Pramana - J. Phys., Vol. 37, No. 3, September 1991, pp. 179-233. © Printed in India.

Quantum theory in external electromagnetic and gravitational fields:
A comparison of some conceptual issues

T PADMANABHAN

Theoretical Astrophysics Group, Tata Institute of Fundamental Research, Homi Bhabha
Road, Bombay 400005, India ‘

MS received 3 July 1991

Abstract. The quantum theories of a scalar field interacting with external electromagnetic
and gravitational fields respectively are compared. It is shown that several peculiar features,
like the ambiguity of particle definition, thermal effects etc., which are thought to be special
to quantum theory in curved spacetime, have analogues in the case of electromagnetism.

Keywords. Quantum theory; quantum gravity; Rindler frame; Hawking radiation; pair
creation; expanding universe; back reaction.

PACS Nos 03-70; 04-60; 11-90

Table of contents

1. Introduction
2. Path integral
2.1 Path integral techniques v
2.2 Kernels and ground-state expectation values
3. The effective action
3.1 The concept of effective action
3.2 The method of proper time
4. Quantum theory in external electromagnetic field
4.1 Effective action from ground state energy
4.2 Effective lagrangian from path integral
4.3 Renormalization of effective action
4.4 Quantisation in a time-dependent gauge: Bogoliubov coeflicients
4.5 Quantisation in a space-dependent gauge: Tunnelling
4.6 Comparison of the two gauges
4.7 Quantum theory in a singular gauge
5. Quantum theory in external gravitational field
5.1 Pair creation in electrical field and expanding universe
5.2 Quantum theory in a Milne universe
5.3 Spacetime manifold in singular gauges
6. Conclusions

179




180 T Padmanabhan
1. Introduction

In the study of two systems S; and S, which are interacting with each other, we can
distinguish three limiting situations: The first one treats both the systems as classical
and the classical equations of motion are used to describe them. In the second case
both the systems are treated as quantum mechanical and the rules of quantum theory
are used to describe them. For a class of systems, we may also have a third limit, viz. the
one in which one of the systems say, S,, is classical and S, is quantum mechanical.
This limit is conceptually of a different kind compared to the other two, in the sense
that we now have to couple a quantum system to a classical one. Since the language
of quantum theory is very different from that of classical physics, this task is
non-trivial.

There are, however, situations in which the third level of approximation is of
importance. One such situation is when S, describes the gravitational field and S,,
some other matter field. The exact, quantum, description of such a system is not
known. It is reasonable to hope that the study of the limit, in which a quantized field
interacts with classical gravity, will provide us with some insight regarding the exact
quantum theory. Because of this hope, considerable amount of work was done in
investigating the behaviour of quantum field theory in curved spacetime (Birrel and
Davies 1982). Though no useful insight regarding the nature of quantum gravity was
gained, these investigations have uncovered several conceptual issues and surprises.
Most of these aspects were believed to be rather special features, “somehow” related
to the nature of gravity. :

The purpose of this review is to look closely at some of these effects (which arise
when classical gravity interacts with a quantum field) and compare them with
corresponding situations in the case of a classical electromagnetic field interacting
with a quantum field. We will see that there are several similarities between the two
and that the results involving gravity are by no means special or mysterious.

Such a comparison also helps us in a different way. Since the exact theory of
quantum electrodynamics is (believed to be) known, we should be able to resolve
satisfactorily any conceptual issue which arises in the case of a classical electromagnetic
field interacting with another quantum field. By using the analogy between the two
fields (which we have previously established), we will be able to clarify the various
conceptual difficulties encountered in the case of gravity. We shall also address this
question in this review. ‘

The review is structured as follows: Parts 2 and 3 summarize several pieces of
background information (regarding path integrals and effective action) which are
needed to study a classical system interacting with a quantum system. The discussion
is limited to setting up the notation and highlighting the key results. The core of the
review is contained in parts 4 and 5. Part 4 discusses the quantum theory of a charged
scalar field in an external electromagnetic field; part 5 studies the corresponding
situation of a quantized scalar field interacting with classical gravity. In both parts,
we have chosen specific kinds of external fields in order to emphasize the analogy.
We also provide a detailed discussion—in part 4— of pair creation in an electric field
and renormalization of Euler—Heisenberg effective lagrangian. Part 6 summarizes the
conclusions. ‘

As should be clear from the above description, the review focusses on certain specific

aspects of quantum theory in external fields. Several other interesting and related
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Quantum theory in external electromagnetic and gravitational fields 181

issues, like nature and validity of semiclassical approximation (Singh and Padmanabhan
1989; Padmanabhan 1989; Banks 1985; Hartle 1986), the issue of back reaction (Duff
1981; Ford 1982; Padmanabhan 1989), vacuum instability in different kinds of external
fields (Ginzburg 1987), quantization of fermionic fields (Greiner et al 1985) etc are
not discussed. The interested reader can find more on these topics in the references

* provided.

2. Path integral

In this part, we shall quickly summarize the key results from path integrals which
are needed later; more detailed discussion of these topics are available in Feynman
and Hibbs (1965), Shulman (1981) and Rivers (1987).

2.1 Path integral techniques

In classical mechanics, the laws governing the motion of a particle in a potential V(x)
can be obtained from the principle of least action. This principle states that the
trajectory followed by a particle in travelling from (¢,,x, ) to (¢,,x,) is the one which
makes the action

2

t2
Alx(t)] = j dtL(x,x) = f dt(3mx? - V(x)) (2.1)
ty 1 . .
an extremum. This prescription leads to the equation:
2
m%t—z’f + V' ()=0 22)

which determines the extremum path. The solution to this differential equation
connecting the events 21 and 22 gives the classical trajectory of the particle. We
will denote this classical path by x.(t) and the corresponding value for the action,
A(x,) by A,. \

The classical description of dynamics depends crucially on the existence of well
defined trajectories for motion. To characterize a path at any instant of time, it is
necessary to specify both the position and velocity of the particle at that instant of
time. Since uncertainty principle forbids such a simultaneous specification of position
and momentum the above description needs to be modified in quantum mechanics.

A suitable modification can be arrived at by considering the results of standard
two-slit interference experiment with, say, electrons. These experiments suggest that
the electrons do not follow a definite trajectory in travelling from the electron gun
to the screen. Instead, we must associate with each path connecting the electron gun
and any particular point on the screen, a probability amplitude /(path). The net
probability amplitude K(2; 1) for the particle to go from the event 21 to the event
22, is obtained by adding up the amplitudes for all the paths connecting the events:

K2 1)=K (5, %551, %,) = Y. o(path). | 2.3)

paths
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The addition of the amplitudes allows for the quantum mechanical interference between
the paths. The probability for any process, of course, is obtained by taking the square
of the modulus of the amplitude.

The quantity K(t;,,;t,,%;) contains the full dynamical information about
the quantum mechanical system. Given K(t;,%;;t;,%;) and the initial amplitude
W(t,,x,) for the particle to be found at x,, we can compute the wave function ¥ (¢, x)
at any later time by the usual rules for combining the amplitudes:

l//(t,X)-'—“- delK(t9x;tlsxl)d’(tbxl)' ) ) (24)

Therefore the specification of (i) & and (i) the rule for evaluating the sum, in (2.3),
will provide a complete quantum mechanical description of the system.

Since K(t,,%;t1,X;) contains the complete dynamical information of a quantum
mechanical system, it is obvious that we will not be able to derive the rules for its
computation from fundamental considerations. We have to prescribe a choice for &/
and the rule.for computing the sum in (2.3). The usual choice for the amplitude &/ is

o = exp{iég%(—t—)l}. _ (2.5)
Then the Kernel becomes
: Alx(t
Kityxsityx)= 3, ewpiaad, 26

all x(t)

In the limit of # going to zero, the phase of .« oscillates rapidly and the contributions
from different paths are mostly cancelled out; the only ones that survive are those for
which A is an extremum, viz. the classical paths. This choice in (2.6) thus provides a
natural explanation for the validity of principle of least action in the classical theory.

