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Snippets of Physics

10. Thermodynamics of Self-Gravitating Particles

T Padmanabhan

The statistical mechanics of a system of parti-
cles interacting through gravity leads to several
counter-intuitive features. We explore one of
them, called Antonov instability, in this install-
ment.

Suppose we put a large number (N) of particles, each
of mass m and interacting through a two-body poten-
tial U(x — y) into a spherical box of radius R. We will
arrange matters such that the particles move randomly
to start with and bounce off the surface of the sphere
elastically. Let the total energy of the system be E
which, of course, will remain a constant. We are inter-
ested in the behaviour of the system at late times, when
the particles will have had sufficient time to interact
with each other and exchange energy.

The result will clearly depend on the nature of the in-
teraction, specified by U(x — y) as well as the other
parameters. If U(x — y) is a short range potential rep-
resenting intermolecular forces and if E is sufficiently
high, then the system will relax towards a Maxwellian
distribution of velocities and nearly uniform density in
space. (The velocity distribution will have a character-
istic temperature ' ~ 2E /3N and we are assuming that
this is higher than the ‘boiling point’ of the ‘liquid’ made
of these particles. If not, the eventual equilibrium state
will be a mixture of matter in liquid and vapour state.
Also note that we use units with kg = 1 throughout.)
All this is part of standard lore in statistical mechanics.

What happens if the U(x —y) is due to gravitational in-
teraction of the particles? What are the different phases
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" For those who are unfamiliar
with this expression, here is a
recap: In the standard deriva-
tion of Boltzmann distribution,
one extremises the function
S =-% n;In n, of the occupation
numbers n; subject to the con-
straint on total energy and num-
ber. In the continuuum limit one
works with f rather than n; and
the summation over i becomes
anintegral over the phase space
leading to (1).

in which matter can exist in such a case? I will discuss
some of the peculiar effects that arise in this context.

To do this, let us begin by quickly reviewing the way
one introduces the equilibrium configuration in statisti-
cal mechanics. Consider a system described by a distrib-
ution function f(x, p,t) such that fd®x d®p denotes the
total mass in a small phase space volume. We assume
that the evolution of the distribution function is given
by some equation (usually called the Boltzmann equa-
tion) of the form df/dt = C(f). The term C(f) on the
right hand side describes the effect of collisions. While
the precise form of C'(f) can be quite complicated, we
can usually assume that the collisional evolution of f,
driven by C(f), satisfies two reasonable conditions:

(a) The total mass and energy of the system are con-
served and (b) the mean field entropy, defined by

S:—/flnfd?’xd?’p (1)

does not decrease (and in general increases).! For any
such system, we can obtain the equilibrium form of f by
extremising the entropy while keeping the total energy
and mass constant using two Lagrange multipliers. This
is a standard exercise in statistical mechanics and the
resulting distribution function is the usual Boltzmann
distribution governed by:

f(x,v) o< exp [—/6’ (%vQ + ¢>} ; o(x) = / *yU(x,¥)p(y)-
(2)

Integrating over velocities, we get the closed system of
equations for the density distribution:

/dgvf = Aexp(—fo(x));
[ dyU G y)o). 3)

The final result is quite understandable: It is just the Bol-
tzmann factor for the density distribution: p o< exp(—3V),
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where V' is the potential energy at a given location due
to the distribution of particles. One could have almost
written this down ‘by inspection’! (See Appendix for
more details)

Everything that we have said so far is independent of
the nature of the potential U (except for one important
caveat which we will discuss right at the end). In the
case of gravitational interaction, (3) becomes:

ply)d’y
plx) = Aexp(= o)) ox) = -G [
The integral equation (4) for p(x) can be easily con-
verted to a differential equation for ¢(x) by taking the
Laplacian of the second equation — leading to V2%¢ =
47Gp — and using the first equation. We then get, for
the spherically symmetric case, the isothermal sphere

equation:

v2p- L4 (rzd_¢> _ 4r G poe= o001 (5)

dr ¢ '

r2dr

The constants  and p. (the central density) have to
be fixed in terms of the total number (or mass) of the
particles and the total energy. Given the solution to this
equation, which represents an extremum of the entropy,
all other quantities can be determined. As we shall see,
this system shows several peculiarities.

