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T h e s t a t is t ic a l m e c h a n ic s o f a s y s t e m o f p a r t i-

c le s in t e r a c t in g t h r o u g h g r a v it y le a d s t o s e v e r a l

c o u n t e r -in t u it iv e fe a t u r e s . W e e x p lo r e o n e o f

t h e m , c a lle d A n t o n o v in s t a b ilit y , in t h is in s t a ll-

m e n t .

S u p p o se w e p u t a la rg e n u m b er (N ) o f p a rtic le s, ea ch
o f m a ss m a n d in te ra c tin g th ro u g h a tw o -b o d y p o te n -
tia l U (x ¡ y ) in to a sp h e ric a l b o x o f ra d iu s R . W e w ill

a rra n g e m a tte rs su ch th a t th e p a rtic le s m o v e ra n d o m ly
to sta rt w ith a n d b o u n c e o ® th e su rfa c e o f th e sp h ere
e la stic a lly . L e t th e to ta l e n erg y o f th e sy stem b e E

w h ich , o f c o u rse , w ill rem a in a c o n sta n t. W e a re in te r-
e sted in th e b eh a v io u r o f th e sy ste m a t la te tim e s, w h e n

th e p a rticle s w ill h a v e h a d su ± c ie n t tim e to in te ra c t
w ith e a ch o th e r a n d e x ch a n g e en e rg y .

T h e resu lt w ill clea rly d e p e n d o n th e n a tu re o f th e in -
te ra c tio n , sp e c ī e d b y U (x ¡ y ) a s w e ll a s th e o th e r
p a ra m e te rs. If U (x ¡ y ) is a sh o rt ra n g e p o te n tia l re p -
re sen tin g in te rm o le c u la r fo rc e s a n d if E is su ± c ie n tly
h ig h , th en th e sy stem w ill re la x to w a rd s a M a x w e llia n
d istrib u tio n o f v e lo c ities a n d n e a rly u n ifo rm d e n sity in

sp a ce . (T h e v elo city d istrib u tio n w ill h a v e a ch a ra c te r-
istic tem p era tu re T ' 2 E = 3 N a n d w e a re a ssu m in g th a t
th is is h ig h er th a n th e b̀ o ilin g p o in t' o f th e l̀iq u id ' m a d e
o f th e se p a rticle s. If n o t, th e e v e n tu a l e q u ilib riu m sta te
w ill b e a m ix tu re o f m a tte r in liq u id a n d v a p o u r sta te.
A lso n o te th a t w e u se u n its w ith k B = 1 th ro u g h o u t.)

A ll th is is p a rt o f sta n d a rd lo re in sta tistic a l m e ch a n ics.

W h a t h a p p e n s if th e U (x ¡ y ) is d u e to g ra v ita tio n a l in -
te ra c tio n o f th e p a rticles? W h a t a re th e d i® e ren t p h a se s
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in w h ich m a tte r c a n e x ist in su ch a c a se? I w ill d iscu ss
so m e o f th e p e cu lia r e ® e c ts th a t a rise in th is c o n tex t.

T o d o th is, le t u s b e g in b y q u ick ly re v iew in g th e w a y
o n e in tro d u c es th e e q u ilib riu m c o n ¯ g u ra tio n in sta tisti-
c a l m e ch a n ic s. C o n sid er a sy ste m d escrib e d b y a d istrib -
u tio n fu n c tio n f (x ; p ; t) su ch th a t f d 3 x d 3 p d e n o te s th e
to ta l m a ss in a sm a ll p h a se sp a c e v o lu m e. W e a ssu m e

th a t th e e v o lu tio n o f th e d istrib u tio n fu n c tio n is g iv e n
b y so m e eq u a tio n (u su a lly c a lled th e B o ltzm a n n e q u a -
tio n ) o f th e fo rm d f = d t = C (f ). T h e term C (f ) o n th e
rig h t h a n d sid e d e sc rib e s th e e ® e c t o f co llisio n s. W h ile
th e p rec ise fo rm o f C (f ) c a n b e q u ite co m p lic a te d , w e

c a n u su a lly a ssu m e th a t th e c o llisio n a l e v o lu tio n o f f ,
d riv e n b y C (f ), sa tis¯ es tw o re a so n a b le co n d itio n s:
(a ) T h e to ta l m a ss a n d en e rg y o f th e sy ste m a re co n -
se rv e d a n d (b ) th e m e a n ¯ e ld e n tro p y, d e ¯ n e d b y

