SERIES | ARTICLE

Snippets of Physics
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Oscillatory motion of a particle in a one dimen-
sional potential belongs to a class of exactly solv-
able problems in classical mechanics. In this in-
stallment, we examine some lesser known aspects
of the oscillations in some potentials.

The motion of a particle of mass m in one dimension un-
der the action of a potential V' (z) is the simplest problem
which one studies in classical mechanics. In fact, a for-
malist will consider this as a solved problem, in the sense
that the differential equation governing the motion can
be reduced to a quadrature; ie., the trajectory of the
particle can be expressed as an indefinite integral. In
spite of this apparent triviality of the problem there are
some interesting surprises one encounters in their study.

Using the constancy of the total energy, F = (1/2)mi?+
V(x), one can write down the equation determing the
trajectory of the particle z(¢) in the form of the integral

t(z) = @/J%M (1)

This determines the inverse function ¢(z) for a given
V(x) and the problem is completely solved. In this in-
stallment, we are interested in the case of bounded os-
cillations of a particle in a potential well V (z) which
has the general shape shown in Figure 1. The potential
has a single minimum and increases without bound as
|r] — oco. For a given value of energy E, the particle
will oscillate between the two turning points x1(E) and
z9(E) which are the roots of the equation V(z) = E.
The period of oscillation can be immediately written
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down using equation (1). We get

\/7/ (x) @)

For a general potential V (z), the result of integration
on the right hand side will depend on the value of the
energy FE. In other words, the period of oscillation will
depend on the energy of the particle; equivalently, if one
imagines releasing the particle from the location z =
x1, say, one might say that the period depends on the
amplitude of oscillation.

For a simple class of potentials, it is quite easy to de-
termine the scaling of the period 7" with the energy F.
Consider, for example, a class of potentials of the form
V(x) = ka®" where n is an integer. These potentials are
symmetric in the z-axis and have a minimum at = = 0
with the minimum value being V,,;;, = 0. In this case, by
introducing a variable ¢ such that ¢ = (k/E)Y?"z, the
energy dependence of the integral in (2) can be easily
identified to give

\/E 0 1_q2n

We find that, for all values of n other than n = 1, the
period T has a non-trivial dependence on the energy.
When n = 1, which corresponds to the harmonic os-
cillator potential, V (z) = kx?, we find that the period

Figure 1. A one-dimen-
sional potential with a
single minimum which

supports oscillations.

We find that, for all
values of n other

T has a non-trivial
dependence on the

energy.

than n =1, the period
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It turns out that the

period of oscillation

in this potential is
independent of the
amplitude just as
in the case of a

harmonic oscillator

potentiall So
clearly harmonic
oscillator is not
unique in having
this property.

is independent of the energy. This, of course, is the well-
known result that the period of a harmonic oscillator
does not depend on the amplitude of the oscillator. The
above analysis also shows that amongst all the symmet-
ric potentials of the form V() oc 22, only the harmonic
oscillator has this property.

Let us now consider the inverse problem. Suppose we
are given the function T'(E). Is it then possible for us
to determine the potential V(x)? For example, if we are
told that the period is independent of the amplitude,
what can one say about the form of the potential V' (x)?
Should it necessarily be a harmonic oscillator potential
or can it be more general?

Before launching into a mathematical analysis, let me
describe a simple example which deserves to be better
known than it is. Consider a potential of the form

V(z) = ax® + — (4)

in the region z > 0. In this region, this potential has a
distinct minimum at @i, = (b/a)1/4 with the minimum
value of the potential being 2V ab. (Being symmetric
in x, the potential has two minima in the full range
—00 < x < oo, but we shall confine our attention to
the range x > 0. By shifting the origin suitably we can
make the potential in this range to look like the one in
Figure 1). For any finite energy, a particle will execute
periodic oscillations in this potential. It turns out that
the period of oscillation in this potential is independent
of the amplitude just as in the case of a harmonic os-
cillator potential!l So clearly harmonic oscillator is not
unique in having this property.

