SERIES | ARTICLE

Snippets of Physics

8. Foucault Meets Thomas

T Padmanabhan works at
IUCAA, Pune and is
interested in all areas
of theoretical physics,
especially those which
have something to do with
gravity.

' Thomas Precession, Reso-
nance, Vol.13, No.7, pp.610—
618, July 2008.

Keywords
Spin, Thomas precession,
Earth's rotation.

T Padmanabhan

The Foucault pendulum is an elegant device that
demonstrates the rotation of the Earth. After
describing it, we will elaborate on an interesting
geometrical relationship between the dynamics
of the Foucault pendulum and Thomas preces-
sion discussed in the last installment!. This will
help us to understand both phenomena better.

The first titular president of the French republic, Louis-
Napoleon Bonaparte, permitted Foucault to use the Pan-
theon in Paris to give a demonstration of his pendulum
(with a 67 meter wire and a 28 kg pendulum bob) on 31
March 1851. In this impressive experiment, one could
see the plane of oscillation of the pendulum rotating in
a clockwise direction (when viewed from the top) with
a frequency w = Qcosf, where ) is the angular fre-
quency of Earth’s rotation and 6 is the co-latitude of
Paris. (That is, 6 is the standard polar angle in spher-
ical polar coordinates with the zaxis being the axis of
rotation of Earth. So 7/2 — 6 is the geographical lati-
tude). Foucault claimed, quite correctly, that this effect
arises due to the rotation of the Earth and thus showed
that one can demonstrate the rotation of the Earth by an
in situ experiment without looking at celestial objects.

This result is quite easy to understand if the experiment
was performed at the poles or equator (instead of Paris!).
The situation at the North Pole is as shown in Figure 1.
Here we see the Earth as rotating (from west to east, in
the counter-clockwise direction when viewed from the
top) underneath the pendulum, making one full turn
in 24 hours. It seems reasonable to deduce from this
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that, as viewed from Earth, the plane of oscillation of
the pendulum will make one full rotation in 24 hours;
so the angular frequency w of the rotation of the plane
of the Foucault pendulum is just w = €. (Through-
out the discussion we are concerned with the rotation
of the plane of oscillation of the pendulum; not the pe-
riod of the pendulum 27 /v, which — of course — is given
by the standard formula involving the length of the sus-
pension wire, etc.). At the equator, on the other hand,
the plane of oscillation does not rotate. So the formula,
w = Qcos b, captures both the results correctly.

It is trivial to write down the equations of motion for the
pendulum bob in the rotating frame of the Earth and
solve them to obtain this result [1, 2] at the linear order
in €. Essentially, the Foucault pendulum effect arises
due to the Coriolis force in the rotating frame of the
Earth which leads to an acceleration 2v x €, where v,
the velocity of the pendulum bob, is directed tangential
to the Earth’s surface to a good approximation. If we
choose a local coordinate system with the Z-axis point-
ing normal to the surface of the Earth and the X,Y
coordinates in the tangent plane at the location, then
it is easy to show that the equations of motion for the

Figure 1.

Jean Bernard Léon
Foucault (1819 —1868)
was a French
physicist, famous for
the demonstration of
Earth's rotation with
his pendulum.
Although Earth's
rotation was not
unknown then, but this
easy-to-see
experiment caught
everyone's

imagination.
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pendulum bob are well approximated by

Hiru
Ll

ALIGUE FILACALE
FELTE SRS ——

X +02X =2Q.Y; Y+ =—-20.X, (1)

where v is the period of oscillation of the pendulum and
Q, = Qcosf is the normal component of the Earth’s
angular velocity. In arriving at these equations we have
ignored the terms quadratic in 2 and the vertical dis-
placement of the pendulum. The solution to this equa-
tion is obtained easily by introducing the variable ¢(t) =
X (t) + Y (t). This satisfies the equation

G+ 2iQ0.q+ v2g = 0. (2)

The solution, to the order of accuracy we are working
with, is given by

g = X(t) + iV (t) = (Xo(t) + Yo (t)) exp(—i€2:t),  (3)

where Xg(t), Yo(t) is the trajectory of the pendulum in
the absence of Earth’s rotation. It is clear that the net
effect of rotation is to cause a shift in the plane of rota-
tion at the rate €2, = Q2 cos . Based on this knowledge
and the results for the pole and the equator one can give
a ‘plain English’ derivation of the result for intermediate
latitudes by saying something like: “Obviously, it is the
component of  normal to the Earth at the location of
the pendulum which matters and hence w = €2 cos.”