‘The definition for “sum overpaths” is somewhat more complicated and depends
on the form of A[x(t)]. For a wide class of lagrangians, this sum can be defined by
a time-slicing method (see Feynman and Hibbs 1965; Shulman 1981; Rivers 1987). We
shall, however, be concerned with a more restricted class of lagrangians which contain
x and % only up to quadratic order. For these systems, the sum can be specified in
a more useful manner, as a determinant of an operator. These are the systems described
by an action of the form

Alx(t)]= f (B(t)X* + C(t)x* + M (t)x)dt. (2.7
A more general form for a quadratic action
A[x(t)] = J‘[a(t)fc2 + ()% +c(t) + x% +d()x* +e()x + f()1dr (2.8)

can be reduced to the form in (2.7) by suitable partial integrations. It can be easily
shown that the kernel in this case will be of the form

i
K(ty,x55t1,%1) =N(tutz)exP['ﬁAc(tz,x2§t1:x1)] (29)
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where N (t,,t,) stands for the path integral

-
N(ty,ty)= Y, expif dt[B¢* + Cq?]
paths h t
. py
=Y exp—~ j dtgDg (2.10)
paths h t1
with
~ d_d
={ —B— _ 2.11
b (dtht C) , @11)

and the sum is over paths with the boundary condition q(t,)= q(t;)=0. We can
now define the sum in such a way that

" N(ty,t,)=(det D)~1/2, | (2.12)

We shall use the notation @q to indicate the sum over paths, when it is defined by
the above prescription. Then |

N = j@q exp[—— % fqﬁth:] = (det D)~ #, (2.13)

We will adopt this notation when no confusion will arise.
The above prescription implicitly assumes that the operator D is treated as the limit
of the expression:

D = lim (D — i¢). (2.14)
£ 0

This procedure, called the ‘Ie-prescription’ is just one of the many ways of making
sense out of an ill-defined integral. It is possible to devise other modifications of the
operator D — and corresponding limiting procedures — to give meaning to the integral.
One such important alternative procedure, which is extensively used, is based on the
method of analytically continuing the expressions into complex-t plane. Let us
introduce a variable t =it (so that t = — ir) in the action. Under this substitution,
the quantity ‘

exp-;;zQ = exp;i— Jtz dt(B(t)¢* + C(t)¢?) . (2.15)
becomes ! ‘
. 1 (= 2
exp(%Q) = exp(— %—) =exp—— f dt(Bﬂr)(%) - CE(t)q%)
‘ 2.16)

where Bg(t) = B(t = — it) etc. We will assume that the original action is such that.(i)
Bg(r) and Cg(r) are real (i) By(r)>0 and (iii) Cg(r) <0. Then the argument of the
exponent in (2.16) is negative definite for all real paths qg(7). [This set of paths, of
course, is different from the set of paths obtained by substituting t = — iz in the original
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set of paths; in general, if g(z) is a real function, gg(7) =q(t=— it) will not be real.
In fact, one cannot even assume that a general path g{t) can be analytically continued].

Let us now consider the sum
1 (™= dg \? 5
Ng(15,71) = z exp — 4 dz| Bg ) C:q 2.17)
all real (z) N T

(det Dg)~ 1% if we use the previous prescription. [The
be readjusted so that no extra i factors appear].
as the analytic continuation of

which will be equal to
normalization in the prescription can
We can now define the original expression N(ty,t;)
the quantity Ng(t2,71):

N(ty,t,)=Ngty =117 = ity).

This procedure may be summarized as follows: (i) From the original expression
Q[4q(t)] obtain Qg (t)] by analytically continuing from ¢ to 7. (ii) Check that Bg, Cg
are real and By >0and Cg <0. (iii) Evaluate the sum over paths Q, by summing over
all real g(z). (iv) Analytically continue back to ¢ this is defined to be the value of the
original sum over paths. It should be emphasized that this method works only for
those actions for which the condition (ii) above is satisfied. The quantity 7 is called
the ‘Buclidean time’ and other variables like Ag, Gy, etc. are called ‘Euclidean action’,
‘Buclidean Green function’ etc. The two definitions for N (t,,t,) given above will agree
for a wide class of lagrangians, but not for all lagrangians.

(2.18)

22 Kernels and ground-state expectation values

We shall next discuss some relations between the Kernel and other quantities of
interest. These relations, of course, are independent of the procedures used to calculate
the Kernel; however, they are often used in combination with the path integral
expression for the Kernel.

In the conventional approach to quantum mechanics, using the Heisenberg picture,
the description of the system is in terms of the position and momentum operator X
and p. Let |x,t)> be the eigenstate of the operator £(t) with eigenvalue x. The
Kernel—which represents the probability amplitude for a particle to propagate from
(t1,%1) to (£5,%,)—can be expressed, in a more conventional notation, as the matrix

oo

(2.19)

where H is the (time independent) Hamiltonian for the system. This relation allows
one to represent the Kernel in terms of energy eigenstates of the system, provided
thé hamiltonian is independent of time. We have '

0,x1>

exp(—— %HT)
i
exp(— -ﬁHT>

= Z¢n(x2)WI(x1)eXP<— —;;E T) (2.20)

n

glement:

i~
exp{ — };H(tz —ty)

K(t2’x2;t1:x1)= <x2,t2|t13x1> = <X2,0

K(’I’,xZ;O,xl)=<~x2,0
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where Y, (x) = <x|E, ) is the n-th energy eigenfunction of the system under consideration.
In physical applications, we often require the limiting form of

W(T;xz,x1)EK(x2t2§x1t1) .
= K(x, T;x,0). ‘ (2.21)

for large T. This cannot be directly ascertained from (2.20) because the exponent
‘oscillates. However, we can give meaning’ to this limit if we first transform (2.20) to
the imaginary time 7, =it, and 7, = it, and consider form of Wy to large values of
(t; — ;). We find that, in this limit,

E,
Wp(Tixy,x,) = '/fo(Xz)%(xl)eXp[— 5 (2~ f1)] (2.22)

where the zero-subscript denotes the lowest energy state. (Note that ¥ = y,). From
(2.22) we see that only the ground state contributes in this infinite time limit. We may
now define the corresponding limit in (2.21) as the analytic continuation of (2.22),
getting

W(T;xz»xﬂz‘/’o(xz)‘l’o(xﬂeXP(“ig;l—:I:)- (2.23)

This expression allows one to determine the ground state energy of the system from
the Kernel in a simple manner. We see that

Wg(T;0,0) ~ (constant) exp ( — E%T—> (2.24)
giving
Ey= lim < - 7;1—,111 We(T;0, O)). (2.25)
T—= o0 .

The Kernel can also be used to study the effect of external perturbations on the
system. Let us suppose that the system was in the ground state in the asymptotic
past (f; & — o0). At some time t = — T we switch on an external time dependent
disturbance A(t) affecting the system. Finally at t = + T we switch off the perturbation.
Because of the time-dependence, we no longer have stationary energy eigenstates for
the system. In fact, the system is likely to have absorbed energy from the perturbation
and would have ended up at some excited state at t, = + oo; the probability for it to
be found in the ground state as t,= + o0 will be, in general, less than one. This
probability can be computed from the Kernel. Consider the amplitude

P=1m lm KXyt x;40)= lim lim <6yt x,),

2> @iy~ — 20t~ —w

. + o0 .
= lim lim [f dxdx’(tz,le’.l’,-x)<T,xl—fI}x’)z<—T,x’|t1x1>]. (2.26)

t2*0t]—+— o -0

Since =0 during t,>t>Tand — T>t> t;, matrix elements in these intervals can
be expressed in terms of the energy eigenstates of the original system for large t,, —t,:

s %, | Ty x ) '/’o(xz)‘/’o(x)eXP[" i%(tz - T):l
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. .
(=T33 = wo(x')wo(xl)exp[— =2~ T~ m} @27)
Therefore (setting # =1 for simplicity),- for large (£, —¢,):
+ o0
P = [Yolx)Wolx,)exp[—iEo(t; — tl)]j dxdx'(Yo(x)exp(+iE, T))

% { T,x|%, = T (o (x)exp (B, T))
zK(rz,xz;rlxl;hmj " dxdx [olx, T)I*

x {T,x|x, = T3 [¥o(x's = T)] (2.28)

where /o (x, T) represents the ground state wave function at time T etc. The quantity

W= J " dedx [ole TVI* G5, I, = T [o(xs = T)] 229)

-0

represents the amplitude for the system to remain in the ground state in the asymptotic
future if it started out in the ground state in the asymptotic past [usually called the
“yacuum to vacuum” amplitude]. From (2.28) we find that this amplitude is given

by the limit:

(to, X ty,%q; AL
Wj: llm hm K( 2=x2’t1 xl ())

. 2.30
@t = = K{t3,%55t1,%;0) ( )

This result can be further simplified by noticing that the x, and x, dependences cancel
out in the ratio in (2.30) so that we can set x, =x; =0, (or to any other constant
value) getting

. - At
W: hm 111’1’1 K(tz,O,tl,O,)c( ))

. 2.31
ti—oo = — K(t2>0;t1:090) ( )

Thus the vacuum-vacuum amplitude can be found from the Kernel by a simple
limiting procedure.

This quantity #" has a simple form when the external perturbation A(f) varies
“adiabatically”. That is, the perturbation A(f) varies slowly compared to the intrinsic
time scales of the system. Then the ground state evolves in time adiabatically, as

t

bl 1) = ol 0, exp — J Eo(3(9)ds (232

where V/, is the ground state and E,(4) is the ground state energy of the hamiltonian
calculated by treating A as some given, time-independent parameter. In this case, it
is easy to see that

W =exp "?i{ J +mEo(i(t))dt. (2.33)

We will use this result later.

L
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3. The effective action

3.1 The concept of effective action

Consider a theory which describes the interaction between two systems having the
dynamical variables Q and g. [This notation is purely formal; the symbol Q, for
example, could describe a set of variables, like the components of a vector field. The
detailed nature of these variables is not of importance at this stage.] The full quantum
theory can be constructed from the exact Kernel

K(Q2.02: Q.13 tast1) = f 20 J 2qexp ATQ,q) BERY

which is often impossible to evaluate. It would be, therefore, useful to have some
approximate ways of studying the system.