S = ¡
Z

f ln f d 3 x d 3 p (1 )

d o es n o t d e c re a se (a n d in g e n e ra l in c rea se s).1 F o r a n y

su ch sy ste m , w e c a n o b ta in th e eq u ilib riu m fo rm o f f b y
e x tre m isin g th e en tro p y w h ile k e ep in g th e to ta l e n e rg y
a n d m a ss co n sta n t u sin g tw o L a g ra n g e m u ltip liers. T h is
is a sta n d a rd ex e rcise in sta tistic a l m ech a n ic s a n d th e
re su ltin g d istrib u tio n fu n ctio n is th e u su a l B o ltz m a n n

d istrib u tio n g o v ern e d b y :

f (x ; v ) / e x p
·

¡ ¯

µ
1

2
v 2 + Á

¶¸

; Á (x ) =
Z

d 3 y U (x ; y )½ (y ):

(2 )

In te g ra tin g o v er v e lo c itie s, w e g e t th e c lo se d sy ste m o f
e q u a tio n s fo r th e d e n sity d istrib u tio n :

½ (x ) =
Z

d 3 v f = A e x p (¡ ¯ Á (x ));

Á (x ) =
Z

d 3 y U (x ; y )½ (y ): (3 )

T h e ¯ n a l resu lt is q u ite u n d e rsta n d a b le : It is ju st th e B o l-
tz m a n n fa c to r fo r th e d en sity d istrib u tio n : ½ / e x p (¡ ¯ V ),

1 For those who are unfamiliar

with this expression, here is a

recap: In the standard deriva-

tion of Boltzmann distribution,

one extremises the function

S = – n
i
ln n

i
of the occupation

numbers n
i
subject to the con-

straint on total energy and num-

ber. In the continuuum limit one

works with f rather than n
i

and

the summation over i becomes

an integral over the phase space

leading to (1).
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w h e re V is th e p o te n tia l en e rg y a t a g iv e n lo ca tio n d u e
to th e d istrib u tio n o f p a rtic le s. O n e c o u ld h a v e a lm o st
w ritten th is d o w n b̀ y in sp e c tio n '! (S e e A p p e n d ix fo r

m o re d e ta ils)

E v e ry th in g th a t w e h a v e sa id so fa r is in d ep en d en t o f
th e n a tu re o f th e p o te n tia l U (e x ce p t fo r o n e im p o rta n t
c a v e a t w h ich w e w ill d isc u ss rig h t a t th e en d ). In th e

c a se o f g ra v ita tio n a l in te ra c tio n , (3 ) b ec o m e s:

½ (x ) = A e x p (¡ ¯ Á (x )); Á (x ) = ¡ G
Z

½ (y )d 3 y

jx ¡ y j
: (4 )

T h e in te g ra l eq u a tio n (4 ) fo r ½ (x ) ca n b e e a sily co n -
v e rte d to a d i® ere n tia l e q u a tio n fo r Á (x ) b y ta k in g th e

L a p la cia n o f th e sec o n d e q u a tio n { le a d in g to r 2 Á =
4 ¼ G ½ { a n d u sin g th e ¯ rst eq u a tio n . W e th en g e t, fo r
th e sp h e ric a lly sy m m e tric c a se , th e iso th e rm a l sp h ere
e q u a tio n :

r 2 Á =
1

r 2

d

d r

Ã

r 2 d Á

d r

!

