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Snippets of Physics
9. Ambiguities in Fluid Flow
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The idealized flow of fluid around a spherical
body is a classic textbook problem in fluid me-
chanics. Interestingly enough, it leads to some
curious twists and turns and conceptual conun-
drums.

The flow induced in a fluid when a body moves through
it is of tremendous practical importance — with the air-
plane wings providing just one example. In general, no-
body understands the flow of real fluids and we have
to resort to scaled models (e.g., in wind tunnels) or to
numerical simulations to make progress. But there are
some idealized models that one can solve analytically
which corresponds, broadly speaking, to the mythical
fluid sometimes called “dry water”. These problems are
supposedly well-understood and we will see, in this in-
stallment, that even the simplest of them can lead to
surprises.

When a body moves through the hypothetical fluid, the
resulting flow satisfies the following conditions: First,
the fluid flow is incompressible with the density being a
constant. Then, the conservation of mass, expressed in
the form of a continuity equation

LV (o) =0 m
(in which p is the density and v is the fluid velocity)
reduces to the simple condition V - v = 0. Second, we
will assume that the flow is irrotational (V x v = 0)
allowing for the velocity to be expressed as a gradient of
a scalar potential v = V¢. Finally we will ignore all the
properties of real fluids like viscosity, surface tension,
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etc., and will treat the problem as one of finding the
solutions to the two equations V-v =0and V x v =0
subject to certain boundary conditions. Equivalently,
we find that the potential satisfies Laplace’s equation
V2¢ = 0. So the problem reduces to solving the Laplace
equation with v satisfying the boundary conditions —
which is the only nontrivial feature of the problem!

Let us consider a body of an arbitrary shape moving
with a velocity w though the fluid. Then we need to
solve the Laplace equation subject to the boundary con-
dition n-v = n-u at the surface, where n is the normal
to the surface. We would expect the fluid flow near the
body to be affected by its motion, but at sufficiently
large distance this effect should be negligible. Hence
the fluid velocity v will be zero at spatial infinity.

Interestingly enough the general form of the fluid veloc-
ity at large distances from the body (of arbitrary shape)
can be determined by the following argument. We know
that the function 1/r satisfies the Laplace equation. Fur-
ther, if ¢ satisfies the Laplace equation, the spatial deriv-
atives of ¢ also satisfy the same equation. Therefore,
the directional derivative of 1/r, along some direction
specified by an arbitrary vector A will also satisfy the
Laplace equation. Such a directional derivative is given
by A -V(1/r) and will fall as 1/r% at large distances.
Hence, at large distances from the body, we can take
the leading order terms in the potential to be

¢>:—%+A-V(%> L O(1/r%), 2)

You will, of course recognize all these to be electrosta-
tics in disguise and the expansion in (2) to be just the
large distance expansion of the potential due to the dis-
tribution of charges. The first term is the monopole
coulomb term and the second one is the dipole term.
(Incidentally, the dipole term is just the difference in
the potential due to two charges kept separated by a
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It is interesting that
the flow at large
distances is fixed

entirely in terms of a

single vector A. In

fluid mechanics, it is

a bit of a surprise
but in electrostatics
it is not.

distance A; clearly, the net potential will be the direc-
tional derivative along A. This is the quickest way to
get the dipole potential.) At sufficiently large distances
we ignore further terms, obtained by taking the second,
third, ... derivatives of 1/7.

The velocity field will then be the analogue of the electric
field in electrostatics. From Gauss’ law we know that the
flux of the electric field at large distances is proportional
to the ‘total charge’ ¢. Since we cannot have a non-
zero flux of velocity at large distance in our problem,
it follows that ¢ = 0 and the asymptotic form of the
potential must have the form:

¢>=A-V(3)=—A;", (3)

r r

where n is the unit vector in the radial direction. Taking
the gradient, we get the velocity field to be
1 3(A - —A
v=(A V)V (—) _dAmn-A

r r3

(These manipulations are most efficiently done using in-
dex notation and summation convention, with Jd,r =
(1/2r)04r% = /7 used repeatedly.) The actual form
of A needs to be determined using the conditions near
the body (which will be a mess for a body of arbitrary
shape) but it is interesting that the flow at large dis-
tances is fixed entirely in terms of a single vector A. In
fluid mechanics, it is a bit of a surprise but in electro-
statics it is not. If the monopole vanishes, you would
expect the dipole moment to determine the behaviour
of the electric field at large distances.

The real surprise comes when we try to calculate the

total kinetic energy associated with the fluid flow given
by

1
Kiap = Eﬂ/dgw v?, (5)
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where the integral is over all space outside the body and
the subscript ‘lab’ stands for the lab frame in which the
body is moving with a velocity w. (The fact that the
body is moving is irrelevant since it only shifts the origin
by wt which is a constant as far as the spatial integration
is concerned.) While the fluid flow at large distances can
be expressed entirely in terms of a single vector A, the
flow closer to the body can be extremely complicated.
One might have thought that, in such a general case,
one cannot say anything about the total kinetic energy
of the fluid. But it is indeed possible to express the total
kinetic energy of the fluid flow entirely in terms of the
single vector A even though the fluid flow everywhere
cannot be expressed in terms of A alone. (This result,
as well as equations (8) and (18) below, are derived in
[1] but not discussed in detail in any other book, as far
as I know.)

