and my. You can see that this
is equivalent to studying the motion of mg in a time-
dependent external gravitational potential produced by
m1 and ms. Given the fact that we lose both the time
translation invariance and axial symmetry, any hope for
simple analytic solutions is misplaced. But there is a
special case — described in this installment — for which
a beautiful solution can be obtained.

This corresponds to a situation in which all the three
particles maintain their relative positions with respect
to one another but rotate rigidly in space with an an-
gular velocity w! In fact, the three particles are located
at the vertices of an equilateral triangle irrespective of
the ratio of the masses my/ms. If you think about it,
you will find that this solution, first found by Lagrange,
is quite elegant and somewhat counter-intuitive. How
do you balance the forces, which depend on mass ratios,
without adjusting the distance ratios but always main-
taining the equilateral configuration? What is more, the
location of mg happens to be at the local mazximum of
the effective potential in the frame co-rotating with the
system. Traditionally, the maxima of a potential have
bad press due to their tendency to induce instability. It
turns out that, in this solution, stability can be main-
tained (for a reasonable range of parameters) because
of the existence of Coriolis force — which is one of the
things many students do not have an intuitive grasp of.
I will now obtain this solution and describe its proper-
ties leaving (as usual!l) the detailed algebra for you to
work out.

If the separation between my and ms is a, the standard
Kepler solution tells us that they can rotate in circu-
lar orbits around the centre of mass with the angular
velocity given by

2 _ G(mi1+my)

w® = — s (1)

Traditionally, the
maxima of a
potential have bad
press due to their
tendency to induce
instability.
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The Coriolis force

has the form identical

to the force exerted
by a magnetic field

(2ml/q)w on a particle

of charge q.

Since Lagrange has shown that a rigidly rotating so-
lution exists with the third body, we will save work
by studying the problem in the coordinate system co-
rotating with the masses, in which the three bodies will
be at rest. We will first work out the equations of motion
in a rotating frame before proceeding further.

This is most easily done by starting from the Lagrangian
for a particle L(x,x) = (1/2)mx%—V (x) and transform-
ing to a rotating frame by using the transformation law
Vinertial = Vrot + w X X. This leads to the Lagrangian of
the form

L = %mv2 +mv - (wxx)+ %m(w x x)? - V(x) (2)

and equations of motion

dv ov
m—=——+42mv X w+mw X (x Xw) (3)
dt ox

We see that the transformation to a rotating frame in-
troduces two additional force terms in the right-hand
side of (3) of which the 2m(v x w) is called the Coriolis
force and mw X (x X w) is the more familiar centrifugal
force. The Coriolis force has the form identical to the
force exerted by a magnetic field (2m/q)w on a particle
of charge ¢. It follows that this force cannot do any work
on the particle since it is always orthogonal to the ve-
locity. The centrifugal force, on the other hand, can be
obtained as the gradient of an effective potential which
is the third term in the right-hand side of (2).

We are now ready to find the rigidly rotating solution in
which all the three particles are at rest in the rotating
frame in which (3) holds. We will choose a coordinate
system in which the test particle is at the origin and
denote by ry, ry the position vectors of masses m; and
mo. The position of the centre of mass of m; and mo
will be denoted by r so that

(mq + mo)r = mqry + mors. (4)
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In the solution we are looking for, all these three vectors
are independent of time in the rotating frame and the
Coriolis force vanishes because v.= 0. Since m; and
my are already taken care of (and are assumed to be
oblivious to m3), we only need to satisfy the equation of
motion for ms which demands:

7”11)’ r| + 7“;’ ry = wor. (5)
You should now be able to see the equilateral triangle
emerging. If we assume r; = 79, and take note of (4),
the left-hand side of (5) can be reduced to (G/r$)(m; +
mo)r which is in the direction of r. If we next set r =
a, this equation is identically satisfied, thanks to (1).
(The cognoscenti would have realized that making the
location of the test particle the origin is an algebraically
clever thing to do.) This analysis clearly shows how the
mass ratios go away through the proportionality of both
sides to the radius vector between the centre of mass
and the test particle.

To make sure we catch all the equilibrium solutions, we
can do this a bit more formally. We define the vector q
by the relation mir; — mory = (mq 4+ mo)q. A little bit
of algebraic manipulation allows us to write (5) as:

G(m1 + m2)

G(m1 + m2>r
ZTfTS '

[+ r)r + (g = 11)a] = ——

(6)

For this equation to hold, all the vectors appearing in it
must be collinear. One possibility is to have r and q to
be in the same direction. It then follows that r{,ry and r
are all collinear and the three particles are in a straight
line. The equilibrium condition can be maintained at
three locations usually called Li,Ls and Ls. To work
out the exact position of equilibrium, one has to solve a
fifth-order equation which will lead to three real roots.
We are, however, not interested in these (at least, not in

To work out the
exact position of
equilibrium, one
has to solve a fifth-
order equation
which will lead to
three real roots.
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T
I

he existence of real
ife solutions tells us
that the equilateral
solution must be
stable in the sense

that if we displace m,
from the equilibrium

position L, slightly, it

will come back to it.

this installment!) though Lg of the Sun—Earth system
has lots of practical applications.