The ‘effective action’ method is one of the many approximation schemes available
for handling (3.1). This method is of value when one of the variables, say, Q, behaves
nearly classically while the other variable is fully quantum mechanical. In that case,
the problem can be attacked in the following manner:

Let us suppose that the path integral over g in (3.1) can be performed exactly, for
an arbitrary Q(z). That is, we can evaluate the quantity

FLOWgs 455tz 1] =exp = | ey 62

treating Q(z) as any specified function of time. If we could now do

K=f.@Qexp<%_W[QJ) ’ (3.3)

exactly, we would have completely solved the problem. Since this is not possible, we
will evaluate (3.3) by invoking the fact that Q is almost classical. This means that
most of the contribution to (3.3) comes from nearly classical paths satisfying the
condition B

oW

50 " 0. (3.4)
It is usually easy to evaluate (3.3) in this approximation and thereby obtain an
approximate solution to our problem. In fact, quite often, we will be content with
obtaining the solutions to (3.4), and will not even bother to calculate (3.3) in this
approximation. Equation (3.4), of course, will contain some of the effects of the
quantum fluctuations of g on @, and is often called the ‘semiclassical equation’. The
quantity W is called the ‘effective action’ for the Q-system. In general, the functional
WLQ(t)] cannot be expressed as an integral over time of a local density. Whenever
it is possible, we can define an ‘effective lagrangian’ through the relation

W= f Lygdt. (3.5)

The way we have defined our expressions, the quantities K and W depend on the
boundary conditions (¢,,q,,t,,q,). It is preferable to have an effective action which
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is completely independent of the g-degree of freedom. The most natural way of
achieving this is to integrate out the effect of g for all times by considering the limit
t,— + 00, t; — — 00 in our definition of the effective action. We will also assume, as
is usual, that Q(t) becomes constant asymptotically. From our discussion in part 2
we know that, in this limit, the Kernel essentially represents the amplitude for the
g-system to make a transiticn from the ground state in infinite past to the ground
state in the infinite future. Hence

F(g,4s3 + 00, — 00) = exp z WIQ(0] = N(a2,41)< Eo, + | = 0, Eo g
(3.6)

where (E,, + 0| — 0, Eq Yo stands for the ‘vacuum to vacuum’ amplitude for
the g-system in the presence of the external source Q(t) and N(g, q,) is a normalization
factor, independent of Q(¢). Taking logarithms we get

W[Q(t)] = — ihIn{ Eg, + 00| Eq, — 00,0 o + (constant). ‘ (3.7

Since the constant term is independent of Q it will not contribute in (3.4). Therefore,
for the purposes of our calculation we may take the effective action to be defined by

the vrelation
WIQ(t)]=ihIn{ Ey, + 0| Eg, — 90,7 g (3.8)

in which all reference to the quantum mode q is eliminated. Notice that the way we
have defined our F, the effective action W contains the kinetic energy of Q and any
potential energy of Q [which depends only on Q]. That is, if the original lagrangian
has the form L=(1 /2)Q2 — V(Q) + (1/2)4* — u(Q, q), the effective action will have the
form W=(1/2)0? — V(Q) + W,[Q]; the first two terms of L go for a ride and the last
term W, is the result of integrating out g. ,

This discussion also highlights an important feature of the effective action. We have
seen in part 2 that an external perturbation can cause transitions in a system from
ground state to excited state. In other words, the probability for the system to be in
the ground state in the infinite future (even though it started in the ground state in
the infinite past) could be less than unity. This implies that our effective action W,
need not be real. If we use this W directly in (3.4) we have no assurance that our
solution Q will be real. In fact, the saddle point approximation has to be handled
with care if W is complex. The imaginary part of W contains information about the
rate of transitions induced in the g-system by the presence of Q(t); or—in the context

~ of field theory—the rate of production of particles from the vacuum. The semiclassical

equation is of very doubtful validity if these excitations drain away too much energy
from the Q-mode. Thus we must confine ourselves to the situations in which

Im W« Re W. ‘ (3.9
In that case, we can modify the semiclassical equations to read

oRe W_.,

50 0. (3.10)
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Usually, the action A[Q, g] will have the form 4,[Q] + A4,(0Q, q) where A, is the ‘free’
part and A, represents the interaction between Q and q. Then W can be expressed
as (Ao + W) with areal A,. The condition for the suppression of particle production
now becomes (4, + Re W,) » Im W,. This can be satisfied even if Re W,~ImW,, as
long as A, is large compared to |W,|. v

In most practical situations, the constraint (3.9) will automatically arise because of
another reason. Notice that the entire scheme depends on our ability to evaluate the
first path integral in (3.2). This task is far from easy, especially because this expression
is needed for an arbitrary Q(z). Quite often, one evaluates this expression by assuming
that the time variation of Q(¢) is slow compared to time scales over which the quantum
variable g fluctuates. In such a case, the characteristic frequencies of the g-mode will
be much higher than the frequency at which Q-mode is evolving and hence there will
be very little transfer of energy from Q to g. The real part of W will dominate.

The above discussion allows an alternative picture of the effective action which is
quite useful. Let us suppose that Q(r) varies slowly enough for the adiabatic
approximation to be valid for . We then know—from our discussion in part 2—that
the ‘vacuum to vacuum’ amplitude is given by:

: [+
lim lim F(qz,qlgtz,tl)r-W:(constant).exp(—-%f EO(Q)dt).
1200t = — 0 0
3.11)

This expression allows us to identify the effective lagrangian as the ground state

- energy of the g-mode in the presence of Q:

Lege = — Eo(Q). - (312

This result, which is valid when the time dependence of Q is treated in the adiabatic
limit in the calculation of E,, provides an alternative means of computation of the
effective lagrangian if the Q dependence of the ground state energy can be ascertained.

The transitions to the higher states, indicated by the existence of an imaginary
part to Wy, can also be discussed in terms of the above relation. The W, can become
complex only if L and hence E, becomes complex. The appearance of an imaginary
part to the ground state energy indicates an exponential decay probability for this
state with some half life. This is precisely what we expect if transitions to higher states
are possible.

The above discussion may suggest that whenever Q varies slowly enough the real
part of W—or, equivalently, the real part of L..,—will give the dominant contribution. .
If that is the case, we should get no imaginary part to W when the time variation of
Q is highly suppressed by treating Q as an adiabatically varying parameter. This is
usually true but one must make sure that a ground state exists for the range of Q
values considered in the problem. As a simple example, consider the action

A[Q,q] = fdt(%Qz +324% — 30~ 0*)g?). | (3.13)

We see that g behaves as a harmonic oscillator with the effective frequency

Woge = /0 — Q2. (3.14)
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It is possible to arrange matters so that Q becomes larger than w in the course of
the evolution even though Q vanished in the asymptotic past and was increasing
arbitrarily slowly. If this happens, no vacuum state will exist for the g-mode for a
certain range of Q and our calculation will lead to an imaginary part for the effective
action. So, in general, the existence of an imaginary part to the effective action may
either be due to transitions to higher states or due to the non-existence of the ground
state. [If we interpret adiabatically as smallness of (dg/wZ%), then adiabaticity is
violated when w,; vanishes]. In the course of our discussion we will come across
examples of both situations. '

3.2 The method of proper time

The expressions for the effective action simplify considerably, when the g-dependence
of the action is quadratic, or can be approximated as quadratic. Consider, for example,
the system with two scalar fields ®,(x) and ¢(x) with the lagrangian

Ligar = Lo(®,) + 3(¢ ¢, — m*(®,)$?) = L(D,) + Ly, (3.15)

where m?(®,) is some function of ®,. The correction term L, represents a scalar field
with effective mass m?(®,). We will treat ¢ as a quantum variable and @, as a classical
variable and are interested in the effect of quantum fluctuation in ¢ on @,. In the
adiabatic limit, in which @ is varying sufficiently slowly, the effective lagrangian and
the potential are given by

Legg= Lo~ E, (mz); Veer =V + Eo(mz) (3.16)

where E,(m?) is the ground state energy of a scalar field theory with mass m which
can be written as

1, (dPk
Ey==h k* + m*)'/? ‘ 3.17
[For the sake of generality, we are considering a spacetime of (D + 1) dimensions].
Since this expression is badly divergent, we need to consider methods for making
sense out of this expression. We will address ourselves to this question of ‘renormaliza-
tion’ later. Before that, we will first cast this expression in a more manageable form.

It is convenient at this stage to introduce the Euclidean continuation. Since the
energy in the Euclidean sector differs by a sign from that in Lorentzian space we
need to calculate

1 (dPk

L(Euclidcan): E VAR
T Em)=7 | Gy

where k is a D-dimensional vector. Note that, we can write

K 4+md)2=L, (3.18)

oL, 1(d% 1
om* 4 ) 2m)P (k% + m?)12
1 (dPk 2 J'w "
=—|——=| diexp(— A*(k* +m?
2 )@ gz ), e Al

il

FNSN

[ dPk J"" ds

(27’C)D o (271?5)1/2 exp(_ %S(kz + mZ)) (319)

v
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The s~/ factor can be eliminated by the following trick. We introduce a variable p
and rewrite this factor as another integral

1 *edp 4
Qrs) 2 J‘_wz}‘eXP(—zSP ) (3.20)
obtaining
oL, _1(d° [~ Tedp Lo(k2 4 p2 4+ m2\] »
om* 4] (2n) J; dsfum-z-;t-exp[—zs(k toAm]l (321)

The k and p integrations can be combined into a (D + 1)-dimensional integration
over the vector q = (k, p):
oL,
om?

