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Snippets of Physics

12. Paraxial Optics and Lenses

T Padmanabhan

Discovering unexpected connections between com-
pletely different phenomena is always a delight
in physics. In this and the next installment, we
will look at one such connection between two un-

likely phenomena: propagation of light and path

T Padmanabhan works at integral approach to quantum mechanics!
IUCAA, Pune and is
interested in all areas The propagation of light — which is just an electromag-
of theoretical physics, netic wave — is governed by a wave equation. The elec-

especially those which . . .
pectally tric field and the magnetic field obey a wave equation,

the solution to which describes the propagation of light
in any specific context. In this installment we look at
the wave nature of light from a particular point of view
which we will connect up with a seemingly different phe-

have something to do with
gravity.

nomenon in the next installment.

For our purpose the vector nature of the electromagnetic
field is not relevant (since we will not be interested, e.g.,
in the polarization of the light.) Hence we will just deal
with one component of the relevant vector field — let
us call it A(t,x) — which satisfies the wave equation.
The basic solution to the wave equation [JA = 0 is de-
scribed by the (real and imaginary parts of the) function
expilk - x — wt]. Here k denotes the direction of prop-
agation of the wave which also determines its frequency
through the dispersion relation w = |k|c. Since the wave
equation is linear in A, we can superpose the solutions
with different values of k, each with an amplitude F} (k),
say. This leads to a solution of the form:
3
A(t,x) = /Fl(k)eik'xem ' . (1)
(2m)?
Keywords

Optics, waves. We now want to specialize to a situation which arises
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in the study of optical phenomena quite often where we
are concerned with waves which are propagating, by and
large, in some given direction, say along the positive z-
axis. (For example, consider the study of diffraction by
a circular hole in a screen which is located in the z = 0
plane. We will consider, in such a context, light inci-
dent on the screen from the left and getting diffracted.)
Mathematically, this means that the function Fy(k) is
nonzero only for wave vectors with k, > 0. Further,
since the wave has a definite frequency w, the magni-
tude of the wave vector is fixed at the value w/c. It
follows that one of the components of the wave vector,
say k., can be expressed in terms of the other three. So,
the function F; has the structure

Fi(k,, k1) =2nf(ky)ép (kz —\/w?/c? — ki) . (2)

where the subscript L denotes the components of the
vector in the transverse © — y plane. Note that, in gen-
eral, we could have had k, = £ /w?/c> — k* and we
have consciously picked out one with k, > 0.

Substituting this expression in (1) we find that A(t;z,x, )
can be written in the form a(z,x)e ™! (
have separated out the oscillations in time) where

in which we

a(z,x1)

d?k , iz
— /—(QW)LQf(kL)e’kl'xl exp [?\ fw? — c%i] . (3)

Since the time variation of a monochromatic wave is
always exp(—iwt), we shall ignore this factor and con-
centrate on the spatial dependence of the amplitude,

a(z,x1).

To proceed further we shall consider the case in which
all the components building up the wave are travelling
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essentially along the positive z-axis with a small trans-
verse spread. For such a wave travelling, by and large,
along the z direction, the transverse components of k are
small compared to its magnitude; that is, CQki < w2
Using the Taylor series

/ - 1c%k2 12k
wz—CQkﬁzw(l_sz):w_iw ) (4)

in (3), we find that

a(z,x1)

eiwzle ks exp |1 x| — (c¢/2w)k? 2
[ Grsrknesn [i (e xs — (e/20008 )](.)
5

This equation describes the propagation of a wave along
the positive z-axis with a small spread in the transverse
direction. The function f(k, ) can be determined by a
simple Fourier transform if the amplitude a(z’,x’) is
given at some location 2’. Doing this, we can relate the
amplitudes of the wave at two planes with coordinates
z and 2’ by

G(Z,XJ_>
_ iw(z—2")/c d2/ ! A I
e Xa(z',%,) G (2 — %L %), (6)

where

G(z—2x —x))

2

_ / ?Qk;eikl.(xlx’l>e(z’c/2w)ki(zz/)
m

w

a <2m’c) |2 —1 2| P {%%} - ()
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The function G may be thought of as a propagator which
propagates the amplitude from the location (z/,x’,) to
the location (2,x,). The factor ¢®==*)/¢ in (6) does
not contribute to the intensity and we will drop it when
not necessary.