= 4 ¼ G ½ c e ¡ ¯ [Á (r )¡ Á (0 )]: (5 )

T h e co n sta n ts ¯ a n d ½ c (th e ce n tra l d e n sity ) h a v e to
b e ¯ x e d in te rm s o f th e to ta l n u m b er (o r m a ss) o f th e
p a rtic le s a n d th e to ta l e n erg y. G iv en th e so lu tio n to th is
e q u a tio n , w h ich rep re se n ts a n e x trem u m o f th e e n tro p y,
a ll o th er q u a n titie s c a n b e d e te rm in e d . A s w e sh a ll se e,

th is sy ste m sh o w s se v e ra l p e c u lia ritie s.

T o a n a ly se (5 ), it is co n v en ie n t to in tro d u c e le n g th , m a ss
a n d en erg y sca le s b y th e d e ¯ n itio n s

L 0 ´ (4 ¼ G ½ c ¯ )
1 = 2

; M 0 = 4 ¼ ½ c L 3
0 ; Á 0 ´ ¯ ¡ 1 =

G M 0

L 0

(6 )
A ll o th er p h y sica l v a ria b le s ca n b e ex p re sse d in te rm s o f
th e d im e n sio n less q u a n titie s x ´ (r = L 0 ); n ´ (½ = ½ c );

m = (M (r ) = M 0 ); y ´ ¯ [Á ¡ Á (0 ))]; w h e re M (r ) is th e

m a ss in sid e a sp h ere o f ra d iu s r . T h e se v a ria b le s sa tisfy

One could have

almost written

down equation (3)

'by inspection'.
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2 We have assumed that the

system is spherically symmet-

ric; it turns out that this is indeed

the extremal solution.

th e e q u a tio n s:

y 0= m = x 2 ; m 0= n x 2 ; n 0= ¡ m n = x 2 : (7 )

In term s o f y (x ) th e iso th e rm a l e q u a tio n , (5 ), b ec o m e s

1

x 2

d

d x

Ã

x 2 d y

d x

!

= e¡ y (8 )

w ith th e b o u n d a ry co n d itio n y (0 ) = y 0(0 ) = 0 .2 L et u s
c o n sid e r th e n a tu re o f th e so lu tio n s to th is e q u a tio n .

B y d ire c t su b stitu tio n , w e se e th a t n = (2 = x 2 ) ; m =
2 x ; y = 2 ln x sa tisfy (7 ) a n d (8 ). T h is so lu tio n , h o w ev er,
is sin g u la r a t th e o rig in a n d h e n c e is n o t p h y sica lly a d -
m issib le. T h e im p o rta n c e o f th is so lu tio n lie s in th e fa c t

th a t { a s w e w ill se e { a ll o th e r (p h y sica lly a d m issib le )
so lu tio n s te n d to th is so lu tio n [1 , 2 ] fo r la rg e v a lu es o f x .
T h is a sy m p to tic b e h a v io r o f a ll so lu tio n s sh o w s th a t th e
d e n sity d ec re a se s a s (1 = r 2 ) fo r la rg e r im p ly in g th a t th e
m a ss c o n ta in ed in sid e a sp h e re o f ra d iu s r in c rea se s a s
M (r ) / r a t la rg e r . O f c o u rse , in o u r c a se, th e sy stem
is e n c lo se d in a sp h e ric a l b o x o f ra d iu s R w ith a g iv e n
m a ss M .