There are several ways to prove this result, the hardest
route being to evaluate the integral in (2) with V(z)
given by (4); the cutest procedure is probably the fol-
lowing. Consider a particle moving not in one dimension
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but in two (say in the xy plane) under the action of the
two-dimensional harmonic oscillator potential

V() = gmeta? +4?) )

Clearly, such a particle will oscillate with a period which
is independent of its energy. Now consider the same
problem in polar coordinates instead of Cartesian coor-
dinates. The conservation of energy now becomes

1 1
E = §m(x2 +9%) + §mw2($2 + %)
1 : 1
= Em(f‘2 +7%0%) + EmwQTQ. (6)
Using the fact that for such a motion — under the central
force V(r) oc 2 — the angular momentum J = mr20 is
conserved, the energy can be expressed in the form
1 1 ,, 1J%2 1

B
E=-mi?+ —mwir?+ "= = —mi?+ Arl + =
2 2 2 mr? 72

(7)

with A = (1/2)mw? B = J?/2m. We now see that,
mathematically, this is identical to the problem of a par-
ticle moving in one dimension under the action of a po-
tential of the form in (4). But we know by construction
that the period of oscillation does not depend on the
conserved energy E in the case of (7). It follows that
the potential in (4) must have this property. The actual
frequency of oscillation is wo = (8a/m)"/? which is most
easily found by using the fact that the frequency must
be the same as that for very small oscillations near the
minimum. One may think that since wq is independent
of b, it must be (2a/m)/? for b = 0. This is, however,
not true because however small b may be, the poten-
tial does rise to infinity at x = 0 thereby doubling the
frequency.

Potentials like that of the harmonic oscillator or the one
in (4) are called ‘isochronous potentials’, the term refer-
ring to the property that the period is independent of

Potentials like that
of the harmonic
oscillator or the
one in equation (4)
are called
‘isochronous
potentials’, the
term referring to
the property that
the period is
independent of the
amplitude.
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In fact, for every
function T(E), one
can construct an
infinite number of
potentials V(x)
such that

equation (4) holds.

the amplitude. It is not difficult to see that there are
actually an infinite number of such potentials. In fact,
for every function T'(E), one can construct an infinite
number of potentials V (z) such that equation (4) holds.
There is an elementary way by which one can construct
them which we will now describe [1].

Note that the period T(E) is determined by the inte-
gral in (2) which is essentially the area under the curve
(E —V(z))~Y2. Suppose we are given a potential V;(z)
for which the energy dependence of the period is given
by a function T'(E). Let us now construct another po-
tential Vo(x) by ‘shearing’ the original potential Vi(x)
parallel to the z-axis. This is done by shifting the po-
tential curve horizontally by an amount A(V') at every
value of V' using some arbitrary function A(V'). The
only restriction on the function A(V') is that the re-
sulting potential should be single valued everywhere. A
moment of thought shows that such a shift leaves the
area under the curve invariant and hence T'(E) does not
change. In other words, given any potential V (z), there
are an infinite number of other potentials for which we
will get the same period—energy dependence T (E); each
of these potentials is determined by the form of the func-

tion A(V).

In the case of the harmonic oscillator potential, the dis-
tance h(V') between the two turning points (‘width’)
varies as V'V when the potential is measured from its
minima. Since (4) has the isochronous property, we
would suspect that it is obtained from the harmonic os-
cillator potential by a shearing motion keeping the width
h(V) varying as (V — Viyn)Y/2. This is indeed true and
can be demonstrated as follows. From (4), we can deter-
mine the inverse, double-valued function (V") through
the equation

azt +b— Va2 =0. (8)

If the roots of this equation are 2 and x3, we immedi-
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ately have 2? + 23 = V/a and z%23 = b/a. Elementary
algebra now gives

V b
(V)2 = (z1 — 29)® = — — 24/ —. (9)
a a
Or, equivalently,
1
W(V) = —=(V = Viuin)'/?. (10)

Va
This shows that the potential in (4) is indeed obtained
by a shearing of the harmonic oscillator potential.