A little thought shows that we have achieved something
quite interesting. We know that the amplitude satis-
fies a second order differential equation (viz. the wave
equation) and hence its evolution cannot be determined
by just knowing the amplitude (ie., one single function,
a(z’,x'))) at a given location (z’,x’ ). This could be
done in (6) only because of the assumption that the
wave is travelling essentially forward in the z direction.
The actual form of the propagator depends on the as-
sumption that the transverse components of the wave
vector are small compared to k,. The study of wave
propagation under these approximations is called paraz-
ial optics. (We shall see in the next installment that
all these expressions have interesting connections with
the path integral propagator in quantum mechanics —
which will emerge as the paraxial optics of relativistic
field theory!)

Let us take a closer look at the structure of the propaga-
tor G. It introduces a factor |z — z/|~! to the amplitude
and, more importantly, contributes an amount

w(xy — Xﬁ_)z

QS:% (z —2")

(8)
to the phase. The change in the amplitude merely re-
flects 2 fall-off of the intensity (which is proportional
to the square of the amplitude) of the wave. But what
does the phase factor mean? To understand the origin
of the change in phase, note that a path difference As
between two points in space will introduce a phase dif-
ference of kAs in a propagating wave. In our case, it is

The actual form of
the propagator
depends on the
assumption that th
transverse

e

components of the

wave vector are

small compared to k..

The study of wave
propagation under

these approximations

is called paraxial
optics.
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clear that the phase difference is

k‘ASZg|:\/(XL—X/L)2+(Z—Z/)2—(Z—Z/)

C

w [1 (x1 — XL)QI |

12

2 (z—2") (9)

provided the transverse displacements are small com-
pared to the longitudinal distance — an assumption which
is central to paraxial optics. With hindsight we could
have guessed the form of G without doing any algebra!
In paraxial optics, it introduces a phase corresponding
to the path difference and decreases the amplitude to
take into account the normal spread of the wave.

Equation (6) allows one to compute the wave amplitude
at any location on the plane z = z,, if the amplitude
on a plane z = z; < zy is given. To see it in action, let
us apply it to a standard situation, which arises quite
often in optics. A wave front propagates freely up to a
plane z = z; where it passes through an optical system
(say a lens, screen with a hole, atmosphere, etc.) which
modifies the wave in a particular fashion. The optical
system extends from z = 2; to z = zo and the wave
propagates freely for z > z5. We will be interested in
the amplitude at z > z5, given the amplitude at z < 2.
It is clear that our equation (6) can be used to propagate
the amplitude from some initial plane z = 2o < 21 to
z = z1 and from z = z9 to some final plane z = 21 > z9.
(The subscripts O and I stand for object and image,
based on the idea of the optical system being a lens).
The propagation of wave from z; to zo depends entirely
on the optical system and, in fact, defines the particular
optical system. An optical system is called linear if the
output is linear in input. In such a case, the amplitudes
at the exit point of the optical system is related to the
amplitude at the entrance point by a relation of the kind

a(z9,%9) = /d2x1P (29, 21;X2,X1) a (21,X1) , (10)
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where the functional form of P defines the kind of optical
system. (Here and in what follows, we shall omit the
subscript L with the understanding that the vector x is
in the transverse plane and is two dimensional.) In this
case, the amplitude at the image plane can be expressed
in terms of the amplitude at the object plane by the
relation

o (21, %1) = /d%cog (o1, 20:x1,%0) @ (20, %0), (1)
where

G (21, 20;X1,%X0)
= /d2X2d2X1 G (21 — 22, X1 — X2) P (29, 21;X2,X1)
x G (z1— z0,X1 — X0) - (12)

Given the properties of any linear optical system, one
can compute the quantity P, and thus evaluate G and
determine the properties of wave propagation.