To analyse (5), it is convenient to introduce length, mass
and energy scales by the definitions

Ly = (477Gpcﬂ)1/2, My = 477ch8, po=p"1 = G;/V[O
0

(6)

All other physical variables can be expressed in terms of
the dimensionless quantities x = (r/Lo), n = (p/pe)s

m = (M (r) /M), y = B[¢ — #(0))], where M(r) is the

mass inside a sphere of radius r. These variables satisfy

One could have
almost written
down equation (3)
'by inspection'.
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2 We have assumed that the
system is spherically symmet-
ric; it turns out that this is indeed
the extremal solution.

the equations:

y =m/z% m' =n2* n' = —mn/z> (7)

In terms of y(x) the isothermal equation, (5), becomes

1 d o dy —y

= = DA 8

x?dx <:c d:c) ¢ (8)
with the boundary condition y(0) = y/(0) = 0.2 Let us
consider the nature of the solutions to this equation.

By direct substitution, we see that n = (2/2%),m =
22,y = 2In 2 satisfy (7) and (8). This solution, however,
is singular at the origin and hence is not physically ad-
missible. The importance of this solution lies in the fact
that — as we will see — all other (physically admissible)
solutions tend to this solution [1, 2] for large values of x.
This asymptotic behavior of all solutions shows that the
density decreases as (1/r?) for large r implying that the
mass contained inside a sphere of radius r increases as
M (r) o< r at large r. Of course, in our case, the system
is enclosed in a spherical box of radius R with a given
mass M.

Equation (8) is invariant under the transformation y —
y+a; r— kx with k2 = e* This invariance implies
that, given a solution with some value of y(0), we can
obtain the solution with any other value of y(0) by sim-
ple rescaling. Therefore, only one of the two integration
constants needed in the solution to (8) is really non-
trivial. Hence it must be possible to reduce the degree
of the equation from two to one by a judicious choice of
variables. One such set of variables is:

TLl’3 TLI’2

U= = 9)

vV =

8|3

In terms of v and u, (5) becomes

udv — (u—1)
vdu  (u+uv—3) (10)

944

J\/\W RESONANCE | October 2008



SERIES | ARTICLE

The boundary conditions y(0) = y’(0) = 0 translate into
the following: v is zero at u = 3, and (dv/du) = —5/3 at
(3,0). (You can prove this by examining the behaviour
of (7) near x = 0 retaining up to necessary order in
z; try it out!) The solution v (u) to equation (10) can
be easily obtained numerically: it is plotted in Figure
1 as the spiralling curve. The singular points of this
differential equation are given by the location in the uwv
plane at which both the numerator and denominator of
the right hand side of (10) vanish. Solving v = 1 and
u 4+ v = 3 simultaneously, we get the singular point to
be ug = 1, vy, = 2. Using (9), we find that this point
corresponds to the asymptotic solution n = (2/22), m =
2z. It is obvious from the nature of the equation that
the solution curve will spiral around the singular point
asymptotically approaching the n = 2/z? solution at
large x.

The nature of the solution shown in Figure 1 allows us
to put interesting bounds on various physical quantities

Figure 1. Bound on RE/GM?
for the isothermal sphere.
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including energy. To see this, we shall compute the total
energy E of the isothermal sphere. The potential and
kinetic energies are

B GM(r)dM GMZ [0
U = —/ —dr = — / mnxdx,
Jo r dr Ly Jo
3M  3GM¢ GMEZ3 (v
K = —=-— Om(:co) = 0= On:ch:c,
2 ﬂ 2 LQ LQ 2 Jo
(11)

where g = R/Lg is the boundary and the expression
for K follows from the velocity dependence of f in (2).
The total energy is, therefore,

