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T h e id e a liz e d ° o w o f ° u id a ro u n d a sp h e ric a l

b o d y is a c la ssic te x tb o o k p ro b le m in ° u id m e -

ch a n ic s. In te re stin g ly e n o u g h , it le a d s to so m e

c u rio u s tw ists a n d tu rn s a n d c o n c e p tu a l c o n u n -

d ru m s.

T h e ° ow in d u ced in a ° u id w h en a b o d y m oves th rou gh
it is of trem en d o u s p ra ctica l im p o rta n ce { w ith th e air-
p lan e w in gs p rov id in g ju st on e ex am p le. In gen era l, n o -
b o d y u n d ersta n d s th e ° ow o f real ° u id s an d w e h ave
to resort to scaled m o d els (e.g., in w in d tu n n els) or to

n u m erica l sim u la tio n s to m a ke p ro gress. B u t th ere are
so m e idealized m o d els th a t on e ca n solve a n aly tically
w h ich co rresp o n d s, b road ly sp eak in g, to th e m y th ica l
° u id som etim es called \d ry w ater". T h ese p rob lem s are
su p p osed ly w ell-u n d ersto o d an d w e w ill see, in th is in -

sta llm en t, th at ev en th e sim p lest of th em can lead to
su rp rises.

W h en a b o d y m ov es th rou gh th e h y p oth etica l ° u id , th e
resu ltin g ° ow sa tis¯ es th e fo llow in g con d itio n s: F irst,

th e ° u id ° ow is in com p ressib le w ith th e d en sity b ein g a
con sta n t. T h en , th e con servation of m a ss, ex p ressed in
th e form o f a con tin u ity eq u a tion

@ ½

@ t
+ r ¢ (½ v ) = 0 (1)

(in w h ich ½ is th e d en sity an d v is th e ° u id v elo city )
red u ces to th e sim p le con d itio n r ¢ v = 0. S eco n d , w e
w ill a ssu m e th a t th e ° ow is irro tatio n al (r £ v = 0)
allow in g fo r th e v elo city to b e ex p ressed a s a g rad ien t of

a sca la r p o ten tial v = r Á . F in ally w e w ill ign o re all th e
p rop erties o f real ° u id s lik e v iscosity, su rfa ce ten sion ,
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etc., an d w ill trea t th e p rob lem a s on e o f ¯ n d in g th e

so lu tion s to th e tw o eq u ation s r ¢v = 0 a n d r £ v = 0
su b ject to certa in b o u n d ary con d itio n s. E q u ivalen tly,
w e ¯ n d th a t th e p oten tia l satis¯ es L a p la ce's eq u ation
r 2 Á = 0. S o th e p rob lem red u ces to so lv in g th e L a p la ce
eq u a tio n w ith v satisfy in g th e b o u n d ary co n d itio n s {

w h ich is th e on ly n on triv ial fea tu re of th e p ro b lem !

L et u s con sid er a b o d y o f an arb itrary sh ap e m ov in g
w ith a v elo city u th o u gh th e ° u id . T h en w e n eed to

so lv e th e L a p la ce eq u ation su b ject to th e b ou n d a ry co n -
d itio n n ¢v = n ¢u at th e su rfa ce, w h ere n is th e n o rm a l
to th e su rface. W e w ou ld ex p ect th e ° u id ° ow n ear th e
b o d y to b e a® ected b y its m otion , b u t at su ± cien tly
large d istan ce th is e® ect sh ou ld b e n egligib le. H en ce

th e ° u id velo city v w ill b e zero at sp atial in ¯ n ity.

In terestin g ly en ou g h th e gen eral form o f th e ° u id velo c-
ity a t larg e d istan ces fro m th e b o d y (of arb itrary sh ap e)
can b e d eterm in ed b y th e follow in g a rgu m en t. W e k n ow

th at th e fu n ctio n 1= r satis¯ es th e L ap lace eq u a tion . F u r-
th er, if Á satis¯ es th e L ap lace eq u ation , th e sp atial d eriv -
atives o f Á also satisfy th e sam e eq u atio n . T h erefo re,
th e d irectio n al d eriva tiv e o f 1= r, alon g so m e d irection
sp ecī ed b y a n arb itrary vector A w ill also sa tisfy th e

L a p la ce eq u ation . S u ch a d irection a l d erivative is given
b y A ¢ r (1 = r) an d w ill fa ll as 1= r 2 a t large d ista n ces.
H en ce, a t larg e d istan ces from th e b o d y, w e ca n take
th e lea d in g ord er term s in th e p o ten tial to b e

Á = ¡ q
r
+ A ¢ r

µ
1

r

¶
+ O (1 = r 3 ): (2)

Y o u w ill, of co u rse recogn ize all th ese to b e electrosta -
tics in d isg u ise a n d th e ex p an sion in (2 ) to b e ju st th e
large d istan ce ex p an sio n of th e p oten tia l d u e to th e d is-
trib u tio n o f ch arges. T h e ¯ rst term is th e m o n op o le
cou lom b term an d th e seco n d o n e is th e d ip o le term .