* dD+1q [*4]
G| ool dsa +m
oo dD+1q

dsexp[ —4sm?] f W exp[ —3sg?]
0

Il

[ ds
. Wexp[——%mzs]. . (322)

I

1
4
1
4d
1
4
[Alternatively, one can do the dPk integration in (3.19)) to obtain this result.]
Integrating this expression with respect to m?, we get
1[= ds - 1 s
L.= _EJ o SQms)P+i2 xpL—3ms] 529

where we have omitted an integration constant which is independent of m2. As it
stands (3.23) is also divergent at s = 0; however, in this form the divergences are easy
to isolate and handle. Some of the manipulations above are not valid for integrals
which are divergent. It is tacitly assumed that the integrals can be expressed as limits
of some well-defined convergent integrals.

There is another way of deriving (3.23) which is more straightforward (though it
hides the physical meaning of L) and is quite useful. The effect of quantum
fluctuations ¢ is contained in the Kernel

K= exp( - deELco,,> = f.@d) exp( - fd~x¢ﬁ¢> =(det D)~12 (3.29)
~ where D is the Buclidean space operator‘
D=—Y40O-m? | (3.25)

with O denoting the (D + 1) dimensional Dalembertian. [containing D-space and 1
Euclidean time]. We will now write this determinant as

det D =exp[Trin D] (3.26)

so that the Kernel becomes

(det D)"I‘/2 =exp(—3TrinD)= exp( —%fdx(xllnD!x)) = exp( - J.dx Lcm).
' (3.27)
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In arriving at the last expression, we have used some basis vectors |x) to evaluate
the trace. We will now use the integral representation for the logarithm,

InF= -—J S?exp(—-Fs) (3.28)
0 .
to get
1 1(*ds
Leor =3¢{x|nD|x) = —5| —{xlexp—(sD)|x)
2)0 S
1 ®ds
- = . 3.
2JO K x9) (3.29)
where the quantity
K (x, ;)= {x|exp(—sD)|y> (3.30)

is the Euclidean Kernel for a quantum-mechanical particle with the hamiltonian D.
The integral representation given above is divergent at s = 0. However, this expression
can be used to study difference between two logarithms; we shall use this only in the

latter sense.
This result is of very general validity and quite powerful (Schwinger 1951). It shows
that if the Euclidean action coupling two systems has the form

Acore[D, 9] = Jtﬁﬁmd”“x (3.31)
where Dy 18 an operator depending on @, then the correction term in effective
lagrangian is given by -

1 [ ~ds
= —— ——K . .
Loore 3 f s (x, x; 5) (3.32)

where K(x,y:s) represents the propagation Kernel for some fictitious quantum
mechanical particle described by the hamiltonian in (D + 1) dimension

h=D,. (3.33)

In other words, we have reduced the problem involving a path integral over fields
to a problem involving quantum mechanical Kernel. The latter is often much easier
to evaluate. The example we are concerned with has the hamiltonian

1/ d?
h=D=4—-0+m?)= *5(‘(1—%—2“+V2)+%m2. (3.34)

The lagrangian corresponding to this hamiltonian is

l—'+1 dr 2+
— U2\ \ds

which represents a free particle in (D +1) dimensional space with a constant

filf
ds

2
) —im? (3.35)
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background potential (m?/2). [Note that m? is treated as a constant in the adiabatic
limit]. The Kernel K we need is that of a free particle:

1 \@+12 :
K(x,x;5) = (Zz?) exp(—4m?s). (3.36)
We thus get the expression for the effective lagrangian to be
1 ds 1 (D+1)/2 ‘
L= —= —_— 1,2 )
eff 2.[0 P (2ns) exp(—3m?*s) v (3.37)

which agrees with the previous result. [Note the way in which i-factors disappeared
in the Kernel. In arriving at the last two expressions we have proceeded as follows:
The quantity (x'|exp—iTD|x) with D= —40 +4m? is a proper Schrédinger
Kernel with D as hamiltonian and T as time. Therefore

1 \@+12 ;
K(T;x,x)= (2niT) exp( -Emz T) (3.38)

changing to iT = s leads to the expression given above].
The Kernel K(x, y; s) can also be used to compute another importgnt quantity, viz.
the propagator. Since the propagator G is the inverse of the operator D, it follows that

G(x,x')= Jw dsK (x, x'; ). : (339

0

4. Quantum theory in external electromagnetic field

The formalism developed in the previous sections can now be applied to the study
of an important problem: The calculation of the effective action for electromagnetic
fields which will allow us—for example—to determine the quantum corrections to
classical Maxwell equations. The study also reveals several important conceptual
issues in our formalism. As a bonus we will be able to understand some aspects of
the renormalization procedure in quantum electrodynamics.

4.1 Effective action from ground state energy

Consider a system described by the lagrangian density L(4;, ¢) where A;(x) is a vector
potential describing the electromagnetic field and ¢ is a charged (complex) scalar
field interacting with the electromagnetic field: The full quantum theory is described
by the Kernel

K= J@AQQI)(ﬂXp[iJLdth] 4.1)

in which we have set # = 1 for convenience. The effective action A (and the effective
lagrangian L) for electrodyanmics can be obtained by integrating over the scalar
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field:

exp(ideg) = CXP[ fdt dxX Lege(4; ):l

j.@ ¢ exp[ fdt dx L(A;, qb)] 4.2)

Thus we need to evaluate the path integral over ¢ in a given background
electromagnetic fieid.

As usual, this is an impossibly difficult task if 4;(x) is an arbitrary background
field. To make progress we will assume that A4;(x) varies slowly with x so that we
can write

Ay(x) = — 3Fpx* + O((8F)x?) 4.3)

where F;, are treated as constant. This corresponds to assuming that the background
potential describes a constant electromagnetic field F;;, or—more precisely—the field
¢ varies much more rapidly compared to the background electromagnetic field. Thus
we will compute, in the adiabatic approximation:

exp[idee(F)] = exp[ Jdt dX Loge (F )]

J.@d)exp[ Jdtde[A ——1/2Fikx",¢]]. (4.4)

We have seen earlier that, in the adiabatic limit we are considering, L.y, is the negative
of the ground state energy of the system. Thus if we compute the ground state energy
Ey(F) of a scalar field ¢ in a given background F,, then we can determine
Lege(F) = — Eo(F).

This task is particularly easy if the background field satisfies the conditions E+B =0
and B* — E* > 0. (This derivation is adapted from Berestetskii et al (1979)). In such a
case, the field can be expressed as purely magnetic in some Lorentz frame. Let
B = (0, B,0); we choose the gauge such that 4= (0,0,0, — Bx). The Klein-Gordon
equation

[(0,—qA,)? —m*]p =0 (4.5)
can now be separated by taking
@(t,x) =f(x)expilk,y + k,z — wt). 4.6)
where f(x) satisfies the equation
d*f
Fv) + [w? —(qu k) 1f =(m* + k2)f. 4.7

This can be rewritten as

_Eg_{_ 23262f=3f : (4.8)
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where

E=x——% 3=a)2——m2—-k§. | (4.9)

Equation (4.8) is that of a harmonic oscillator with mass (1/2) and frequency 2(gB).
So, if f(x) has to be bounded for large x, the energy & must be quantized:

&= 2(qB)(n +%) = w* — (m? + k2). (4.10)
Therefore the allowed set of frequencies is
w, =[m*+ k2 + 2qB(n + 1)]'/2. (4.11)

The ground state energy per mode is 2(w,/2) = w, because the complex scalar field
has twice as many degrees of freedom as a real scalar field. The total ground state
energy is given by the sum over all modes k, and n. The weightage factor for the
discrete sum over n, in a magnetic field is obtained by the correspondence:

dk.dk, (qB\dk,
57?5;%;@%)—2? 4.12)

Hence, the ground state energy is

. _ o0 qB + 0 dky ) -1 1/2_
Eo-—n;(—z;)f_w(—z—n—)[(khm )+24B(n+§)] =Ly (413

This expression, as usual, is divergent. To separate out a finite part we will proceed
as follows: Consider the quantity

21\ 0%Ey (21 92 Ly | |
= =) =0 ({22 il 4.14
1==(35) oy (35 o @19
which can be evaluated in the following manner:
12 (*t*1 dk, 1 & 1
= 4 - — =4+ — 2
=+ 4n;0f—w Ik +m +2gBn+ DT | 8z n;O [m?+2gB(n +1)]

= —er? 2 f:dn exp[—n(m*+2gB(n +1))]

— nm?)- _ .
dn exp(—nm?)-exp(~ qBr) T exp(— 22B7)
exp(—nm?) __1_ ® . exp(—nm?) _ _Zﬁ 0% Loy
exp(gBn) — exp(—qBr) 8z |, sinhgBn ~— \gB )a(m??
(4.15)
The L. can be determined by integrating the expression twice with respect to m?2.
We get .

0
._+1 ”
= ) .
._.+1 ®
- 4r 0

_ 4B [ dn exp(—nm?)
I @n)? ), ¥ sinh gBn .
® dn exp(—nm?)  gBy
_ . . , 4.16
JO (4m)* n® sinh gBy (4.16)
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This—and the subsequent expressions—has a divergence at the lower limit of
integration. This divergence can be removed by subtracting the contribution with
E=B=0; we will ignore this problem right now and will take it up later in §4-3.
The integration with respect to m? also produces a term like (c,m? + c,) with two
(divergent) integration constants ¢, and c¢,. We have not displayed this term here;
this divergence is also connected with the “renormalization” of L., and will be
discussed later.