If we do not want r and q to be parallel to each other,
then the only way to satisfy (6) is to make the coefficient
of q vanish which requires r; = ry. Substituting back,
we find that each should be equal to a. So we get the
rigidly rotating equilateral configuration of three masses
with:

rL =179 = a. (7)

Obviously, there are two such configurations correspond-
ing to the two equilateral triangles we can draw with the
line joining m; and ms as one side. The locations of the
mg corresponding to these two solutions are called Ly
and Ls, giving Lagrange a total of five points.

Incidentally, there are several examples in the solar sys-
tem in which nature uses Lagrange’s insight. The most
famous among them is the collection of more than a
thousand asteroids called Trojans which are located at
the vertex of an equilateral triangle, the base of which is
formed by Sun and Jupiter — the two largest gravitating
bodies in the solar system. Similar, but less dramatic,
features are found in the Lj point of Sun-Mars system
and in the satellites of Saturn. The entire configuration
goes around in rigid rotation since the orbit of Jupiter
is approximately circular.

The existence of such real life solutions tells us that the
equilateral solution must be stable in the sense that if
we displace mg from the equilibrium position Lj slightly,
it will come back to it. (It turns out that the other three
points Ly, Ly, L are not.) Our next job is to study this
stability; for this a different coordinate system is bet-
ter. It will also help to rescale variables to simplify life.
We will now take the origin of the rotating coordinate
system to be at the location of the centre of mass of m;
and mo with the x-axis passing through the two masses
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and the motion confined to the z—y plane.

Measuring all masses in terms of the total mass m+mo,
we can denote the smaller mass by p and the larger by
(1 —p). Similarly, we will measure all distances in terms
of the separation a between the two primary masses and
choose the unit of time such that w = 1. (If these appear
strange for you, just write down the equations in normal
units and re-scale them; such tricks are worth learning.)
The position of mg is (z,y) and r; and ro will denote
the (scalar) distances to m3 from the masses (1 —p) and
p respectively. (Note that these are not the distances
to mg from the origin.) It is now easy to see that the
equations of motion in (3) reduce to the set:

2y = i j+ 21 = (8)
x y_ 8I7 l/ xr = aya
where
1 L—p) p
v= ) - L)
1 T2

is the effective potential in the rotating frame which
includes a term from the centrifugal force. The only
known integral of motion is the rather obvious one corre-
sponding to the energy function (1/2)v*+® = constant.
A little thought shows that V& = 0 at Ly and Ls, con-
firming the existence of a stationary solution. To study
the stability, we normally would have checked whether
these correspond to maxima or minima of the potential.
As we shall see (Figure 1), it turns out that Ly and L;
actually correspond to maxima, so if that is the whole
story L4 and Ls should be unstable.

But, of course, that is not the whole story since we
need to take into account the Coriolis force term cor-
responding to (2y,—2%) in (8). To see the effect of
this term clearly, we will take the Coriolis force term
to be (Cy, —Cz) so that the real problem corresponds
to C' = 2. But this trick allows us to study the stability
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Figure 1. A contour plot of
the potential ® (x,y) when u
=0.3. The L, and L, are at
the potential maxima. One
can also see the saddle
points L, L,, L, along the
line joining the two primary
masses.
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for any value of C, in particular for C' = 0, to see what
happens if there is no Coriolis force. We now have to do
a Taylor series expansion of the terms in (8) in the form
x(t) = zo + Ax(t), y(t) = yo + Ay(t) where the point
(20, yo) corresponds to the Ls point with yo > 0. We also
need to expand ® up to quadratic order in Az and Ay
to get the equations governing the small perturbations
around the equilibrium position. This is straightforward
but a bit tedious. If you work it through, you will get
the equations

d2 3 3v3 d
—Az = -A — | (1 —=2p)A C—A

(10)

d? 9 3v3 d
ﬁAy = ZAy + <T> (1 —2p) Az — C’EAx. (11)
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To check for stability, we try solutions of the form Az =
Aexp(At), Ay = Bexp(At) and solve for A. An elemen-
tary calculation gives

o _3-C?E[(3-C) —27p(1 — )]'/?
: .