(In cid en ta lly, th e d ip ole term is ju st th e d i® eren ce in
th e p o ten tial d u e to tw o ch arges kep t sep ara ted b y a
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It is interesting that

the flow at large

distances is fixed

entirely in terms of a

single vector A. In

fluid mechanics, it is

a bit of a surprise

but in electrostatics

it is not.

d istan ce A ; clea rly, th e n et p oten tia l w ill b e th e d irec-

tio n al d erivative a lo n g A . T h is is th e q u ickest w ay to
get th e d ip o le p oten tial.) A t su ± cien tly la rge d istan ces
w e ig n ore fu rth er term s, ob tain ed b y tak in g th e secon d ,
th ird , ... d erivatives of 1 = r.

T h e velo city ¯ eld w ill th en b e th e a n alog u e o f th e electric
¯ eld in electro statics. F ro m G au ss' law w e k n ow th at th e
° u x of th e electric ¯ eld at larg e d istan ces is p rop ortion a l
to th e t̀otal ch arg e' q . S in ce w e ca n n ot h ave a n o n -

zero ° u x of v elo city at larg e d istan ce in o u r p ro b lem ,
it fo llow s th at q = 0 a n d th e asy m p to tic fo rm o f th e
p o ten tial m u st h ave th e fo rm :

Á = A ¢ r
µ
1

r

¶
= ¡ A ¢ n

r 2
; (3)

w h ere n is th e u n it v ecto r in th e ra d ia l d irection . T ak in g
th e gra d ien t, w e g et th e velo city ¯ eld to b e

v = (A ¢ r )r
µ
1

r

¶
=
3(A ¢ n )n ¡ A

r 3
: (4)

(T h ese m a n ip u lation s a re m ost e± cien tly d o n e u sin g in -
d ex n otation a n d su m m ation con ven tio n , w ith @ ® r =
(1= 2r)@ ® r

2 = x ® = r u sed rep eated ly.) T h e actu al form

of A n eed s to b e d eterm in ed u sin g th e con d itio n s n ear
th e b o d y (w h ich w ill b e a m ess for a b o d y o f arb itrary
sh a p e) b u t it is in terestin g th a t th e ° ow at larg e d is-
tan ces is ¯ x ed en tirely in term s of a sin gle v ector A . In
° u id m ech a n ics, it is a b it of a su rp rise b u t in electro -

sta tics it is n ot. If th e m on op ole va n ish es, you w ou ld
ex p ect th e d ip ole m om en t to d eterm in e th e b eh av iou r
of th e electric ¯ eld a t la rge d istan ces.

T h e rea l su rp rise com es w h en w e try to ca lcu la te th e

tota l k in etic en erg y a sso cia ted w ith th e ° u id ° ow given
b y

K la b =
1

2
½

Z
d 3 x v 2 ; (5)
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w h ere th e in teg ral is over a ll sp ace ou tsid e th e b o d y a n d

th e su b scrip t l̀ab ' stan d s fo r th e lab fram e in w h ich th e
b o d y is m ov in g w ith a velo city u . (T h e fa ct th at th e
b o d y is m ov in g is irreleva n t sin ce it o n ly sh ifts th e o rigin
b y u t w h ich is a con sta n t a s far as th e sp atial in teg ration
is con cern ed .) W h ile th e ° u id ° ow at la rg e d istan ces can

b e ex p ressed en tirely in term s of a sin g le vector A , th e
° ow clo ser to th e b o d y ca n b e ex trem ely co m p lica ted .
O n e m ig h t h ave th ou gh t th at, in su ch a g en era l ca se,
on e can n o t say an y th in g ab ou t th e tota l k in etic en ergy
of th e ° u id . B u t it is in d eed p ossib le to ex p ress th e tota l

k in etic en erg y of th e ° u id ° ow en tirely in term s of th e
sin gle v ector A ev en th o u gh th e ° u id ° ow every w h ere
can n o t b e ex p ressed in term s of A alon e. (T h is resu lt,
as w ell a s eq u ation s (8) an d (18 ) b elow , are d erived in
[1] b u t n ot d iscu ssed in d eta il in an y o th er b o o k , as far

as I k n ow .)