The first-principle approach, based on (1), of course has
the advantage of being rigorous and algorithmic; for ex-
ample, if you want to take into account the effects of
ellipticity of Earth, you can do that if you work with
the equations of motion. But it does not give you an in-
tuitive understanding of what is going on, and much less
a unified view of all related problems having the same
structure. We shall now describe an approach to this
problem which has the advantage of providing a clear
geometrical picture and connecting it up — somewhat
quite surprisingly — with Thomas precession discussed
in the last installment.
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One point which causes some confusion as regards the
Foucault pendulum is the following. While analyzing
the behavior of the pendulum at the pole, one assumes
that the plane of rotation remains fixed while the Earth
rotates underneath it. If we make the same claim for a
pendulum experiment done at an intermediate latitude,
— i.e., if we say that the plane of oscillation remains
invariant with respect to, say, the “fixed stars” and the
Earth rotates underneath it — it seems natural that the
period of rotation of the pendulum plane should always
be 24 hours irrespective of the location! This, of course,
is not true and it is also intuitively obvious that nothing
happens to the plane of rotation at the equator. In this
way of approaching the problem, it is not very clear how
exactly the Earth’s rotation influences the motion of the
pendulum.

To provide a geometrical approach to this problem, we
will rephrase it as follows [3, 4]. The plane of oscilla-
tion of the pendulum can be characterized by a vector
normal to it or equivalently by a vector which is lying
in the plane and tangential to the Earth’s surface. Let
us now introduce a cone which is coaxial with the axis
of rotation of the Earth and with its surface tangential
to the Earth at the latitude of the pendulum (see Fig-
ure 2). The base radius of such a cone will be Rsinf,
where R is the radius of the Earth and the slant height
of the cone will be Rtan#. Such a cone can be built
out of a sector of a circle (as shown in Figure 3) having
the circumference 27 R sin # and radius R tan # by iden-
tifying the lines OA and OB. The ‘deficit angles’ of the
cone, a and [ = 27 — «, satisfy the relations:

(2r — a)Rtanf = 27 Rsin 6 (4)
which gives

a =27(1 — cosh); B =2mcosé. (5)

The behavior of the plane of the Foucault pendulum

- [l‘
Figure 2.
Figure 3.
e
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The plane of
oscillation of the

pendulum will rotate

with respect to a
coordinate system
fixed on the Earth,

but it will always

coincide with the lines

drawn on the cone
which remain fixed
relative to the fixed
stars. (Figures 2,3)

can be understood very easily in terms of this cone. Ini-
tially, the Foucault pendulum is started out oscillating
in some arbitrary direction at the point A, say. The di-
rection of oscillation can be indicated by some straight
line drawn along the surface of the cone (like AC in Fig-
ure 3). While the plane of oscillation of the pendulum
will rotate with respect to a coordinate system fixed on
the Earth, it will always coincide with the lines drawn on
the cone which remain fixed relative to the fixed stars.
When the Earth makes one rotation, we move from A
to B in the flattened out cone in Figure 3. Physically, of
course, we identify the two points A and B with the same
location on the surface of the Earth. But when a vector
is moved around a curve along the lines described above,
on the curved surface of Earth, its orientation does not
return to the original value. It is obvious from Figure 3
that the orientation of the plane of rotation (indicated
by a vector in the plane of rotation and tangential to
the Earth’s surface at B) will be different from the cor-
responding vector at A. (This process is called parallel
transport and the fact that a vector changes on parallel
transport around an arbitrary closed curve on a curved
surface is a well-known result in differential geometry
and general relativity.)