E q u a tio n (8 ) is in v a ria n t u n d e r th e tra n sfo rm a tio n y !
y + a ; x ! k x w ith k 2 = e a . T h is in v a ria n c e im p lie s
th a t, g iv e n a so lu tio n w ith so m e v a lu e o f y (0 ), w e c a n
o b ta in th e so lu tio n w ith a n y o th e r v a lu e o f y (0 ) b y sim -
p le re sca lin g . T h e re fo re , o n ly o n e o f th e tw o in teg ra tio n
c o n sta n ts n ee d e d in th e so lu tio n to (8 ) is re a lly n o n -

triv ia l. H en c e it m u st b e p o ssib le to red u c e th e d eg ree
o f th e e q u a tio n fro m tw o to o n e b y a ju d icio u s ch o ic e o f
v a ria b le s. O n e su ch se t o f v a ria b les is:

v ´
m

x
; u ´

n x 3

m
=

n x 2

v
: (9 )

In term s o f v a n d u , (5 ) b e c o m es

u

v

d v

d u
= ¡

(u ¡ 1 )

(u + v ¡ 3 )
: (1 0 )
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T h e b o u n d a ry co n d itio n s y (0 ) = y 0(0 ) = 0 tra n sla te in to
th e fo llo w in g : v is ze ro a t u = 3 , a n d (d v = d u ) = ¡ 5 = 3 a t
(3 ,0 ). (Y o u c a n p ro v e th is b y ex a m in in g th e b e h a v io u r

o f (7 ) n ea r x = 0 re ta in in g u p to n e c e ssa ry o rd er in
x ; try it o u t!) T h e so lu tio n v (u ) to e q u a tio n (1 0 ) c a n
b e ea sily o b ta in e d n u m e ric a lly : it is p lo tte d in F igu re
1 a s th e sp ira llin g cu rv e. T h e sin g u la r p o in ts o f th is
d i® e ren tia l eq u a tio n a re g iv e n b y th e lo c a tio n in th e u v

p la n e a t w h ich b o th th e n u m e ra to r a n d d en o m in a to r o f
th e rig h t h a n d sid e o f (1 0 ) v a n ish . S o lv in g u = 1 a n d
u + v = 3 sim u lta n e o u sly , w e g e t th e sin g u la r p o in t to
b e u s = 1 , v s = 2 . U sin g (9 ), w e ¯ n d th a t th is p o in t
c o rre sp o n d s to th e a sy m p to tic so lu tio n n = (2 = x 2 ); m =
2 x . It is o b v io u s fro m th e n a tu re o f th e eq u a tio n th a t

th e so lu tio n cu rv e w ill sp ira l a ro u n d th e sin g u la r p o in t
a sy m p to tic a lly a p p ro a ch in g th e n = 2 = x 2 so lu tio n a t
la rg e x .

T h e n a tu re o f th e so lu tio n sh o w n in F igu re 1 a llo w s u s
to p u t in tere stin g b o u n d s o n v a rio u s p h y sic a l q u a n titie s

Figure 1. Bound on RE/GM2

for the isothermal sphere.
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in clu d in g en erg y. T o se e th is, w e sh a ll c o m p u te th e to ta l
e n erg y E o f th e iso th e rm a l sp h ere . T h e p o ten tia l a n d
k in e tic e n e rg ies a re

U = ¡
Z R

0

G M (r )

r

d M

d r
d r = ¡

G M 2
0

L 0

Z x 0

0
m n x d x ;

K =
3

2

M

¯
=

3

2

G M 2
0

L 0

m (x 0 ) =
G M 2

0

L 0

3

2

Z x 0

0
n x 2 d x ;

(1 1 )

w h e re x 0 = R = L 0 is th e b o u n d a ry a n d th e e x p ressio n
fo r K fo llo w s fro m th e v elo city d ep en d en c e o f f in (2 ).
T h e to ta l en e rg y is, th e refo re,

E = K + U =
G M 2

0

2 L 0

Z x 0

0
d x (3 n x 2 ¡ 2 m n x )

=
G M 2

0

2 L 0

Z x 0

0
d x

d

d x
f 2 n x 3 ¡ 3 m g

=
G M 2

0

L 0

½

n 0 x 3
0 ¡

3

2
m 0

¾

;

(1 2 )

w h e re n 0 = n (x 0 ) a n d m 0 = m (x 0 ). T h e d im e n sio n le ss
q u a n tity (R E = G M 2 ) is g iv e n b y