T o ob tain th is resu lt, w e u se th e id en tity v 2 = u 2 + (v +
u ) ¢ (v ¡ u ). If w e in teg rate b oth sid es of th is eq u ation
over a la rge vo lu m e V , th e ¯ rst term on th e righ t w ill

give a con trib u tio n p ro p ortion a l to (V ¡ V b o d y ). In th e
secon d term , w e w rite (v + u ) = r (Á + u ¢r ). N ow u sin g
r ¢ v = 0 ; an d r ¢ u = 0 , w e can w rite th e seco n d term
as a to tal d iv erg en ce r ¢[(Á + u ¢r )(v ¡ u )]: In teg ratin g
th is ov er th e w h o le sp ace, th e secon d term b eco m es a

su rfa ce in tegra l over b o th th e su rfa ce o f th e b o d y an d a
su rfa ce a t la rge d istan ce. T h a t is, w e h av e p roved :Z
v 2 d V = u 2 (V ¡ V 0 ) +

I
S + S 0

(Á + u ¢ r )(v ¡ u ) ¢ n d S ;
(6)

w h ere S is a su rface b o u n d in g th e v olu m e V a t large
d istan ce an d S 0 is th e su rface of th e b o d y. T h e su rfa ce
in tegra l is ta ken over b o th . T h e m iracle is n ow in sig h t.
O n th e su rfa ce of th e b o d y, (v ¡ u )¢n van ish es d u e to th e
b o u n d ary con d itio n s an d h en ce w e g et n o con trib u tio n s
from th ere! T h is is g o o d sin ce w e h ave n o clu e a b o u t th e
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1 The electrostatic analogue is

the following. You are given a

distribution of charges with

qtot = 0 and dipole moment p in a

region bounded by a surface S0.

You are also given a constant

vector E0 and told that the nor-

mal component of the electric

field normal to S0 is given by

n.E0. Then the electrostatic

energy is proportional to

(4 p.E0�V0 E0
2) where V0 is the

volume of the region bounded

by S0.

p attern o f velo city ° ow n ear th e b o d y. A t large d istan ces

from th e b o d y, w e can u se th e asy m p totic form of th e
velo city ¯ eld given in (4 ) an d d o th e in teg ral tak in g th e
su rfa ce to b e a sp h ere of la rge rad iu s R . S in ce d S =
R 2 d ­ in crea ses as R 2 w h ile v falls as 1 = R 3 a n d Á fa lls
as 1= R 2 w e ca n a p p rox im ate Á (v ¡ u ) ¢n ¼ ¡ Á u ¢n on
S . H en ce th e su rface in teg ral in (6 ) o n S b ecom es th e
su m

¡
I
S

Á u ¢ n R 2 d ­ +

I
S

(u ¢ n )(v ¢ n ) R 3 d ­

¡
I
S

(u ¢ n )2 R 3 d ­ : (7)

T h e in teg ration over a n gu lar co o rd in a tes can b e d on e

u sin g th e ea sily p roved rela tion < (A ¢ n )(B ¢ n ) > =
(1= 3)A ¢ B w h ere < ::: > d en otes th e a n gu lar average
w h ich is 1= 4¼ tim es th e in tegra l ov er d ­ . U sin g th is, w e
see th a t th e in teg ral ov er ¡ (u ¢n )2 R 3 g iv es ¡ u 2 V w h ich
p recisely can cels th e u 2 V in th e ¯ rst term in (6). U sin g

(3) an d (4 ) w e get th e ¯ n a l a n sw er to b e:

K la b =
1

2
½ (4¼ A ¢ u ¡ V 0 u 2 ): (8)

T h u s, if w e k n ow th e m otion o f th e ° u id at v ery large
d istan ces from th e b o d y, w e can com p u te th e to tal k i-
n etic en ergy of th e ° u id ° ow w ith o u t ever k n ow in g th e
velo city ¯ eld close to th e b o d y !1