For those of you who do not like such a geometric ar-
gument, here is a more algebraic derivation of the same
result [2]. Let us suppose that we are given the func-
tion T'(E') and are asked to determine the potential V' (z)
which is assumed to have a single minimum and a shape
roughly like the one in Figure 1. We can always arrange
the coordinates such that the minimum of the potential
lies at the origin of the coordinate system. The shape of
the curve in the regions > 0 and = < 0 will, of course,
be different. In order to maintain single valuedness of
the inverse function z(V'), we will denote the function as
z1(V) in the region x < 0 and z2(V') in the region = > 0.
Once this is done, we can replace dz in the integral in
(2) by (dz/dV)dV. This allows us to write

T(E) \/_/ ldxz dgﬂ \/;‘17‘/. (11)

This is an integral equation which, fortunately, can be
inverted by a standard trick. We divide both sides of
the equation by (z — E)Y/2, where z is a parameter and
integrate with respect to E from 0 to z. This gives

*T(E)dE
0 \/Z—E B

\/—// [dxz 1 VI —dg)d(g—vn' (12)

For those of you

who do not like such

a geometric

argument, here is a

more algebraic
derivation of the
same result.
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The family of
curves which has

the same width will

give rise to the
same T(E) and
vice versa.

In the right hand side we can change the order of inte-
gration and use the fact that the integral over E just
gives m. The rest is trivial and we obtain

*T(E)dE B
0 VZ2— E B
This is an implicit equation valid for any z. Calling the

variable z as V, gives the functional form of xo(V) —
z1(V). We get the final result

TV2m [29(2) — 21(2)] . (13)

1 V'T(E)dE
S avem o VV—E

This result shows explicitly that the function T(E) can
only determine for us the ‘width’ of the curve xo(V) —
z1(V'). The family of curves which has the same width
will give rise to the same T(E) and vice versa. The
shearing motion by which we transform one potential to
another preserves this width and hence the functional
form of T(E).

$2(V) — $1(V)

(14)

One can also obtain some interesting relations in quan-
tum mechanics for the corresponding systems. In quan-
tum theory, the potentials like the one in Figure 1 will
have a set of discrete energy levels F,. Formally in-
verting the function E(n) — which is originally defined
only for integral values of n — one can obtain the inverse
function n(E) for this system. This function essentially
plays the role analogous to T'(E) in the case of quantum
theory. We can now ask whether one can determine the
potential V' (z) given the energy levels E, or, equiva-
lently, the function n(E). It turns out that one can do
this fairly easily in the semi-classical limit correspond-
ing to large n. To see this, recall that the energy F, of
the n-th level of a quantum mechanical system is given
by the Bohr quantization condition

1 [* 2 2
n(E)zﬁ/ pd:Jc:\/h—ﬂ;/ VE -V dz. (15)
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Treating = as a function of V, we can transform this

relation to give
[2m  [*2
ﬁ/ V E-V dl'
B 2m /E T dx qv
VR dv
o [E
= ’/ﬁ/ (E— V) Y2 z(V)dv. (16)

Here we have done an integration by parts and have
treated the integral as a function of the upper limit.
This integral equation can again be solved by exactly
the same trick which we used in the case of (11). This
will lead to the result

w(V) = \/?/W) \/%E(n). (17)

which determines the form of the potential V(z) — in
terms of the inverse function z(V') — such that in the
semi-classical limit it will have the energy levels given
by the function E(n).

12

Even though we worked it out for a one-dimensional
motion with a Cartesian x-axis, it is obvious that the
same formula should be applicable for energy levels in a
spherically symmetric potential V' (r) provided we only
consider the zero angular momentum quantum states.
As a curiosity, consider the potential which will repro-
duce the energy levels (which we know is the one arising
in the case of the Coulomb problem) given by

me*Z?

Bp=——.
2h%n?

(18)

This gives n(V) = (=2h*V/me*Z%)71/2 so that an ele-
mentary integration using (17) with a suitable choice for

The formula given in
equation (17) should
be applicable for
energy levels in a
spherically symmetric
potential V(r)
provided we only
consider the zero
angular momentum
quantum states.
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the constant of integration gives

opz (V) met 72 —-1/2 72
— 4/ == V4 = dn = - 22—
" V. m / { + ( 2h%n? )] " 1%

(19)

thereby leading to V (r) = —Ze?/r which, of course, we
know is exact. (This is one of the many curiosities in
the Coulomb problem which we will turn to in a future
installment.)