Clearly, the orientation of the vector changes by an angle
[ = 27 cos § during one rotation of Earth with period T'.
Since the rate of change is uniform throughout because
of the steady state nature of the problem, the angular
velocity of the rotation of the pendulum plane is given

by

6 2m
W= o= o cos 6 cos (6)

This is precisely the result we were after. The key geo-
metrical idea was to relate the rotation of the plane of
the Foucault pendulum to the parallel transport of a
vector characterizing the plane, around a closed curve
on the surface of Earth. When this closed curve is not
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a geodesic — and we know that a curve of constant lat-
itude is not a geodesic — the orientation of this vector
changes when it completes one loop. There are more
sophisticated ways of calculating how much the orien-
tation changes for a given curve on a curved surface.
But in the case of a sphere, the trick of an enveloping
cone provides a simple procedure. (When the pendulum
is located in the equator, the closed curve is the equa-
tor itself; this, being a great circle is a geodesic on the
sphere and the vector does not get ‘disoriented’ on going
around it. So the plane of the pendulum does not rotate
in this case.)

This is good, but as I said, things get better. One can
show that an almost identical approach allows one to
determine the Thomas precession of the spin of a particle
(say, an electron) moving in a circular orbit around a
nucleus [5].

We saw in the last installment [6] that the rate of Thomas
precession is given, in general, by an expression of the
form

wdt = (coshxy — 1) (dn x n), (7)

where tanh y = v/c and v is the velocity of the particle.
In the case of a particle moving on a circular trajectory,
the magnitude of the velocity remains constant and we
can integrate this expression to obtain the net angle of
precession during one orbit. For a circular orbit, dn is
always perpendicular to n so that n x dn is essentially
df which integrates to give a factor 27w. Hence the net
angle of Thomas precession during one orbit is given by

® = 27 (cosh y — 1). (8)

The similarity between the net angle of turn of the Fou-
cault pendulum and the net Thomas precession angle is
now obvious when we compare (8) with (5). We know
that in the case of Lorentz transformations, one replaces

This derivation also
allows one to
understand the
Thomas
precession of the
spin of a particle.
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It will turn out that
the sphere and the
cone we
introduced in the
real space, to
study the Foucault
pendulum, have to
be introduced in
the velocity space
to analyze Thomas
precession.

real angles by imaginary angles which accounts for the
difference between the cos and cosh factors. What we
need to do is to make this analogy mathematically pre-
cise which will be our next task. It will turn out that
the sphere and the cone we introduced in the real space,
to study the Foucault pendulum, have to be introduced
in the velocity space to analyze Thomas precession.

As a warm-up to exploring the relativistic velocity space,
let us start by asking the following question: Consider
two frames S; and Ss which move with velocities v, and
vy with respect to a third inertial frame Sy. What is
the magnitude of the relative velocity between the two
frames? This is most easily done using Lorentz invari-
ance and four-vectors (and to simplify notation we will
use units with ¢ = 1). We can associate with the 3-
velocities v; and wvs, the corresponding four-velocities,
given by ut = (y1,71v1) and ul = (72, 72v2) with all the
components being measured in Sy. On the other hand,
with respect to Sy, this four-vector will have the com-
ponents u! = (1,0) and u} = (y,yv), where v (by def-
inition) is the relative velocity between the frames. To
determine the magnitude of this quantity, we note that
in this frame S; we can write v = —uyub. But since
this expression is Lorentz invariant, we can evaluate it
in any inertial frame. In Sy, with u! = (y1,71v1), u} =
(72, 72v2) this has the value

v=1-v)"" = q172 — 117201 - va. (9)
Simplifying this expression we get

oo (mviw) — (1= )1 =)

(1 — V1 ”Ug)

(v - v7)% — (v X vy)?
— 1o, vg? . (10)