¸ ´
R E

G M 2
=

1

v 0

½

u 0 ¡
3

2

¾

: (1 3 )

N o te th a t th e co m bin a tio n (R E = G M 2 ) is a fu n ctio n o n ly
o f (u ; v ) a t th e bo u n d a ry . L et u s n o w co n sid er th e co n -

stra in ts o n ¸ . S u p p o se w e sp e c ify so m e v a lu e fo r ¸ b y
sp ec ify in g R ; E a n d M . T h en su ch a n iso th erm a l sp h ere
m u st lie o n th e c u rv e

v =
1

¸

µ

u ¡
3

2

¶

; ¸ ´
R E

G M 2
(1 4 )

w h ich is a stra ig h t lin e th ro u g h th e p o in t (1 :5 ; 0 ) w ith
a slo p e ¸ ¡ 1 . O n th e o th er h a n d , sin c e a ll iso th erm a l
sp h e re s m u st lie o n th e u ¡ v c u rv e , a n iso th erm a l sp h ere
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3 This derivation is due to the

author [3,1]. It is surprising that

Chandrasekhar, whohas worked

out the isothermal sphere in u–v

coordinates as early as 1939,

missed discovering the energy

bound shown in Figure 1.

Chandrasekhar [2] has the u–v

curve but does not over-plot lines

of constant . If he had done

that, he would have discovered

Antonov instability decades be-

fore Antonov did [4].

ca n e xist o n ly if th e lin e in equ a tio n (1 4 ) in tersects th e
u ¡ v cu rve.

F o r la rg e p o sitiv e ¸ (p o sitiv e E ) th e re is ju st o n e in -
te rsec tio n . W h e n ¸ = 0 , (ze ro e n e rg y ) w e still h a v e a
u n iq u e iso th e rm a l sp h ere . (F o r ¸ = 0 , (1 4 ) rep re se n ts
a v e rtic a l lin e th ro u g h u = 3 = 2 .) W h e n ¸ is n e g a tiv e
(n e g a tiv e E ), th e lin e ca n c u t th e u ¡ v cu rv e a t m o re

th a n o n e p o in t; th u s m o re th a n o n e iso th e rm a l sp h ere
c a n e x ist w ith a g iv en v a lu e o f ¸ . (O f co u rse , sp e c ify in g
M ; R ; E in d iv id u a lly w ill re m o v e th is n o n -u n iq u en e ss).
B u t a s w e d e c rea se ¸ (m o re a n d m o re n e g a tiv e E ) th e
lin e in (1 4 ) w ill slo p e m o re a n d m o re to th e le ft; a n d

w h e n ¸ is sm a ller th a n a c ritic a l v a lu e ¸ c , th e in te rse c -
tio n w ill c ea se to e x ist. S o w e re a ch th e k ey c o n c lu sio n
th a t n o iso th erm a l sp h ere ca n exist if (R E = G M 2 ) is be-
lo w a critica l va lu e ¸ c . T h is fa c t3 fo llo w s im m e d ia te ly
fro m th e n a tu re o f th e u ¡ v c u rv e a n d (1 4 ). T h e v a lu e o f
¸ c c a n b e fo u n d fro m th e n u m e ric a l so lu tio n a n d tu rn s
o u t to b e a b o u t ¡ 0 :3 3 5 .

W h a t d o es th is re su lt m e a n ? T o u n d e rsta n d its im p lica -

tio n s, c o n sid er c o n stru c tin g su ch a sy ste m w ith a g iv e n
m a ss M , ra d iu s R a n d a n e n e rg y E = ¡ jE j w h ich is
n e g a tiv e . (T h e la st c o n d itio n m e a n s th a t th e sy stem is
g ra v ita tio n a lly b o u n d .) In th is c a se, ¸ = R E = G M 2 =
¡ R jE j= G M 2 is a n eg a tiv e n u m b e r b u t le t u s a ssu m e
th a t it is a b o v e th e c ritica l v a lu e ; th a t is, ¸ > ¸ c . T h e n

w e k n o w th a t a n iso th e rm a l sp h e re so lu tio n ex ists fo r th e
g iv e n p a ra m ete r v a lu e s. B y c o n stru ctio n , th is so lu tio n
is th e lo c a l e x tre m u m o f th e e n tro p y a n d c o u ld re p re -
se n t a n e q u ilib riu m co n ¯ g u ra tio n if it is a lso a g lo b a l
m a x im u m o f e n tro p y.