A

(12)

Stability requires that we should not have a positive real
part to A; that is, A2 must be real and negative. For \?
to be real, the term in (12) containing the square root
should have a positive argument which requires

(C? —3)? > 27u(1 — p). (13)

Further, if both roots of A? are negative, then the prod-
uct of the roots must be positive and the sum should be
negative. It is easily seen that this requires the condition
C' > /3. Thus we conclude that the motion is unstable
if C < v/3; in particular, in the absence of the Coriolis
force (C' = 0), the motion is unstable because the po-
tential at Lj is actually a maximum. But when C' > v/3
and in particular for the real case we are interested in
with C' = 2, the motion is stable when condition in (13)
is satisfied. Using C' = 2 we can reduce this condition
to u(l — p) < (1/27). This leads to

<! 23 )~ 0.0385 (14)
P12 Viog) ~ 7%

This criterion is met by the Sun—Jupiter system with
u =~ 0.001 and by the Earth—-Moon system with y ~
0.012. Stability of Trojans is assured. In fact, the
Lss and Lys are the favourites of science fiction writers
and some NASA scientists for setting up space colonies.
(There is even a US-based society called the ‘Ls society’,
which was keen on space colonization based on Ls!)

So how does Coriolis force actually stabilize the motion?
When the particle wanders of the maxima, it acquires
a non-zero velocity and the Coriolis force induces an

We conclude that the
motion is unstable if
C </3; in particular,
in the absence of the
Coriolis force (C=0),
the motion is
unstable because
the potential at L, is
actually a maximum.

There is even a US-
based society called
the ‘L, society’, which
was keen on space
colonization based
onl,/!

-

RESONANCE | April 2009

325



SERIES | ARTICLE

Box 1. Geometrical Proof of Lagrange’s Equilateral Solution

If you like matters geometrical, you might find the following proof interesting. In Figure
A, the triangle ABLj is Lagrange’s equilateral triangle of unit side with mass p located
at A, mass (1 — u) located at B, and the test particle located at Ls. The centre of mass
of the primary bodies is C and all the three masses rotate rigidly around C. We need
to prove that the resultant of the gravitational attraction along LsA and LsB will be
precisely along L;C and will have a magnitude equal to the (outward) centrifugal force
acting on Ls. With our choice of units, w? = 1 and the centrifugal force is numerically
the same as the length L5C. To prove this, draw DE perpendicular to CLs and drop
perpendiculars AD and BE as shown. Also draw a perpendicular from A to BE (shown
by dashed line). If AD is equal to z and EB is equal to = + vy, it follows from elementary
geometry that LsF= z and FC= y(1 — ). We can also write DLs and LsE as (1 — p)!
and pl respectively for some .

To prove that forces match at L, we need to show that the component of the gravitational
force along LsD due to the mass p is balanced by the component of the gravitational force
along LsE due to the mass (1 — p). This leads to the condition u(1 — u)l = (1 — p)pl
which is true. (While taking cosines and sines of angles, recall that the equilateral
triangle has unit side.) Next consider the component of the force along L;C. The sum
of the two gravitational forces along LsC is given by uz + (1 — p)(z + y) which should
balance the outward centrifugal force equal to the length of L5C, viz.,  +y(1 — u). Since
pr+ (1—p)(z+y) =z +y(l—p), we are again through with the proof. This proves that
one can achieve force balance in the equilateral configuration for any value of u. The
fact that C divides AB in the inverse ration of the masses is, of course, crucial.

A a-u c * B

Figure A
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acceleration in the direction perpendicular to the veloc-
ity. As we noted before, this is just like the motion in a
magnetic field and the particle just goes around L. The
idea that a force which does not do work can still help in
maintaining the stability may appear a bit strange but
is completely plausible. In fact, the analogy between
Coriolis and magnetic forces tells you that one may be
able to achieve similar results with magnetic fields too.
This is true and one example is the so-called ‘Penning
trap’, which you might like to read about with the cur-
rent insight.

To be absolutely correct and for the sake of experts who
may be reading this, I should add a comment regard-
ing another peculiarity which this system possesses. A
more precise statement of our result on stability is that,
when (14) is satisfied, the solutions are not linearly un-
stable. The characterization “not unstable” is qualified
by saying that this is a result in linear perturbation the-
ory. A fairly complex phenomenon (which is too so-
phisticated to be discussed here, but see [2] if you are
interested) makes the system unstable for two precise
values of 1 which do satisfy (14). These values happen
to be (1/30)[15 — v/213] and (1/90)[45 — v/1833]. (Yes,
but I said the phenomenon is complex!) While of great
theoretical value, this is not of much practical relevance
since one cannot fine-tune masses to any precise values.
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