O n e ca n u se th is to ob ta in a n oth er cu riou s resu lt. T o
d o th is, w e n o te th a t th e K la b can also b e ex p ressed in a
d i® eren t fo rm of su rface in tegra l. W ritin g v = r Á , th e
ex p ressio n for k in etic en erg y red u ces to

K =
1

2
½

Z
V
d 3 x (r Á )2 = 1

2
½

Z
V
d 3 x r ¢ (Á r Á ); (9)

w h ere w e h av e u sed r 2 Á = 0 . U sin g G au ss' th eorem ,
th is ex p ressio n can b e con verted to a su rface in tegra l
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over th e b o d y an d over a su rface at la rge d ista n ce. T h e

secon d o n e van ish es, giv in g

K la b = ¡
1

2
½

I
S 0

d S (n ¢ v )Á = ¡ 1
2
½

I
S 0

d S (n ¢ u )Á ;
(1 0)

w h ere w e h ave u sed n ¢ v = n ¢ u at th e su rface. B u t
sin ce w e k n ow w h a t K la b is, th is allow s u s to ob tain
an in teg ral ov er th e su rface of th e b o d y of a p articu lar
ex p ressio n , in th e fo rm

¡
I
S 0

d S (n ¢ u )Á = (4¼ A ¢ u ¡ V 0 u 2 ) (1 1)

even th ou g h w e d o n o t k n ow eith er th e sh a p e of th e
b o d y o r th e velo city p oten tial on th e su rface!

L et u s n ow sp ecialize to th e sim p lest of a ll p o ssib le
sh a p es for th e b o d y : a sp h ere of rad iu s a . In th is ca se,
th e d ip ole p o ten tial h ap p en s to b e th e exact solu tion
at all d ista n ces ou tsid e th e sp h ere. T h is is n ot d i± cu lt
to u n d ersta n d . G iv en th e sp h erica l sy m m etry, th e o n ly
vector th a t can ap p ea r in th e solu tion is th e velo city of

th e b o d y u . L in earity of th e L ap lace eq u ation (an d th e
b o u n d ary con d itio n ) tells u s th a t th e p oten tial m u st b e
lin ear in th is vecto r u . H en ce th e so lu tion m u st h ave th e
form in eq u ation (3) w ith A / u . U sin g th e b o u n d ary
con d itio n n ¢v = n ¢u a t th e su rface, it is easy to sh ow
th at

A =
1

2
a 3 u (1 2)

w h ich com p letely so lv es th e p ro b lem . W e w ill n ow p lay
aro u n d w ith th is solu tio n .

G iven th e ° u id ° ow p attern ev ery w h ere, w e can ex p lic-
itly com p u te th e to tal k in etic en ergy ca rried b y th e ° ow
u sin g an y of th e ex p ressio n s d erived a b ove. W e g et
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Whoever would

have guessed that

the simplest

problem in fluid

flow past a body

will  actually lead to

a product of zero

and infinity!

K la b = ¡ 1
2
½

Z
a 2 d ­

µ
¡ 1
a 2

¶
(A ¢ n )(u ¢ n )

=
1

2
½ (4¼ )

1

3
(A ¢u ) = 1

4
m d isp u

2 ; (1 3)

w h ere m d isp is th e m ass o f th e ° u id d isp la ced b y th e

sp h ere. S o th e tota l k in etic en ergy is (1= 2)[m b o d y +
(1= 2)m d isp ]u

2 a n d th e ° u id ad d s (1= 2)m d isp to th e ef-
fective m ass o f th e sp h ere. O f cou rse, o u r g en eral ex -
p ression , eq u a tion (8 ) lead s to th e sam e resu lt w h en w e
u se (1 2) a n d every th in g seem s ¯ n e.

L et u s n ex t con sid er th e tota l m o m en tu m P carried b y
th e ° u id w h ich is th e in tegra l over all sp ace o f ½ v . In
a rea son a b le w o rld , w e w ou ld h ave ex p ected it to b e

(1= 2)m d isp u b u t w e are in fo r a ru d e sh o ck . B y sy m m e-
try, th e v ector P h a s to b e in th e d irectio n of u so w e
on ly n eed to co m p u te th e scala r P ¢u . B u t sin ce v fa lls
as 1= r 3 a n d th e v olu m e grow s as r 3 w e a re in trou b le!
(T h is d id n ot h a p p en for th e k in etic en erg y sin ce w e

w ere in tegra tin g v 2 / 1= r 6 ov er a ll sp a ce.). E x p licitly,
w e h ave,