B u t fo r th e sy ste m w e a re c o n sid e rin g , it is a c tu a lly
q u ite ea sy to se e th a t th e re is n o g lo b a l m a x im u m fo r
e n tro p y . T h is is b ec a u se , fo r a sy ste m o f p o in t p a rtic le s

in te ra c tin g v ia N e w to n ia n p o te n tia l, th ere is n o lo w e r
b o u n d to th e g ra v ita tio n a l p o te n tia l en e rg y . If w e ta k e

But for the system we

are considering, it is

actually quite easy to

see that there is no

global maximum for

entropy.
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a n a m o u n t o f m a ss m < M a n d fo rm a co m p a ct c o re o f
ra d iu s r in sid e th e sp h e rica l ca v ity , th e n b y d e c rea sin g
r o n e ca n su p p ly a rb itra rily la rg e a m o u n t o f en e rg y to

th e rest o f th e p a rtic les. V ery so o n , th e re m a in in g p a r-
tic les w ill h a v e v e ry la rg e k in e tic e n e rg y co m p a re d to
th e ir g ra v ita tio n a l p o te n tia l e n e rg y a n d w ill esse n tia lly
b o u n c e a ro u n d in sid e th e sp h e ric a l c a v ity lik e a n o n -
in te ra c tin g g a s o f p a rticles. T h e co m p a c t co re in th e

c en te r w ill c o n tin u e to sh rin k th e reb y su p p ly in g e n e rg y
to th e rest o f th e p a rtic les. It is e a sy to se e th a t su ch a
c o re { h a lo c o n ¯ g u ra tio n c a n h a v e a rb itra rily h ig h v a lu e s
fo r th e e n tro p y . A ll th is g o e s to sh o w th a t th e iso th e r-
m a l sp h e re ca n n o t b e a glo ba l m a x im u m fo r th e e n tro p y.
(T h is w a s th e c a v ea t in th e c a lcu la tio n w e p erfo rm e d

to d e riv e th e iso th e rm a l sp h e re e q u a tio n ; w e ta citly a s-
su m e d th a t th e e x tre m u m co n d itio n c a n b e sa tis¯ ed fo r
a ¯ n ite v a lu e o f en tro p y .)

If w e in cre a se th e ra d iu s o f th e sp h erica l b o x (w ith so m e
¯ x ed v a lu e fo r E = ¡ jE j), th e p a ra m e te r ¸ w ill b e co m e
m o re a n d m o re n eg a tiv e a n d fo r su ± cien tly la rg e R , w e
w ill h a v e a situ a tio n w ith ¸ < ¸ c . N o w th e situ a tio n
g e ts w o rse . T h e sy ste m d o e s n o t e v en h a v e a lo c a l e x -

tre m u m fo r th e e n tro p y a n d w ill e v o lv e d ire c tly to w a rd s
a c o re { h a lo co n ¯ g u ra tio n . T h is is c lo se ly re la ted to a
p h e n o m e n o n c a lled A n to n o v in sta b ility [4 , 3 ].