Let us next consider a 3-dimensional abstract space in
which each point represents a velocity of a Lorentz frame
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measured with respect to some fiducial frame. We are
interested in defining the notion of ‘distance’ between
two points in this velocity space. Consider two nearby
points which correspond to velocities v and v + dv that
differ by an infinitesimal quantity. By analogy with the
usual 3-dimensional flat space, one would have assumed
that the ‘distance’ between these two points is just

|dv|? = dv? + dv? + do? = dv? + v*(d6? + sin? §de?),
(11)

where v = |v| and (6, ¢) denote the direction of v. In
non-relativistic physics, this distance also corresponds to
the magnitude of the relative velocity between the two
frames. However, we have just seen that the relative
velocity between two frames in relativistic mechanics is
different and given by (10). It is more natural to define
the distance between the two points in the velocity space
to be the relative velocity between the respective frames.
In that case, the infinitesimal ‘distance’ between the two
points in the velocity space will be given by (10) with
vy =v and vo = v +dv. So

(dv)? — (v x d’u)z'

di? =
v (1 —v2)2

(12)

Using the relations

(v x dv)? = v*(dv)? — (v-dv)?*; (v -dv)? = v*(dv)?
(13)

and using (11) where 0, ¢ are the polar and azimuthal
angles of the direction of v, we get

dv? v?

di =
! (1—1)2)2+ 1—1)2(

d6* +sin®0de?).  (14)

If we use the rapidity y in place of v through the equa-
tion v = tanh y, the line element in (14) becomes:

di2 = dy? + sinh® y(d6? + sin? 6 d¢?). (15)
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This is an example of a curved space within the con-
text of special relativity. This particular space is called
(three-dimensional) Lobachevsky space.

If we now change from real angles to the imaginary ones,
by writing y = in, the line element becomes

—di? = dn? + sin® n(d6? + sin? 6 d¢?), (16)

which (except for an overall sign which is irrelevant)
represents the distances on a 3-sphere having the three
angles 7,0 and ¢ as its coordinates.

Of these three angles, § and ¢ denote the direction of
velocity in the real space as well. When a particle moves
in the  — y plane in the real space, its velocity vector
lies in the § = 7/2 plane and the relevant part of the
metric reduces to

dL? = dn? + sin® ndep? (17)

which is just a metric on the 2-sphere. Further, if the
particle is moving on a circular orbit with constant mag-
nitude for the velocity, then it follows a curve of n =
constant on this 2-sphere. The analogy with the Fou-
cault pendulum, which moves on a constant latitude
curve, is now complete. If the particle carries a spin,
the orbit will transport the spin vector along this cir-
cular orbit. As we have seen earlier, the orientation of
the vector will not coincide with the original one when
the orbit is completed and we expect a difference of
27(1 —cosn) = 2w (1 — cosh x). So the magnitude of the
Thomas precession, over one period is given precisely by
(8). I will let you work out the details exactly in analogy
with the Foucault pendulum and convince yourself that
they have the same geometrical interpretation.

When one moves along a curve in the velocity space,
one is sampling different (instantaneously) co-moving
Lorentz frames obtained by Lorentz boosts along differ-
ent directions. As we described in the last installment,
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Lorentz boosts along different directions do not, in gen-
eral, commute. This leads to the result that if we move
along a closed curve in the velocity space (treated as
representing different Lorentz boosts) the orientation of
the spatial axes would have changed when we complete
the loop.

It turns out that the ideas described above are actually
of far more general validity. Whenever a vector is trans-
ported around a closed curve on the surface of a sphere,
the net change in its orientation can be related to the
solid angle subtended by the area enclosed by the curve.
In the case of the Foucault pendulum, the relevant vec-
tor describes the orientation of the plane of the pendu-
lum and the transport is around a circle on the surface
of the Earth. In the case of Thomas precession, the rel-
evant vector is the spin of the particle and the transport
occurs in the velocity space. Ultimately, both the effects
— the Foucault pendulum and Thomas precession — arise
because the space in which one is parallel transporting
the vector (surface of Earth, relativistic velocity space)
is curved.
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