If the L. has to be Lorentz and gauge invariant then it can only depend on the
quantities (E*> — B?) and E-B. We will define two constants a and b by the relation

a’?—b*=E*— B?; ab=EB. (4.17)

Then Le = Leg(a, b). In the case of pure magnetic field we are considering a = 0 and
b = B. Therefore, the L can be written in a manifestedly invariant way as:

N dn exp(=nm?)  gby
Bere = fo (47)? n? sinh gby (4.18)

Because this form is Lorentz invariant, it must be valid in any frame in which
E>~B%?<0and E‘B=0. In all such cases,

L _J“’ dn exp(—nm?) qn\/m 4.19)
)0 m?  #* sinh qn/B*—E* '

The L for a pure electric field can be determined from this expression if we
analytically continue the expression even for B? < E2. We will find, for B=0,

® dn exp(—nm?) gnE
o (4m)? n® singyE’

Lye= (4.20)

The same result can be obtained by noticing that a and b are invariant under the
transformation E — iB, B — iE. Therefore, L. (a, b) must also be invariant under these
transformations: Leg(E, B) = Le(iB, — iE). This allows us to get (4.20) for (4.16).

We will now consider the general case with arbitrary E and B for which a and b
are not simultaneously zero. It is well-known that by choosing our Lorentz frame
suitably, we can make E and B parallel, say along the y-axis. We will describe this
field [E = (0, E, 0); B = (0, B, 0)] in the gauge A, = [ — Ey,0,0, — Bx]. The Klein-Gordon
equation becomes

2 62

, s g 0 29
[0, —qA,)* —m ]¢=[< Fria qu) Tt 52
, 0 2 _
“'("3; +qu) —mz}qﬁ-—o. (4.21)

Separating the variables by assuming

¢ (t,x) = f(x,y) exp — i(wt — k. z) | (4.22)
we get

? o
[(axz + 57 ) + (@ + gEy? — (k, — qu)2]f =mf (4.23)
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which separates out into x and y modes. Writing

S 9)=9(x)Q®) (4.24)

where g(x) satisfies the harmonic oscillator equation

2 .
%xg —(k, — gBx)*g = — 2qB<n + %)g 4.25)
we get
d*Q 2 2 1 .
W+(w+qu) Q=|m*+2qB n+§ 0. (4.26)

Changing to the dimensionless variable

1=y /qE + —2_ (4.27)
VqE
we obtain
g, L( > !
el Q-q—E(m +2B(n+2))0. (4.28)

To proceed further, we use a trick due to Landau. The expression shows that the
only dimensionless combination which appears in the presence of an electric field is
©=(qE)™!(m* +¢B(2n + 1)). Thus, purely from dimensional considerations, we expect
the ground state energy to have the form

E,= n}jo (24B)G(z) . (4.29)

where G is a function to be detefmined. Introducing the Laplace transform F of G,
by the relation

G(r)= J F(k)exp[ — kz]dk (4.30)
0

we can write

Lec=(29B) Y, J dkF(k)exp [— q—kE— (m* + gB(2n + 1))]. (4.31)

n=0,)0 .
Summing the geometric series, we obtain
® 1
= —_om?2 — .
L= 2(qB)(qE) L dsF(qEs)exp[— sm*] exp[ — gBs] [ —exp[ = 2Bs]

B [®.  F(gEs)exp[—sm?]
=2 (qB_)(qE)J‘o ds exp[gBs] — exp[— gBs]

— 4B)(4E) J " ds T ES)

o sinhgBs

exp[—m?s].
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We now determine F by using the fact that L. must be invariant under the
transformation E —iB, B— — iE. This means that

© F(igB
Lege = (4B)(GE) J | dsexpl—- m*s] ”—'s?(ﬁlﬁics%zfs?

Comparing the two expressions and using the uniqueness of the Laplace transform
with respect to m?, we get

F(qEs) F(igBs)

ot x Sonied A\ uate 4.32

sinh gBs sinh(igEs) (4.32)
or, equivalently,

F(qEs)sin gEs = F (ig Bs) sin(igBs). (4.33)

Since each side depends only on either E or B alone, each side must be independent
of E and B. Therefore

F(qEs)sin qEs = F(iqBs)sin(igBs) = constant = A(s) (4.34)
giving
© exp[—m?s]A(s)

L= (qB)(qE)f ds

- 4,
o singEssinhgBs (4.35)

The A(s) can be determined by comparing this expression with, say, (4.16) in the
limit of E—0. We have

_ _ ®© ds 2 A(s)
Len(E=0,B)= qBJO s exp[—m”s] sinh gBs
*® ds 5 1
B qB[O (4m)?s? exp[—m*s] sinh gBs (4.36)
implying | ‘
, 1 .
A(s) = @-7—1:)7; 4.37) |
Thus we arrive at the final answer
© ds exp[—m*s] [ qEs qBs
L= ) _
o J o (4m)? 53 singEs /\ sinh gBs (4.38)

In the situation we are considering E and B are parallel making a® — b? = E* — B?
and ab = E-B. = EB. Therefore E =a and B = b. Thus our result can be written in a
manifestedly invariant form as '

Lm(‘a’b)=J'°° ds exp[—;mzs]( qas )( gbs ) 4.39)

o (4n)? s sin gas / \ sinh gbs

This result will be now valid in any gauge or frames with a and b determined in terms
of (E? — B?) and (E-B).
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The integral, as it stands, is ill-defined for two different reasons. (i) The sine function
has poles along the path of integration at gas = nm;n = 1,2,... (ii) The integral diverges
at s =0. The second problem is related to renormalization and will be taken up in the
next section while the first problem can be tackled in the following way: ‘

The integral is evaluated by going around each of the poles by a small semicircle
in the upper half plane. This choice of upper half plane is suggested by the general
principle in field theory that m? should be treated as the limit of (m? — ig). In (4.29),
this is equivalent to treating gE as limit (gE + ie), changing sin gas to sin(ga + ie)s.
This makes the contour go above the poles. Equivalently, we can rotate the contour
of integration in L to the imaginary axis and express it in the alternative form:

Lo = — J“’ ds _expl—i(m” l.‘a)s] (————qas )( abs ) (4.40)

o (4m)* s sinh gas /\ sin gbs

This expression is sometimes easier to handle; it should be supplemented by the rule
that poles along the real axis should be ignored by going below the axis.

The occurrence of the poles along the real axis and our i¢ — prescription has the
following important consequence: It shows that L has an imaginary part if a is
non-zero. From (4.40) we get

® ds [sinm?s qas gbs
_ 441
Im L . (@02 ( s3 >(sinh qas ) (sin qbs ) (4.41)

® ds (cosm?s qas gbs
Re Lur= - jo (4nm)? ( s )(sinh qas ><sin qbs) (442)

The expression in (4.41) can be evaluated by standard contour integration techniques.
However, we can also calculate it from (4.39) directly; this calculation will explicitly
- show the origin of Im L. In (4.39), '

Le“(E)=.[°° ds exp[—mzs]( qa )( gbs ) (4.43)

o (4m)* s? singas /\ sinh gbs

and

the poles at s = s, = (nm/qa) are to be avoided by going around small semicircles of
radius ¢ in the upper half plane. The nth pole contributes to this semicircle the quantity

0=0 (noer(ia\i
_ (eexp(if)id0) - qa gbs,
h= J,,:,: (4m)?s? expl—ms,] cos(nm)-eexp(if) \ sinh gbs,

. (qa)®[ 1 m?n gbs,
— i 1yt1, — ————
=i=1 1673 | n2 &P qa ") |\ sinh gbs, ) (4.44)

So the total contribution to Im L is:

0 1 (qa)z 1 m2n gbs,
— iyw+1, -\ - _ . . 45
Im L nzl( 1) 2 (2n) n? exp qa & sinh gbs, (443)

It is now clear that Im L arises because of non-zero g, i.e. whenever (i) there is an
electric field in the direction of magnetic field or (ii) if E is perpendicular to B, but
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E? > B2 (In this case, we can go to frame in which the field is purely electric). For a
purely electric field, the imaginary part is

Im L= i 1(qE)* (_—_1);_“_6}(13(_ E@n) (4.46) |

4221 n gE
Note that this expression is non-analytic in g; perturbation in powers of g will not
produce this result.

4.2 Effective lagrangian from path integral

The above analysis relied heavily on the facts that: (i) the energy levels in a magnetic

field are well known and (ii) the gauge and lorentz invariance of the theory puts
severe restrictions of the form of L. This method, therefore, is of only very limited
validity. A more formal way of deriving this result will be to use the proper time
representation for L, discussed in §3-2. Since this gives a general formalism for
handling arbitrary time dependence of the electric field, we will discuss this method
next.