In rea l life , o f c o u rse, th e re is a lw a y s so m e sh o rt d is-

ta n c e c u t-o ® b e c a u se o f w h ich th e co re c a n n o t sh rin k
to a n a rb itra rily sm a ll ra d iu s. In su ch a c a se, th e re is
a g lo b a l m a x im u m fo r en tro p y a ch ie v e d b y th e (¯ n ite )
c o re { h a lo co n ¯ g u ra tio n w h ich c o u ld b e th o u g h t o f a s th e
¯ n a l sta te in th e ev o lu tio n o f su ch a sy ste m . It w ill b e

h ig h ly in h o m o g e n e o u s a n d , in fa ct, is v e ry sim ila r to a
sy ste m w h ich e x ists a s a m ix tu re o f tw o p h a se s. T h is is
o n e k e y p e c u lia rity in tro d u c e d b y lo n g ra n g e a ttra ctiv e
in te ra c tio n s in sta tistic a l m ech a n ics.
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In th e te x t, I d eriv e d e q u a tio n (3 ) fro m th e e x p re ssio n fo r e n tro p y in e q u a tio n (1 ).

G iv e n th e p e c u lia ritie s o f g ra v ita tin g sy ste m s o n e m a y w o n d er h o w tru stw o rth y
th is a p p ro a ch is. H ere I d e sc rib e b rie ° y a m o re b a sic d e riv a tio n o f th e ex p re ssio n
in (3 ).

T h e e q u ilib riu m sta te is th e o n e th a t m a x im iz es th e e n tro p y o f th e sy ste m . W h en
w e stu d y th e sy stem in th e m icro c a n o n ic a l en sem b le , th is e n tro p y S is th e lo g a -
rith m o f th e v o lu m e g (E ) o f th e p h a se sp a c e a v a ila b le to th e sy stem if th e to ta l
e n erg y is E . T h a t is:

e S = g (E ) =
1

N !

Z

d 3 N x d 3 N p ± (E ¡ H ); (1 5 )

w h e re H is th e H a m ilto n ia n fo r th e sy ste m o f N p a rticle s g iv e n b y th e su m o f
th e k in etic e n e rg ie s (p 2

i = 2 m ) (i = 1 ; 2 ; :::; N ) a n d th e p o te n tia l en erg y o f p a irw ise
in te ra c tio n . T h e D ira c d e lta fu n c tio n te lls u s th a t th e sy stem is c o n ¯ n e d to th e
b o u n d a ry o f a 3 N d im e n sio n a l sp h ere in m o m en tu m sp a c e g iv e n b y th e eq u a tio n

NX

i= 1

p 2
i = 2 m

2

4E ¡
1

2

X

i6= j

U (x i; x j )

3

5 ´ l2 : (1 6 )

O b v io u sly , th e m o m en tu m in teg ra tio n in (1 5 ) w ill lea d to a term p ro p o rtio n a l to
l3 N ¡ 1 ; so , p erfo rm in g th e m o m e n tu m in teg ra tio n s a n d u sin g N À 1 , w e g e t

e S = g (E ) /
1

N !

Z

d 3 N x

2

4E ¡
1

2

X

i6= j

U (x i ; x j )

3

5

3 N
2

: (1 7 )

T h e in te g ra l in (1 7 ) is im p o ssib le to e v a lu a te fo r a n y re a listic p o ten tia l b u t th e re

is a sta n d a rd a p p ro x im a tio n u sin g w h ich w e c a n m a p th is p ro b lem to a m o re
tra c ta b le o n e .

L e t u s d iv id e th e th e sp a tia l v o lu m e V in to J (w ith J ¿ N ) ce lls o f eq u a l size ,

la rg e en o u g h to c o n ta in m a n y p a rtic le s b u t sm a ll e n o u g h fo r th e p o ten tia l to b e
tre a te d a s a c o n sta n t w ith in e a ch c e ll. (W e w ill a ssu m e th a t su ch a n in te rm e d ia te
sc a le ex ists, w h ich u su a lly d o es.) In ste a d o f in tegra tin g o v e r a ll th e p a rticle
c o o rd in a tes (x 1 ; x 2 ; :::; x N ) w e sh a ll su m o v e r th e n u m b e r o f p a rtic les n a in th e
c ell c en te red a t x a (w h ere a = 1 ; 2 ; :::; J ) th ere b y a p p ro x im a tin g th e in te g ra l b y
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a d isc rete su m . U sin g th e o b v io u s fa c t th a t th e in te g ra tio n o v er (N !)¡ 1 d 3 N x c a n
b e re p la c ed b y

1X

n 1 = 1

µ
1

n 1 !