P la b ¢ u = ½

Z
d 3 x

1

r 3
[3 (A ¢ n )(u ¢ n ) ¡ A ¢ u ]

= ½

Z 1

a

d r

r

Z
d ­ [3 (A ¢ n )(u ¢n ) ¡ A ¢ u ]:

(1 4)

O b v iou sly, ou r p ow er cou n tin g a rgu m en t is correct a n d
th e r -in tegra l d iverges lo garith m ically at la rge d ista n ces!
O n th e oth er h a n d th e an g u la r in tegra tion over sp h erica l

su rfa ces gives zero b ecau se < 3(A ¢ n )(u ¢ n ) > = A ¢ u
can cels th e secon d term . W h o ever w ou ld h av e gu essed
th at th e sim p lest p rob lem in ° u id ° ow p ast a b o d y w ill
actu ally lead to a p ro d u ct of zero a n d in ¯ n ity !

If w e d o th e in teg ral b etw een tw o sp h eres of ra d ii r = a
an d r = R cen tred o n th e m ov in g sp h ere at an y given
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One feels uneasy

about the result being

dependent on what

one is doing at infinity

especially since the

direction of u breaks

the spherical

symmetry.

in stan t o f tim e, th en th e an sw er is in d eed zero b ecau se

th e an g u la r avera ge gives zero. T h is w o u ld h ave b een
an a ccep tab le resu lt, ex cep t for tw o reason s. F irst, th e
resu lt d ep en d s on ta k in g th e o u ter b ou n d a ry to b e a
sp h ere. If w e ch o ose som e o th er sh ap e, say, a cy lin d er
coax ial w ith th e d irection of m otion o f th e sp h ere, th e

resu lt can b e d i® eren t. O n e feels u n easy ab ou t th e re-
su lt b ein g d ep en d en t on w h at on e is d oin g at in ¯ n ity
esp ecia lly sin ce th e d irection of u b rea k s th e sp h erica l
sy m m etry.

S eco n d , o n e can argu e th at, if y ou p u sh th e sp h ere from
rest to let it a cq u ire a v elo city u , th en { in th e p ro cess
{ y ou im p art so m e m om en tu m to th e ° u id . T o d o th is
com p u tation o n e n eed s to k n ow th e p ressu re w h ich acts

on th e sp h ere w h en u is a fu n ctio n o f tim e [2]. L et m e
b rie° y in d ica te h ow th is ca n b e o b tain ed . T h e startin g
p o in t is th e E u ler eq u ation @ v = @ t + (v ¢ r )v = r p = ½ .
W h en v = r Á (t;x ), y ou can m a n ip u late th is eq u ation
to sh ow th at r [p + (1 = 2)½ v 2 + ½ (@ Á = @ t)] = 0, so th at
th e p ressu re can b e ex p ressed in th e fo rm

p = p1 ¡ 1
2
½ v 2 ¡ ½ @ Á

@ t
; (1 5)

w h ere p1 is th e p ressu re at in ¯ n ity. (T h is is ju st a tim e
d ep en d en t version of B ern o u lli's eq u a tio n .) W e a re in -
terested in th e n et force in th e d irection o f m o tio n of th e
sp h ere, taken to b e th e z-ax is, w h ich ca n b e ob tain ed b y
in tegra tin g p cos µ over th e su rface of th e sp h ere. F rom
(4) w e see th at v 2 w ill b e a fu n ction of co s2 µ so th e
con trib u tion from th e ¯ rst tw o term s w ill van ish o n in -
tegration over a sp h ere. T h e o n ly su rv iv in g co n trib u tion
com es fro m th e last term w h ich ca n b e easily evalu ated

to give

F z = ¡
Z ¼

0

2¼ a 2 sin µ d µ

·
1

2
½ a cos2 µ

d u z

d t

¸
=
1

2
m d isp

d u z

d t
:

(1 6)
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The need for

regularizing the

problem by

introducing a very

large but finite

volume for the total

fluid becomes more

apparent when we

study the same

result  in the rest

frame of the sphere.

C lea rly, th e tota l m om en tu m im p arted isZ
F z d t =

1

2
m d isp u z ; (1 7)

w h ich m akes sen se w h en w e rem em b er th a t th e k in etic

en erg y com es w ith th e e® ective m ass (1 = 2)m d isp . S o ,
th is is an o th er p u rely lo cal reaso n to b elieve th e tota l
m om en tu m of th e ° u id ° ow is n o n -zero.