This method can produce both the Green’s function and the effective lagrangian
in a single stroke. The results quoted here will also be relevant for comparing the
quantum theory in an arbitrary, time-dependent, electric field background with
quantum theory in an expanding universe. The central quantity in this description
is the kernel: ‘

exp[i%[(ia —qA)? —m* + ia]}’y>. (4.47)

K(x,y;sf=<x

We saw in §3.2 that the effective lagrangian L. and the propagator G(x', x) can be
calculated from this kernel by the relations

©d
L= —zf —SS-K(x,x;s) (4.48)
0
and
G(x',x) = J- dsK(x', x;s). (4.49)
' 0

In the context of a scalar field interacting with an electromagnetic field, we can write
the kernel in the form

K(x,y;s) = {x|exp(ish)|y) ' (4.50)

with the ‘Hamiltonian’

m2
h=4(i0 — gA)* — 5 + ie. (4.51)
We will consider an electric field along z-axis, which has an arbitrary time dependence;
ie. E=E(t)2,B=0. The gauge is chosen such that 4*=(0;0,0,A(t)) [so that
A,=(0;0,0,— A(t)); E(t) = — A'(t)]. Using the translational invariance along the

tr



Quantum theory in external electromagnetic and gravitational fields 201

)

spatial coordinates, we can write

dap /
K(xos )’0, X, XS S) = f(27r)3 <X0

d3 is
= J(—ﬁexp( —-2—(pi +m? — ia))

— J d’p G(x°, y% s)exp[(— is/2)(p2 + m? — ie)] (4.52)

exp=[(i01)" — 3 ~ (b, — gA () — m® + ie]

I
exp’zi[——gt—z——(pz—qA(t))Z]

(2m)?

where ¥(z,1;s) is the propagator for the one-dimensional quantum mechanical
problem with the hamiltonian

= —“2"5;2‘—%(%“‘1/4(0)2- ‘ (4.53)

Let us now apply this formalism for the case of a uniform electric field for which
the potential is A = — Et. Then
2 2

10 1
H =§bt-2“—%(Pz + qEt)* = — —7"‘%qu2[’2 (4.54)

where p =t + (p,/qE). This is a harmonic oscillator with mass m = 1 and imaginary

148

frequency (igE) (“inverted oscillator”). Since the path integral kernel for this problem
is well-known we can immediately write down the coincidence limit for the propagator:

4E 1/2 gE 2(coshgEs — 1) p: \*
. - e e et A t oK
Hobs) [(Zni sinh gEs) ] P 2i  sinhgEs N qE

gg  1"7* [. 4¢E p: \’
= hgEs—1){ t .
{2nisinthsj| °xp lsinths(COS 4Es—=1) +qE

(4.55)

Doing the p,, p, and o integrations, we are left with

gE [ 1\ exp((—is/2)(m* — ie))
2n)* \ 2is sinh(qEs/2)
1. (qgE/s)

= Grfis sinh(gEsz) P HAm —i2)9) 4.56)

Giving

Lo—_i[7ds._ 4B exp(=i(s/2)(m? —ie)
T s @iy sinh(gEs/2)

1(*® ds 1 qE o .
- —ZJO (2m)% 52 sinh qucxp( i(m* — ig)s)

T J 4n? 5% sinh qu'exP(— i(m* — ie)s). (4.57)
0
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In this approach it is clear that the imaginary part arises because of the imaginary
frequency (inverted nature) of the harmonic oscillator. This point is brought out more
vividly by the corresponding calculation for the constant magnetic field. Magnetic
- fields, in general, give bounded hamiltonians. For example, consider the case with

A* = (0; A(z),0,0) giving B, = (— 04/0z). Then,

2 .
K=fd p*“’(exp(gs-[w"-—pﬁ—(pxan)%az—mz+is])>

(2n)*
2 .
= El—B-L—El—ait:xp -}-E(cu2 —pi— m? + is))g(z, z;§) (4.58)
(2n)® 2 '
where the effective hamiltonian will be now
1 62 |
H= ‘“55;2'4":}»:(1’::“ gA(2))? (4.59)

which has a poténtial bounded from below. Let us apply this equation to a uniform

magnetic field; A = — Bz. Then
16* 2 10* | o pe 2
H= "“2*5?'*“50%‘*"132) = —55;5‘*'561 Bp (4.60)

where p = z + (p,/aB). This is a harmonic oscillator with mass m = 1 and real frequency
(gB). Therefore

qB l”z . 4B Px \
)= | ———— Bs— 1|l z+221) | @461
96.z9) |:27ci sin gBs °xp lsians(Cosq s—1){ 2 qB (461)

Doing the p,,p, and o integrations, we are left with

_gB [1 )_exp[—i(s/2)(m2—ie)]
”(2_75)7 2is sin(gBs/2)

K

1 @B o o
= Gy sim(gBsy) P IR —ie)) 4.62)

Lo i “ds B exp[—i(s/2)(m’ —ie)]
=" s @or@is)  sin(gBsf2)

Giving

1(*° ds 1 qB o,
R o _ _ 4.
‘J o (2m)* 52 sin qBs/2 exp(~ i(m* — ig)s) 463)
® ds . 1 . qB
o 4n* s* sin¢Bs/2

-exp(— i(m?* — ig)s).

Asit stands, the integrand has poles due to the sin(qBs/2) in the denominator. However,
notice that the proper definition of harmonic oscillator path integral involves the
prescription: @ = lim,_,,(w — ic). Therefore in the kernel the factor sin gBs should be
interpreted as the limit of the expression singBs(1 — is). So the poles are actually at

5= £+ 270 1o 4.64
n——-qB ‘ * (' )
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We can now transform the integral to one along the imaginary axis. Because of the
exp[ — is(m?/2)] factor the contour should be closed in the lower half plane. Then we get

[ [®dyiexp((—m?2)y) (4BJ2)
L"““’f ‘K(S)”Joy_z sinh(¢By/2)  (2n)%i

_ ["dvexp((=m*2)y) 1 (gB
~Jo y? sinh(gBy2) (2n2 \2 )

(4.65)

This expression, which is the same as (4.16), is real showing that the constant magnetic
field does not create particles. We shall now discuss the renormalization of L.

4.3 Renormalization of the effective action

We have seen earlier that the real and imaginary parts of the effective lagrangian
lead to different classes of phenomena. Since the kernel is

K oa1 = €Xp if[Lo (F) + Leg(F)]d*x

= exp if[LO(F) + Re L (F)] exp(—Im Leg)d*x

we may interpret Re L as a correction to the original lagrangian for the electro-
magnetic lagrangian

Lo(F) = §1?£(E2 — B?), " (4.67)

The (Im L) is related to the probability for the system to make transitions from
ground state to the excited state. In this particular case the excited state will be the
one with the quanta of the scalar field present. We may, therefore, interpret, 2 Im L,
as the probability per unit volume per unit time for production of scalar particles.

In this section we shall discuss the effects due to Re L. The pair creation
probability arising from Im L will be considered in the later sections.

The first point to note about Re L, is that it is divergent near s = 0. In fact, Re L
is divergent even when E = B = 0. This divergence—in accordance with the discussion
we had before—must be spurious and can be removed by simply subtracting out
- the value for E = B =0. Thus we modify (4.42) to '

© ds cosm?s q*abs* |
= -1/ 4.68
R JO (dn)? 3 [sin gbssinh gas ] (4.68)

Since the subtracted term is a constant independent of E, B, the equations of motion
are unaffected. The expression R is still logarithmically divergent near s =0, since
the quantity in the square brackets behaves as [ —Lq2s?(a® — b?)] near s=0. But
notice that this divergent term is proportional to (a2 — b?)=E? — B?, which is the
original uncorrected, lagrangian. This opens up the possibility that we can reabsorb

Re Leff
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the divergence by redefining the field strengths, charges etc. This can be done as
follows: Let us first write

] Ltolal=LO+Leff=(LO+Lc)+(Leff~Lc) (469)
where '
1 *ds 2 1,92(a% — b2
L= ~ G2 053—(0057" s)[ — £(gs)*(a®* — b%)]
___q2 ood_s 2,2_z=£2_2__z___ 2 p?
—"6(47!)2J0 p (cosm?s)-(a* —b )_gn(a b )—87r(E BY) (4.70)

with Z being a formally divergent quantity. With this trick, we can separate out the
finite and divergent quantities in L., and write
Lyy=Lo+L.= —1——(E2 - B+ E.(E2 —B)= —1—(1 + Z)(E* —BY) 4.71)
div =0T e T gy 8n 87 '
and

Linite = Legr — Le = L " > cosm?s a’s”ab
tinite = Lett — 2 = Tz | S sin(gsb) sinh(gsa)
1
-1+ _6_q252(a2 - bz)]. (4.72)

The quantity Ley;,. is perfectly well-defined and finite. [The leading term coming
from the square bracket, near s =0 is proportional to 53 and hence Lg;y;, s finite near
s=0.] So all the divergences are in the first term (Lo + L.)=(1+ Z)L,. We shall
now redefine all our field strengths and charges by the rule

Ep, = (1 +2)'2E; By, =(1+ 2)'*B; gy =(1 +2) g, (4.73)

This s, of course, same as scaling a and b by (1 + Z)*/* leaving (gony Epny) = g E invariant.
Since only the products ga, gb appear in L., it can also be expressed in terms of
(@pny Epny)- Thus it is possible to redefine the variables in our theory, thereby absorbing
the divergent quantities. The remaining expressing Ly 18 well-defined and possesses
a Taylor expansion in g2. Using this expansion, one can calculate corrections to the
electromagnetic lagrangian in an order-by-order manner (see Heisenberg and Euler
1936; Schwinger 1954a,b).

4.4 Quantization in a time-dependent gauge: Bogoliubov coefficients

In the discussion so far, we have derived the form of the effective action and studied
its real part. We shall now consider the physical origin of the imaginary part to L.
The existence of an imaginary part to L. suggests that the probability for the
quantum system [here, the scalar field] to be in the ground state at ¢ = oo is less than
unity. As the excited states of the scalar field can be interpreted as states containing
non-zero number of scalar quanta, this phenomenon can be thought of as particle
creation by the electric field. Since the notion of a static electromagnetic field creating
particles may be rather surprising, we will examine the origin of this phenomenon
more closely (Schwinger 1954a,b; Nikishov 1970a,b; Popov 1972; also see articles in

Ginzburg 1987). As we shall see, there are some interesting conceptual issues, connected

R

. P
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with gauge invariance of this phenomenon, which needs to be scrutinized carefully
(Padmanabhan 1990, 1991a). To do this, we will describe a constant electric field in
two different gauges, one in which the potential is time dependent and the other in
which it is not. The quantum theory of the scalar field will be studied in these two
gauges in §§4.4 and 4.5 and the results will be compared in §4.6.