¶ 1X

n 2 = 1

µ
1

n 2 !

¶

:::
1X

n J = 1

µ
1

n J !

¶ µ
V

J

¶N

(1 8 )

(su b je ct to th e co n stra in t th a t
P

n a = N ) a n d a p p ro x im a tin g th e n ! s b y S tirlin g 's
a p p ro x im a tio n : ln n ! = n ln (n = e ) w e g e t, a fte r so m e stra ig h tfo rw a rd a lg e b ra th e

re su lt:

e S ¼
1X

n 1 = 1

1X

n 2 = 1

:::
1X

n J = 1

e x p S [f n a g ]; (1 9 )

w h e re

S [f n a g ] =
3 N

2
ln

2

4E ¡
1

2

JX

a 6= b

n a U (x a ; x b )n b

3

5 ¡
JX

a = 1

n a ln
µ

n a J

e V

¶

: (2 0 )

If th e n u m b er o f p a rticle s in ea ch c ell is su ± c ien tly la rg e { a s u su a lly is th e
c a se { th is is n o t a d ra stic a p p ro x im a tio n . W e a re , o f c o u rse , in tere ste d in th e

c o n ¯ g u ra tio n o f f n a g fo r w h ich th e su m m a n d in (1 9 ) rea ch e s th e m a x im u m v a lu e ,
su b je ct to th e c o n stra in t o n th e to ta l n u m b e r. T h is w o rk s in sta n d a rd sta tistic a l
m ech a n ics b ec a u se, in m o st c a se s o f in te re st, th e la rg e st te rm a ctu a lly d o m in a tes
th e su m a n d th e e rro r in v o lv ed in ig n o rin g th e rest is sm a ll. T h a t is, to a h ig h
o rd e r o f a c c u ra c y S = S [n a ;m a x ], w h ere n a ;m a x is th e so lu tio n to th e v a ria tio n a l
p ro b le m (± S = ± n a ) = 0 w ith th e su m o f p a rticle n u m b e rs n a b ein g k ep t e q u a l to
N . Im p o sin g th is c o n stra in t b y a L a g ra n g e m u ltip lier a n d u sin g th e ex p re ssio n
(2 0 ) fo r S , w e o b ta in th e eq u a tio n sa tis¯ e d b y n a ;m a x :

1

T

JX

b = 1

U (x a ; x b )n b ;m a x + ln

µ
n a ;m a x J

V

¶

= c o n sta n t; (2 1 )

w h e re w e h a v e d e¯ n ed th e tem p e ra tu re T th ro u g h th e re la tio n :

1

T
=

3 N

2

0

@ E ¡
1

2

JX

a 6= b

n a U (x a ; x b )n b

1

A

¡ 1

= ¯ (2 2 )

w ith n a = n a ;m a x . T o see th a t th is is n o t a s stra n g e a s it lo o k s, y o u o n ly n e e d to
n o te , fro m (2 0 ) th a t th is ¯ is a lso eq u a l to (@ S = @ E ); th e refo re o n e c a n th in k o f
T a s th e co rrec t th e rm o d y n a m ic te m p era tu re. W e c a n n o w re tu rn b a ck to th e
c o n tin u u m lim it o f (2 1 ) b y w ritin g n a ;m a x (J = V ) = ½ (x a ) a n d rep la c in g th e su m

o v e r p a rtic le s b y in teg ra tio n w ith th e m e a su re J = V . In th is c o n tin u u m lim it, th e
e x tre m u m so lu tio n in (2 1 ) is g iv e n p re cise ly b y (3 ).