GMG [
E = K+4+U-= 0/ dz(3nz® — 2mnzx)
2L0 J0O

GM?Z [ d
0 / Od:c—{Qn:c?’—?)m}
2L0 JO dx
_GMg{ 5 3 }
= LO nol'o 2m0 s

(12)

where ng = n(zg) and mg = m(zy). The dimensionless
quantity (RE/GM?) is given by

RE 1 3
A =y =2l 13
GM?  ug {“0 2} (13)

Note that the combination (RE/GM?) is a function only
of (u,v) at the boundary. Let us now consider the con-
straints on A\. Suppose we specify some value for A by
specifying R, F and M. Then such an isothermal sphere
must lie on the curve

1 RE
vz—(u—§>; A= (14)
GM?

which is a straight line through the point (1.5,0) with
a slope A~'. On the other hand, since all isothermal
spheres must lie on the v —v curve, an isothermal sphere
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can exist only if the line in equation (14) intersects the
u— v curve.

For large positive A (positive E) there is just one in-
tersection. When A = 0, (zero energy) we still have a
unique isothermal sphere. (For A = 0, (14) represents
a vertical line through v = 3/2.) When ) is negative
(negative E), the line can cut the u — v curve at more
than one point; thus more than one isothermal sphere
can exist with a given value of A. (Of course, specifying
M, R, E individually will remove this non-uniqueness).
But as we decrease A (more and more negative E) the
line in (14) will slope more and more to the left; and
when A is smaller than a critical value A., the intersec-
tion will cease to exist. So we reach the key conclusion
that no isothermal sphere can exist if (RE/GM?) is be-
low a critical value .. This fact® follows immediately
from the nature of the u—wv curve and (14). The value of
Ac can be found from the numerical solution and turns
out to be about —0.335.

What does this result mean? To understand its implica-
tions, consider constructing such a system with a given
mass M, radius R and an energy E = —|E| which is
negative. (The last condition means that the system is
gravitationally bound.) In this case, A = RE/GM? =
—R|E|/GM? is a negative number but let us assume
that it is above the critical value; that is, A > A.. Then
we know that an isothermal sphere solution exists for the
given parameter values. By construction, this solution
is the local extremum of the entropy and could repre-
sent an equilibrium configuration if it is also a global
maximum of entropy.

But for the system we are considering, it is actually
quite easy to see that there is no global maximum for
entropy. This is because, for a system of point particles
interacting via Newtonian potential, there is no lower
bound to the gravitational potential energy. If we take

3 This derivation is due to the
author [3,1]. Itis surprising that
Chandrasekhar, who has worked
out the isothermal sphere in u—v
coordinates as early as 1939,
missed discovering the energy
bound shown in Figure 1.
Chandrasekhar [2] has the u—v
curve butdoes notover-plotlines
of constant A. If he had done
that, he would have discovered
Antonov instability decades be-
fore Antonov did [4].

But for the system we
are considering, it is
actually quite easy to
see that there is no
global maximum for
entropy.
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an amount of mass m < M and form a compact core of
radius r inside the spherical cavity, then by decreasing
r one can supply arbitrarily large amount of energy to
the rest of the particles. Very soon, the remaining par-
ticles will have very large kinetic energy compared to
their gravitational potential energy and will essentially
bounce around inside the spherical cavity like a non-
interacting gas of particles. The compact core in the
center will continue to shrink thereby supplying energy
to the rest of the particles. It is easy to see that such a
core—halo configuration can have arbitrarily high values
for the entropy. All this goes to show that the isother-
mal sphere cannot be a global maximum for the entropy.
(This was the caveat in the calculation we performed
to derive the isothermal sphere equation; we tacitly as-
sumed that the extremum condition can be satisfied for
a finite value of entropy.)

If we increase the radius of the spherical box (with some
fixed value for E = —|E|), the parameter A will become
more and more negative and for sufficiently large R, we
will have a situation with A < A.. Now the situation
gets worse. The system does not even have a local ex-
tremum for the entropy and will evolve directly towards
a core-halo configuration. This is closely related to a
phenomenon called Antonov instability [4, 3].