To obtain this result, we use the identity v = u? + (v +
u) - (v —u). If we integrate both sides of this equation
over a large volume V', the first term on the right will
give a contribution proportional to (V' — Vieay). In the
second term, we write (v+u) = V(¢+wu-r). Now using
V.-v=0,and V -u = 0, we can write the second term
as a total divergence V - [(¢ +u - 7)(v — u)]. Integrating
this over the whole space, the second term becomes a
surface integral over both the surface of the body and a
surface at large distance. That is, we have proved:

/v2dV :u2(V—V0)+in+S (p+u-r)(v—u) ndS,
(6)

where S is a surface bounding the volume V' at large
distance and Sy is the surface of the body. The surface
integral is taken over both. The miracle is now in sight.
On the surface of the body, (v—u)-n vanishes due to the
boundary conditions and hence we get no contributions
from there! This is good since we have no clue about the
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! The electrostatic analogue is
the following. You are given a
distribution of charges with
0, = 0 and dipole moment p in a
region bounded by a surface S,
You are also given a constant
vector E; and told that the nor-
mal component of the electric
field normal to S, is given by
n-E,. Then the electrostatic
energy is proportional to
(4zp-E;~V,E,?) where V is the
volume of the region bounded
by S,.

pattern of velocity flow near the body. At large distances
from the body, we can use the asymptotic form of the
velocity field given in (4) and do the integral taking the
surface to be a sphere of large radius R. Since dS =
R2dQ) increases as R? while v falls as 1/R?® and ¢ falls
as 1/R? we can approximate ¢(v —u)-n ~ —éu -n on
S. Hence the surface integral in (6) on S becomes the
sum

j€¢u'nR2dQ + jé(u-n)('v-n) RdQ)
jé(u.n)? R3dQ. (7)

The integration over angular coordinates can be done
using the easily proved relation < (A -n)(B -n) >=
(1/3)A - B where < ... > denotes the angular average
which is 1/47 times the integral over d). Using this, we
see that the integral over —(u-n)?R? gives —u?V which
precisely cancels the u?V in the first term in (6). Using
(3) and (4) we get the final answer to be:

Kb = = p (47 A - u — Vou?). (8)

N | —

Thus, if we know the motion of the fluid at very large
distances from the body, we can compute the total ki-
netic energy of the fluid flow without ever knowing the
velocity field close to the body!!

One can use this to obtain another curious result. To
do this, we note that the K., can also be expressed in a
different form of surface integral. Writing v = V¢, the
expression for kinetic energy reduces to

1 1
K=zp / 'z (Ve)* = Zp / PzV - (6Ve),  (9)
v v

where we have used V?¢ = 0. Using Gauss’ theorem,
this expression can be converted to a surface integral
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over the body and over a surface at large distance. The
second one vanishes, giving

1 1
i =50 § dsn-ojo =30 § as(n-wps
O O (10)

where we have used n - v = n - u at the surface. But
since we know what Ky, is, this allows us to obtain
an integral over the surface of the body of a particular
expression, in the form

_ %9 dS(n-u)p = (47 A - u — Vou?) (11)

even though we do not know either the shape of the
body or the velocity potential on the surface!

Let us now specialize to the simplest of all possible
shapes for the body: a sphere of radius a. In this case,
the dipole potential happens to be the exact solution
at all distances outside the sphere. This is not difficult
to understand. Given the spherical symmetry, the only
vector that can appear in the solution is the velocity of
the body w. Linearity of the Laplace equation (and the
boundary condition) tells us that the potential must be
linear in this vector w. Hence the solution must have the
form in equation (3) with A o w. Using the boundary
condition n - v = n - u at the surface, it is easy to show
that

1
A= 5af“’u (12)

which completely solves the problem. We will now play
around with this solution.

Given the fluid flow pattern everywhere, we can explic-
itly compute the total kinetic energy carried by the flow
using any of the expressions derived above. We get
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Whoever would
have guessed that
the simplest
problem in fluid
flow past a body
will actually lead to
a product of zero
and infinity!

a

Ko =30 [ a2 (—%) (A-n)(u-n)

1 1 1
= §p(47r)§(A ‘u) = Zmdispuz, (13)

where mgisp is the mass of the fluid displaced by the
sphere. So the total kinetic energy is (1/2)[mubody +
(1/2)maispu® and the fluid adds (1/2)masp to the ef-
fective mass of the sphere. Of course, our general ex-
pression, equation (8) leads to the same result when we
use (12) and everything seems fine.

Let us next consider the total momentum P carried by
the fluid which is the integral over all space of pv. In
a reasonable world, we would have expected it to be
(1/2)mgispu but we are in for a rude shock. By symme-
try, the vector P has to be in the direction of u so we
only need to compute the scalar P -w. But since v falls
as 1/r® and the volume grows as r® we are in trouble!
(This did not happen for the kinetic energy since we
were integrating v? oc 1/r% over all space.). Explicitly,
we have,

3

- p/amfyda[3<A-n><u-n>A-u1-
(14)

Py, -u = p/d?’:ci[B(A-n)(u-n)—A-u]

Obviously, our power counting argument is correct and
the r-integral diverges logarithmically at large distances!
On the other hand the angular integration over spherical
surfaces gives zero because < 3(A-n)(u-n) >=A-u
cancels the second term. Whoever would have guessed
that the simplest problem in fluid flow past a body will
actually lead to a product of zero and infinity!