We will now describe another interesting feature in quan-
tum theory related to isochronous potentials. It is well
known that when we move from classical to quantum
mechanics, the harmonic oscillator potential leads to
equidistant energy levels. Curiously enough, all the isoch-
ronous potentials have this property in the semi-classical
limit. This is most easily seen by differentiating (15)
with respect to £ and using (2) so as to obtain

dn _ ﬂ/“ e _T(E)
e \2m ), VE-V  h

In other words, the quantum numbers are given by the
equivalent formula

n(E) = %/T(E)dE (21)

which nicely complements the first equation in (15). If
the potential is isochronous, then T(E) = Ty is a con-
stant independent of F and the integral immediately
gives the linear relation between E and n of the form
E = an + 8, where a = (h/T,). Clearly, these energy
levels are equally spaced just as in the case of harmonic

In the case of the
potential in
equation (4),
something more
surprising happens:
The exact solution

oscillators.
to the Schrodinger
equation itself has In the case of the potential in (4), something more sur-
equally spaced prising happens: The exact solution to the Schrodinger
energy levels! equation itself has equally spaced energy levels! I will
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indicate briefly how this analysis proceeds leaving the
details for you to work out. (You cannot reach this
conclusion by the two-dimensional trick used earlier in
classical physics.) To begin with, we can redefine the
potential to the form

512

Viz) = {A:c - ;} ; A’=a, B*=b (22)
by adding a constant so that the minimum value of the
potential is zero at = (B/A)Y2. The frequency of
oscillations in this potential is wy = (8a/m)Y2.  To
study the Schrodinger equation for the potential in (22),
it is convenient to introduce the usual dimensionless
variables ¢ = (mwo/h)Y?z, ¢ = 2E/(hwo) and § =
B(2m)'/2/h, in terms of which the Schrodinger equation

takes the form:
1 68\

As £ — o0, the /¢ term becomes negligible and — as
in the case of the standard harmonic oscillator — the
wavefunctions will die as exp[—(1/4)¢?]. Near the ori-
gin, the Schrodinger equation can be approximated as
£%2)" ~ (21 which has solutions of the form 1 o< €% with
s being the positive root of s(s — 1) = 3%. We now fol-
low the standard procedure and write the wavefunction
in the form ¢ = ¢(&)[¢% exp(—(1/4)£?)] and look for a
power-law expansion for ¢ of the form

w// +

o0

$(€) =D cnt". (24)

n=0
Substituting this form into the Schrédinger equation will
lead, after some algebra, to the recurrence relation
Chy2  n+s—e—[3+(1/2)
cn  (mA+2)(n+2s+1)

(25)
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Do all isochronous
potentials lead to
evenly spaced
energy levels as
exact solutions to
Schradinger
equation rather
than only in the
asymptotic limit?
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Asymptotically, this will lead to the behaviour ¢, 2/¢;, >~
(1/n) so that ¢(¢) ~ exp[(1/2)¢?] making + diverge
unless the series terminates. So, € must be so chosen
that the numerator of (25) vanishes for some value of n.
Clearly, only even powers of ¢ appear in ¢(¢) allowing
us to write n = 2k, where k is an integer. Putting every-
thing back, the energy of the k-th level can be written

in the form
1 1/2
[1 — B+ (ﬁQ -+ Z) ]

(26)

N | —

showing that the energy levels are equally spaced with
the width Awg but with C replacing (1/2) in the case of
the harmonic oscillator. You can convince yourself that
all the limiting behaviour is correctly reproduced.

Do all isochronous potentials lead to evenly spaced en-
ergy levels as exact solutions to Schrodinger equation
rather than only in the asymptotic limit? The answer
is “no”. The simple counter-example is provided by two
parabolic wells connected together smoothly at the min-
ima with V(z) = (1/2)mw%2? for x > 0 and V(z) =
(1/2)mw?a? for x < 0. It is obvious that this poten-
tial is isochronous classically. Solving the Schrodinger
equation requires a bit of effort because you need to en-
sure continuity of ¢ and ¢’ at the origin. This leads
to a set of energy levels which need to be solved for
numerically. One finds that the energy levels are not
equally spaced but the departure from even spacing is
surprisingly small. To the extent I know, there is no sim-
ple characterization of potentials which lead to evenly
spaced energy levels in quantum theory.
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