In real life, of course, there is always some short dis-
tance cut-off because of which the core cannot shrink
to an arbitrarily small radius. In such a case, there is
a global maximum for entropy achieved by the (finite)
core-halo configuration which could be thought of as the
final state in the evolution of such a system. It will be
highly inhomogeneous and, in fact, is very similar to a
system which exists as a mixture of two phases. This is
one key peculiarity introduced by long range attractive
interactions in statistical mechanics.
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Appendix

In the text, I derived equation (3) from the expression for entropy in equation (1).
Given the peculiarities of gravitating systems one may wonder how trustworthy

this approach is. Here I describe briefly a more basic derivation of the expression
in (3).

The equilibrium state is the one that maximizes the entropy of the system. When
we study the system in the microcanonical ensemble, this entropy S is the loga-
rithm of the volume ¢g(E) of the phase space available to the system if the total
energy is E. That is:

1
eS:g(E):ﬁ/d?’Nx d*Np 6(E — H), (15)
where H is the Hamiltonian for the system of N particles given by the sum of
the kinetic energies (p?/2m) (i = 1,2, ..., N) and the potential energy of pairwise
interaction. The Dirac delta function tells us that the system is confined to the

boundary of a 3N dimensional sphere in momentum space given by the equation

N
Z p? =2m
i=1 i£]

E— %ZU(Xi,Xj)} =12 (16)

Obviously, the momentum integration in (15) will lead to a term proportional to

I13N=1: 50, performing the momentum integrations and using N > 1, we get
3N
S 1 3N 1 :
e :g(E)ocm/d x E—§;U(Xi,xj) . (17)
i#]

The integral in (17) is impossible to evaluate for any realistic potential but there
is a standard approximation using which we can map this problem to a more
tractable one.

Let us divide the the spatial volume V into J (with J < N) cells of equal size,
large enough to contain many particles but small enough for the potential to be
treated as a constant within each cell. (We will assume that such an intermediate
scale exists, which usually does.) Instead of integrating over all the particle
coordinates (x1,Xo,...,xy) we shall sum over the number of particles n, in the
cell centered at x, (where a = 1,2, ...,J) thereby approximating the integral by
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a discrete sum. Using the obvious fact that the integration over (N!)~'d3¥

be replaced by
> () 26 S (5) 19

ni= 7 ng ny=1

T can

(subject to the constraint that }°n, = N) and approximating the n! s by Stirling’s
approximation: Inn! = nln(n/e) we get, after some straightforward algebra the
result:

e¥ & i i i exp S[{na.}|, (19)

ni=1ns=1 njy=1
where
3N
2

In

S[{na}l

a#b

17 J NaJ
E — 5 ZnaU(xa, Xp)Np| — ;na In ( T > . (20)

If the number of particles in each cell is sufficiently large — as usually is the
case — this is not a drastic approximation. We are, of course, interested in the
configuration of {n,} for which the summand in (19) reaches the maximum value,
subject to the constraint on the total number. This works in standard statistical
mechanics because, in most cases of interest, the largest term actually dominates
the sum and the error involved in ignoring the rest is small. That is, to a high
order of accuracy S = S[ngmax|, Where ngmax is the solution to the variational
problem (65/6n,) = 0 with the sum of particle numbers n, being kept equal to
N. Imposing this constraint by a Lagrange multiplier and using the expression
(20) for S, we obtain the equation satisfied by 74 max:

= ZJ:U( ) +1 (—n“’ma’“]> tant (21)
p— Xas Xp)p max n = constant,
T &= b/, %

where we have defined the temperature T" through the relation:

T 2 2(#1)

5 -1
1 = 3V (E 1 ZnaU(xa,xb)nb> = (22)
with n, = ngmax. To see that this is not as strange as it looks, you only need to
note, from (20) that this § is also equal to (0.S/0F); therefore one can think of
T as the correct thermodynamic temperature. We can now return back to the
continuum limit of (21) by writing n4max(J/V) = p(x,) and replacing the sum
over particles by integration with the measure J/V. In this continuum limit, the
extremum solution in (21) is given precisely by (3).
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