If we do the integral between two spheres of radii r = a
and r = R centred on the moving sphere at any given
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instant of time, then the answer is indeed zero because
the angular average gives zero. This would have been
an acceptable result, except for two reasons. First, the
result depends on taking the outer boundary to be a
sphere. If we choose some other shape, say, a cylinder
coaxial with the direction of motion of the sphere, the
result can be different. One feels uneasy about the re-
sult being dependent on what one is doing at infinity
especially since the direction of w breaks the spherical
symmetry.

Second, one can argue that, if you push the sphere from
rest to let it acquire a velocity w, then — in the process
— you impart some momentum to the fluid. To do this
computation one needs to know the pressure which acts
on the sphere when w is a function of time [2]. Let me
briefly indicate how this can be obtained. The starting
point is the Euler equation dv/dt + (v - V)v = Vp/p.
When v = V¢(t, ), you can manipulate this equation
to show that V[p + (1/2)pv? + p(9¢/0t)] = 0, so that
the pressure can be expressed in the form

1 0]
P = Poo = 5V = P (15)
where po is the pressure at infinity. (This is just a time
dependent version of Bernoulli’s equation.) We are in-
terested in the net force in the direction of motion of the
sphere, taken to be the zaxis, which can be obtained by
integrating p cos @ over the surface of the sphere. From
(4) we see that v? will be a function of cos?f so the
contribution from the first two terms will vanish on in-
tegration over a sphere. The only surviving contribution
comes from the last term which can be easily evaluated
to give

T 1 du, 1 du,
F, = —/ 2ma® sin 6d6 {gpa cos? 0 “ } “
0

dr | 2"y
(16)

One feels uneasy
about the result bei
dependent on what

ng

one is doing at infinity
especially since the
direction of U breaks

the spherical
symmetry.
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The need for
regularizing the
problem by
introducing a very
large but finite
volume for the total
fluid becomes more
apparent when we
study the same
result in the rest
frame of the sphere.

Clearly, the total momentum imparted is

1
/det = JMdisplz, (17)

which makes sense when we remember that the kinetic
energy comes with the effective mass (1/2)mgisp. So,
this is another purely local reason to believe the total
momentum of the fluid flow is non-zero.

In fact, one can generalize this argument and obtain a
finite expression for the momentum for any body mov-
ing through a fluid [1]. Once again the result can be
expressed entirely in terms of the vector A for a body of
arbitrary shape. To obtain this result, we can use a trick
which relates the infinitesimal changes in the energy and
momentum by the relation d£ = w - dP and use the re-
sult in (8). To prove this relation, let us assume that
the body is accelerated by some external force F' causing
the momentum of fluid flow to increase by an amount
dP in a time interval d¢t. From the relation dP = Fdt
we immediately get w - dP = F - udt = dE. Given the
form of F, it is now an elementary matter to verify that
the total momentum of the fluid flow is given by

P =471 pA — pVyu. (18)

We see that this is, in general, non-zero. In the case
of the sphere it does give (1/2)mgispu; this is what we
would have naively expected. Of course, the argument
is designed to give this.

The need for regularizing the problem by introducing a
very large but finite volume for the total fluid becomes
more apparent when we study the same result in the rest
frame of the sphere. In this frame, we have a sphere
of radius a located around the origin and the fluid is
flowing past it. The boundary condition at infinity is
now different and we expect the fluid velocity to reach
a constant value —wu at large distances. This is easily
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achieved by adding a constant electric field to a dipole in
the electrostatic case. This leads to a velocity potential
of the form

An

p=—-r-uto=-r-u——7

(19)
,

We denote the velocity potential in the rest frame by ¢
to distinguish it from the velocity potential in the lab
frame ¢. Let us now ask what is the kinetic energy of
the fluid in this frame in which the body is at rest. The
fluid velocity now is V. = v — w. The kinetic energy in
the rest frame will be

1 1
Kiest = /d3$510 V2:§,0/d3:c [02+u2—2v~u}
1

= §p/d3:cu2—u~Plab—|—K1ab. (20)
We see that the last term is the kinetic energy in the
lab frame computed above, which is quite well-defined.
The second term is ambiguous and vanishes if we use
spherical regularization while is given by (18) if we use
local energy conservation arguments. In the latter case,
Kiap — u - Py = —(1/4)mdispu2 is negative. The first
term, however, will be divergent if we take the volume of
the fluid to be infinite and is positive. This divergence
arises because if the fluid extends all the way to infinity
then most of it will be moving with a velocity —w in the
rest frame of the sphere. This will contribute an infinite
amount of kinetic energy. While quite understandable,
it shows that Galilean invariance needs to be used with
care in the presence of an external medium.
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