In fa ct, o n e can gen eralize th is argu m en t a n d ob tain a
¯ n ite ex p ressio n fo r th e m o m en tu m for a n y b o d y m ov -
in g th rou gh a ° u id [1]. O n ce aga in th e resu lt can b e
ex p ressed en tirely in term s of th e vector A fo r a b o d y of
arbitrary sh a p e. T o o b tain th is resu lt, w e can u se a trick
w h ich relates th e in ¯ n itesim al ch an ges in th e en ergy a n d

m om en tu m b y th e rela tio n d E = u ¢d P an d u se th e re-
su lt in (8). T o p rove th is relatio n , let u s assu m e th at
th e b o d y is a ccelerated b y so m e ex tern a l force F ca u sin g
th e m o m en tu m o f ° u id ° ow to in crea se b y an am ou n t
d P in a tim e in terval d t. F rom th e rela tio n d P = F d t

w e im m ed iately get u ¢ d P = F ¢ u d t = d E . G iv en th e
form o f E , it is n ow an elem en ta ry m atter to verify th at
th e tota l m o m en tu m of th e ° u id ° ow is given b y

P = 4 ¼ ½ A ¡ ½ V 0 u : (1 8)

W e see th at th is is, in gen eral, n o n -zero . In th e case
of th e sp h ere it d o es give (1= 2 )m d isp u ; th is is w h a t w e
w ou ld h av e n aively ex p ected . O f co u rse, th e a rgu m en t

is d esign ed to give th is.

T h e n eed fo r regu larizin g th e p rob lem b y in tro d u cin g a
very large b u t ¯ n ite v olu m e fo r th e total ° u id b eco m es

m ore ap p a ren t w h en w e stu d y th e sam e resu lt in th e rest
fram e o f th e sp h ere. In th is fram e, w e h av e a sp h ere
of ra d iu s a lo ca ted a rou n d th e o rigin an d th e ° u id is
° ow in g p a st it. T h e b ou n d ary co n d ition a t in ¯ n ity is
n ow d i® eren t a n d w e ex p ect th e ° u id velo city to rea ch
a co n stan t va lu e ¡ u at larg e d istan ces. T h is is easily
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ach ieved b y a d d in g a co n stan t electric ¯ eld to a d ip ole in

th e electrostatic case. T h is lea d s to a velo city p oten tia l
of th e fo rm

Ã = ¡ r ¢ u + Á = ¡ r ¢ u ¡ A ¢n
r 2

: (1 9)

W e d en o te th e velo city p oten tia l in th e rest fram e b y Ã

to d istin gu ish it from th e velo city p o ten tia l in th e lab
fram e Á . L et u s n ow ask w h at is th e k in etic en ergy of
th e ° u id in th is fra m e in w h ich th e b o d y is at rest. T h e
° u id velo city n ow is V = v ¡ u . T h e k in etic en erg y in
th e rest fram e w ill b e

K rest =

Z
d 3 x

1

2
½ V 2 =

1

2
½

Z
d 3 x

£
v 2 + u 2 ¡ 2v ¢u ¤

=
1

2
½

Z
d 3 x u 2 ¡ u ¢ P la b + K la b : (2 0)

W e see th at th e la st term is th e k in etic en erg y in th e
lab fram e com p u ted a b ov e, w h ich is q u ite w ell-d e¯ n ed .
T h e secon d term is am b ig u ou s an d va n ish es if w e u se
sp h erica l reg u la rization w h ile is given b y (1 8) if w e u se

lo cal en ergy con serva tio n a rgu m en ts. In th e la tter ca se,
K la b ¡ u ¢ P la b = ¡ (1 = 4)m d isp u

2 is n egative. T h e ¯ rst
term , h ow ever, w ill b e d ivergen t if w e tak e th e v olu m e of
th e ° u id to b e in ¯ n ite a n d is p ositive. T h is d ivergen ce
arises b ecau se if th e ° u id ex ten d s all th e w ay to in ¯ n ity

th en m o st of it w ill b e m ov in g w ith a v elo city ¡ u in th e
rest fram e of th e sp h ere. T h is w ill co n trib u te a n in ¯ n ite
am ou n t o f k in etic en erg y. W h ile q u ite u n d ersta n d ab le,
it sh ow s th at G a lilean in varian ce n eed s to b e u sed w ith
care in th e p resen ce o f an ex tern al m ed iu m .
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