Let us begin by quantizing a complex scalar field ¢ in the gauge A(": In this
(time-dependent) gauge, the constant electric field E = (E, 0,0) is represented by the
vector potential 4, =(0, Et,0,0); with A*=(¢, A) (0, — Et,0,0). Since the Klein-
Gordon equation

L0y — qA)* —m*1(t,x) =0 (4.74)

has an explicit time dependence in this gauge it is not easy to provide a particle
interpretation. The usual strategy adopted in such cases is the following (Parker 1982):
(i) We obtain a complete set of orthonormal solutions to (4.74) which can be identified
as positive and negative frequency modes in the asymptotic past, i.e. as t — — co. This
task itself is somewhat tricky since the field does not vanish asymptotically; we will
have to identify as positive frequency modes those solutions which have decreasing
phase in the adiabatic limit. (This is equivalent to choosing the modes as those will
behave as exp(— iwt) in the limit of vanishing E.) (i) We can also obtain, in a similar
manner, the positive and negative frequency modes for the asymptotic future. Because
of the time dependence of 4;, a mode which is purely positive frequency in the infinite
past will evolve into a combination of positive and negative frequencies in the infinite
future, a phenomenon which is usually interpreted as pair creation. [This prescription
is not as well defined as one would like it to be; see Parker 1982].

The mode functions for the Klein-Gordon equatlon can then be expressed in the
form:

o, x) = £, (t) exp(ik-x) (4.75)
where f,(t) satisfies the equation

d2
d—tz-fk +[m? +kd + (ks + gE)?1f, =0;  k, =(k,,k,). (4.76)

Introducing the variables,

"k, 1
1/2 _— = — — ‘
=(qE) t+(qE)1/2’ A iE m>+ k) v=—1(1 1,1) 4.77)
this equation becomes
Jot (2 +2)f=0 (4.78)

which is essentially a Schrédinger equation in an inverted oscillator potential. If f(4,7)
is a solution, then so are the functions f*(4; t), f(4; — t)and f'(4; — 7)*. This solution set
can be taken to be :

{Ds((1 +19)7), D,(1 —i)7), D(— (1 +i)1), D,(— (1 — 7))} 4.79)

where D,(z) is the parabolic cylinder function. Only two of these four functions are
linearly independent.
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To proceed further we have to identify the ‘positive’ frequency modes in the
asymptotic past. Since the equation does not admit exp( = iwt) type solutions in the
asymptotic limit, we have to use some other criterion. The usual approach is to take
the. WKB solution and identify the positive and negative modes by looking at the
phase of the solutions. In the WKB region, the solutions are

1
s grggrrese( 21 i ) p=(et 20 (480
This gives
S @) |5 exp( £ 1/2)7%) , 81)

so that the two independent solutions can be taken to be

f+ @) =lzl"exp((i/2)7*); f-(r) =It["exp(—(i/2)7*) = [f+ (1)]* (4.82)

The solution with decreasing phase is f_(t) for t>0 and f,(z) for 1 <0. [These
are, of course, limiting forms of D (z). For 7 — — oo, the positive and negative frequency
solutions are D,[ — (1 —i)t] and D[ — (1 +1i)t] while for t— + oo, the positive and
negative frequency modes are D,. [(1 +i)t] and D,[1 —i)t]]. _

Let us consider the evolution of these modes. If we start with a pure f, mode in
the distant past, it will evolve into a linear combination of positive and negative
frequency modes in the distant future. So we may write, in general, a solution of the
form:

Y(e) = {We’(p(i/ 21 | FTT® (4.83)

At'exp(i/2)t® + Bt exp(—(i/2)1?) 1>+ 0

This is equivalent to a scattering problem in an inverted oscillator potential
V() = (—%w?7?) in which a wave with amplitude B is incident from right, and is
transmitted with unit amplitude and reflected with an amplitude 4. The quantity | A|?
determines the overlap between positive and negative frequency modes. We can
compute this quantity using another trick due to Landau (Landau and Lifshitz 1973).
Treating 7 as the real part of a complex number, one can see that rotating 7 in complex
plane from 6 =0 to 6 = 7, maps the exp((i/2)2) part of the solutions into each other.
This immediately gives

exp(inv) = A = exp[in(—3(1 —iA))] = exp(— in/2) exp(— ni/2) (4.84)

so that | 4|2 = exp(— 1A). Thus a positive frequency mode at 7 « 0 with an amplitude
unity picks up an amplitude 4 to have negative frequency for 7> 0. Hence the
cross term in the Bogoliubov coefficients is just 4. So,

- {mean number of particles created in mode 1} =, = | 4|?> = exp(— nA).
| (4.85)

The normalization condition, |B|* —|A|? = 1, for Bogoliubov coefficients (which, in
the present context, is related to the conservation of probability for an equivalent
Schrodinger equation) gives

IB?=1+|A|*=1+exp(— 7). (4.86)
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[A more formal way of deriving 4 and B is discussed inkAppendix 1]. The relative
probability for pair creation in mode-A is :
_ 141> exp(—==d)
" |BP? T 14exp(—nd)

R, = (exp(ni) + 1)~ 1.

The probability that no pair creation occurs is

exp(mi) 1 1
= 1 — = = == . 4.87
P Ri=17 exp(nh)  1+exp(—7d) 147, (4.87)
Therefore the ‘vacuum persistence probability’ will be
i 2= = = —_ 7
|{out,0]0,in} | —];]P,1 I;I‘(H-ﬁ,l) exp[ ;ln(lﬁ—nl)}
= exp[——?. Jd“xlm ,?eff} (4.88)

where, in the last line, we have introduced the imaginary part of the electromagnetic
effective action in the standard manner. This allows us to identify

AN

2de‘x1m Lor=> In(l +exp(—nl))= Y (—¥*! %exp(— nN 7). (4.89)
’ A

Changing the summation to an integration by the rule

dk, dk, dk, V =

we can rewrite the N-th term as

—V+1 14 © N
-(——A)[——W.fdkx.fo nd(ki)exp[— %E(m2 + ki)]

_ (_ 1)N+1 1% qE N
= ijdkx.n(;ﬁ)exp( _E—Emz)

- (qE)Vfdkxﬂ:l)"jexp(_ “_"fN>

(2m)3 N2 qE
_ (qEPVT (—1)V*1 m?
= o N exp ( - —qf N>. 4.91)

In arriving at the last expression, we have interpreted a §(0) as giving rate per unit
volume per unit time of physical process; since k, and (gE)t have the same dimensions
the last integral is performed over (gE)t for some finite time interval. We thus get the
final result ' ’

o 1 EZ _1n+1 '2
(qE)* (—1) exp( 721”;7>

Im Leff = Z

L EW ) (492)
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which is the same as the one obtained before. Some of the manipulations leading to
this result can be made more precise by introducing an adiabatic “switch-off” of the
electric field. But the final results will be the same

4.5 Quantization in space dependent gauge: Tunnelling

Let us now consider the same physical system in the space-dependent gauge. A
difficulty arises when we repeat the same analysis in the space-dependent gauge with
A, =(—Ex,0,0,0) = 4". Since the vector potential is now independent of time, it is
obvious that the solutions to (4.74) can be expressed in the form

o(t,%) = ) (A9, (X)exp(— it + ik,y + ik, z)
k,w
+ Blgy, (x)exp(ioot — ik, — ik, z) (4.93)
where k = (k,, k,) and the function g satisfies the equation

2
“he + [0+ aBx - k= mllg, =0 (494
which can be again solved in terms of parabolic cylinder functions, The key point
to note is that the time dependence of the mode functions in this gauge is just exp =+ iwt
at all times. If we use A, , (and its hermitian conjugate) as the annihilation (and
creation) operator for our particles, such particles are not produced by the constant
electric field. The vacuum state defined by these modes remains as vacuum for all times.

Let us look at this situation more closely. Substituting

1
p= B Pxt s A= ot 4 M v = 41— i), (499)

The equation for g becomes:

d%g , '

a';f +(p*—1)g=0. | (4.96)
This is the same equation we met before with the sign of 1 changed; this change is
equivalent to ve>v*. So the solution set is still the same with some change of signs:

(D1 +1)p) D((1 = 1), Dy(— (1 + D), Doo(— (1 — )} (497)

The first pair can be interpreted as the negative and positive frequency modes in
the far right (0 — + c0) while the second pair corresponds to positive and negative
frequency modes in the far left. [We define positive frequency as the one with decreasing
phase in time but increasing phase in space. So the negative frequency in time will
become positive “frequency” in space with the v« y* change]. A meaningful theory
can be constructed out of any independent pair of these solutions. We will not obtain
any pair creation in the manner in which we obtained it earlier.