As a simple example let us find out the form of the
function P for a convex lens. If the lens is sufficiently
thin, P will be nonzero only at the plane of the lens
29 = 21 = z1,. Since the lens does not absorb radiation,
it cannot change the amplitude |a(z1, x1,)| of the incident
wave and can only modify the phase. Therefore, P must
have the form P = exp[if(xy)]. Then the amplitude at
the image plane is given by

a (217XI>
= /dzxLa (z1,x1) P (21,x1) G (21 — 21, X1 — X1,)

_ a/d2XLei9(2L,XL)G (ZI — 21, X1 — XL) s (13)

where we have used the fact that the amplitude a(zr,, x1,)
on the lens plane is constant for a plane wave incident
from a large distance. To determine the form of 0(xp,),
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The effect of a lens

is to introduce a
phase variation

which is quadratic

in the transverse
coordinates. Such
a lens will focus
the light to a point
on the z-axis, in
the limit of zero
wavelength.

we use the basic defining property of a lens of focal
length f: If a plane wavefront of constant intensity is
incident on the lens plane z = zp, the rays will be fo-
cused at a point 21 = 21, + f, when the wave nature of
the light is ignored. In the limit of zero wavelength for
the wave, most of the contribution to the integral in (13)
comes from points at which the phase of the integrand
is stationary. Since the phase of G is (k/2)[(Ax)?/Az],
the principle of stationary phase gives the equation

0
8_)(HL = ;(XI—XL), (14)

where f = 21 — 2z1,. For the image to be formed along
the z-axis, this equation should be satisfied for x; = 0.
Setting x; = 0 and integrating this equation we find that
0 = (—kx?/2f) and

ik
P (x1,) = exp (—Q—xi) . (15)
Thus the effect of a lens is to introduce a phase variation
which is quadratic in the transverse coordinates. Such
a lens will focus the light to a point on the z-axis, in the
limit of zero wavelength.

A geometrical interpretation of this result is given in
Figure 1. The constant phase surfaces are planes to the
left of the lens and they are arcs of circles (centered on
the focus F') on the right side of the lens. Changing the
plane to a circle (of radius f) at z = zg, introduces a
path difference of Al = [f — (f? — 23)¥?] ~ (22 /2f) at
a transverse distance xy,. This corresponds to a phase
difference kAl = (kxz}/2f) = 6 introduced by the lens.

Let us next consider the effect of this lens on a point
source of radiation along the z-axis at z = zg. [That is,
we take the initial amplitude to be a(zp,x0) x dp(x0).]
This can be obtained by first propagating the field from
zo to zp, modifying the phase due to the lens at z =
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2
A (3 )24)

2

EF_:EJ

z1, and propagating it further to some point z with the
transverse coordinate set to zero. The net result is given

by
k? ik
a(z,0) = T /d2xL exp (—2—$i> .

hea? ea?
exp L + L , (16)
2u )

where u = 21, — 20 and v = z — z1,. In the limit of zero
wavelength (called ray optics), the maximum contribu-
tion to this integral can again be obtained by setting the
variation of the phase to zero. This gives

k k k
——xL + —x1 + —x1, = 0, (17)
f U v
or
1 1 1
—+—=— 18
u - v f (18)

which is a familiar formula in the theory of lenses.

The above result was obtained in the limit of ray optics.
To study the wave propagation through the lens we note

Figure 1. The focusing ac-
tion of a convex lens in
terms of the phase change
of wave fronts.
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that the action of a lens on the phase of an initial inten-
sity distribution is governed by the integral

k
a(z,x) /dQXLa (21, X1,) €Xp (—;—xi)
ik

m(x—xL) } , (19)

where a(z1,, x1,) is the incident amplitude on the lens, the
first exponential gives the distortion in phase produced
by the lens and the second exponential gives the propa-
gation amplitude 2, to z. On the focal plane, which is a
plane located at a distance f from the lens, at z = z1,+f,
the second exponential characterizing the propagation
becomes

X exp{

—— =exp— (z°+ 7 — 2x - X,) .

2(z — z1) P 2f L .
The quadratic term (ikx? /2f) in the propagation ampli-
tude is now precisely cancelled by the phase distortion
introduced by the lens, so that the resultant amplitude
can be written as

a(z, + f,x) o< exp (%1‘2) /dQXLa (21, X1,)

X ex (ﬁx-x) (21)
1% 7 L|-

’ 2

exp

The intensity at the focal plane is given by |a(zr, + f, x)
in which the phase factor exp[ikz?/2f] does not con-
tribute. We then get the rather cute result that the
lens essentially produces — on the focal plane — the two-
dimensional Fourier transform of the incident ampli-
tude!

Suggested Reading

[1]  Several textbooks in optics and electromagnetic theory describe these
aspects; see, for example, T Padmanabhan, Theoretical Astrophysics —
Vol.I (Astrophysical Processes), Chapter 3, Cambridge University Press,
2000.
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