What is usually done in the literature at this stage is the following: Since the natural
definition of particles in the far left does not match with the natural definition of
particles in the far right, one can attempt an interpretation for particle creation in
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terms of ‘tunnelling’ across the potential. [To be precise, what we will be concerned
with is not tunnelling but its close relative, ‘over-the-barrier- reflection’; see Marinov
and Popov 1977; Landau and Lifshitz 1973 (p.190)]. This approach leads to the
same result as before. To see this, consider a mode which is right-moving in p >0
region. [i.e., positive frequency for p— + 0o]. This is given by D((1 —i)p). We look
at its behaviour in the left, p— — c0; we can express it as a superposmon of
D,(— (1 +i)p) and D(— (1 —i)p). Using the relation

. (2m)'/ in .
D,(z) = exp(inp) D ,(— z) + (=) exp(i(p + 1))D_,,_1(-— iz) 4.98)
we get '
(2!
D((1 —i)p) = exp(inv*) D+ (— (1 —i)p) + (=)
X exp(%(v* + 1)>D\,(——(1 +i)p). 4.99)

Asymptotically as p — o0

¥ =Do((1-)p) 2 (/2" p” e"p(%" z)e"p <_%V*>

= Bp*" exp(%;ﬂ) (4.100)

while, as p — — 00,

w=exp(inv*){(znr*/zthV*exp(—%v*)exp(%pZ)}
+ B (o + 0 W2l exn( Ev ) exp( Lp2
(= v*) p ) P P ) P 2P

. » \
. i i,
=Alp|’ exp<§p2)+C|p|”exp<—§p‘). (4.101)

We can identify the transmission and reflection coefficients as

B C
T=>-;R=—. 4.102
yl y (4.102)

A simple calculation now gives
| T|? = exp(— mA);|R|> = 1 + exp(—mAd). (4.103)

We note that the reflection coefficient is greater than unity signalling the well-known
Klein’s paradox (Fulling 1989). The transmission factor and the excess over unity of
the reflection factor are attributed to the pairs created by the field. These expressions
clearly agree with the results obtained in the time-dependent gauge. [This idea can
be cast into a more formal language; the key point is that when A, is non-zero,
positive frequency modes and positive norm modes need not be the same; for a detailed
discussion see Fulling (1989)].
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This is the conventional interpretation. We will examine this situation more closely
in the next section; before that, it is worthwhile to see what happens to the path integral
kernel in this gauge. If we take E = E(z)z, B=0 in the gauge 4* = (A(2),0,0,0) the
path integral kernel becomes

0 .0 cQ) —
K(x%x,,2;x%x,,2/;5) =

d?*p, d , ] 2 1 i
= f(:;z (2% <x‘ exp{lz—s[(co—qA)2 —pi+ 0 —m?+ ’8]} Y >
- [Snde exp| S (p3+m - iﬁ>]< o {502+ =) } ‘)
- J dz;;w exp[ —f'zf(pi+ m? -is)]sf(z,z; ) (4104

with the hamiltonian
H=— -5 —L(—qA(2) (4.105)

This is the same hamiltonian as before with the replacement in the dummy variable;
t<>z. It is now obvious that L calculated here will be the same as the one computed
in the time-dependent gauge as long as the field is constant in space and time.

Incidentally, this analysis also reveals another interesting fact. The L. will always
be the same for the two vector potentials: 4’ = (f(z),0,0,0) and 4 = (0,0,0,1(2)) where
f in both cases is the same function of its argument. When £ is a linear function,
both these gauges correspond to a constant, homogeneous electric field. Bur notice
that, in general, the electric fields arising from these two potentials are quite different.
Nevertheless the particle production in these two fields will be the same. This curious
fact does not seem to have been noticed in the literature.

4.6 Comparison of the two gauges

The study in the previous sections reveals the essential differences and similarities in
the quantization of the scalar field in two different gauges. We will now compare
these results (Padmanabhan 1990, 1991a). ‘

It is important to realize that the “particles” (and, of course, the vacuum state)
defined in these two gauges are quite different. To begin with, it must be clear that
the mode functions in these two gauges do not refer to the same ‘particles’. This can
be seen in the following manner: The positive frequency mode in the AP gauge

ot x)=F, ko(X) eXp(— it + ik,y + ik, z) - (4.106)

can be gauge transformed into the Af" gauge by the usual addition of the phase. We
will then get,

DL, X) = F\ ,(x)exp(—i(w + gEx)t + ik,y + ikzz) (4.107)

which is not a pure positive frequency mode in the 4" gauge.
Since the choice of positive frequency modes in these two gauges do not match,
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the vacuum state defined in one gauge will contain the ‘particles’ defined by the modes
in the other gauge. This particle content can be ascertained by evaluating the projection
of the (gauge transformed) positive frequency modes ¢,";™™(t,x) onto the negative
frequency modes Y (t,x) =g, (t)expik-x or 5 (t,k)=f; (t)expik-x, using the
conserved, gauge invariant Hilbert space scalar product

(f,9)= ifdx [f*(00 +igAo)g — 900 — igAo)f*]. (4.108)

Since the negative frequency mode of infinite past #~ is not the same as that in the
infinite future ¥, it is clear that we cannot have both the products (1, ¢....) and
(Y™, urans) vanishing. It is, for example, possible to choose the solution to (4.94) in
such a way that (17, ¢;..) =0; and (1™, Pyf.ns) = 1. This ensures that the concept of
the particle (and vacuum state) defined in the static gauge A(® is the same as the
concept of particle defined in the infinite past in the gauge A{*). A complicated but
straightforward calculation will then show that such a choice leads to the result

(7, brans) > = 2> =1, (4.109)

in the infinite future.

This result may be summarized as follows: In the static gauge, one may define the
particle concept in a time independent manner; vacuum state remains a vacuum. In
the gauge A{" it is not possible to provide a particle definition except asymptotically.
We can, at best, make these definitions match at one instant, say, in the asymtotic
past. Then, in the asymptotic future, the vacuum state will remain a vacuum state as
far as particles of gauge 4 are concerned but will be populated by the particles of
gauge AL,

The inequivalence can also be seen by comparing the Green’s functions (constructed
out of our choice of mode functions). Let G, (x, x') be the Green’s function in the time
dependent gauge. Under the gauge transformation with a gauge function f(x), the
Green’s function gets multiplied by the factor expig(f(x) —f(x)). The conventional
proofs of the gauge invariance of quantum electrodynamics is based on the tacit
assumption that the Green’s functions are transformed in the above manner. But in
our case the Green’s function G,(x,x’) in the space dependent gauge is not the one
obtained by gauge transforming G (x,x’). [This is trivial to see by comparing, say,
the time dependence of the two Green’s functions. Of course, the result is obvious
from the fact that the mode functions in the space dependent gauge are not the ones
obtained from the mode functions in the time dependent gauge by the standard gauge
transformation. Since both the Green’s functions satisfy the same equations they
essentially differ by the choice of boundary conditions.] It is well known from standard
analysis in field theory that the Green’s functions carry complete information about
the vacuum state and particle spectrum of the theory. Thus we can conclude that the
particles defined in these two gauges are not physically the same.

It is also possible to construct model “particle detectors” to provide an alternative
definition of particles. These detectors essentially measure the temporal Fourier
transform of the Green’s functions. Such an analysis leads to the same conclusions
as above.

One may now ask: What about the calculation of L, in the two gauges? Why do
these calculations give the same result? The reason for this result has to do with the
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tacit boundary conditions assumed in Schwinger’s proper time approach. The entire
philosophy behind the computation of L, from the kernel is based on the assumption
that the fields are switched off in the asymptotic past and future. This fact is not of
any special significance in the time dependent gauge because, in that gauge, we were
actually handling an electric field which was varying with time in an arbitrary manner.
While repeating the calculation in the space dependent gauge (using Schwinger’s
approach) we have tacitly assumed that this field also has a hidden time dependence
which makes it vanish in the asymptotic limits. Thus we have tacitly assumed that the
‘in’ and ‘out’ vacua of the space dependent gauge are defined at late times when the
field is switched off. These vacua are the same as the ones in the time dependent
gauge with the fields switched off asymptotically. It is, therefore, not surprising that
we get the same particle creation rates in both the gauges if we use the path integral
approach. Schwinger’s method is ingenious in the sense that it automatically takes
into account this boundary condition. But in our discussion in §§4.4 and 4.5 we
explicitly constructed the mode functions without assuming that the field vanishes
asymptotically. Quite clearly, the concept of particles in this case is different from
the one obtained by assuming that the fields vanish asymptotically.

Notice that, even in the path integral approach, it is only the coincidence limiit of
the kernel, K(x, x;s) which is the same in both the gauges. The kernel for arbitrary
points K(x, y; s) computed in the two gauges are inequivalent—in the sense that they
are not related to each other by a gauge transformation. It is this feature which makes,
for example, the Green’s functions in the two gauges inequivalent.

It is worthwhile to ask: what happened to the gauge invariance of the theory in
the case of a constant electric field which is not switched off asymptotically? In the
classical theory, we are allowed to make gauge transformations A;— A+ 0;x with
any sufficiently smooth y. However, this is not the case in the quantum theory. The
allowed class of gauge transformations are now only those which can be implemented
as unitary transformations in the Hilbert space of states. This will necessarily impose
some constraints on the global, asymptotic behaviour of the allowed set of functions
x which induces gauge transformations. It can be shown that the gauge transformation
we are considering does not belong to this set. (For a detailed discussion of this issue,
see Nenciu and Scharf 1978; Seip 1982 and the references cited therein. For a possible
approach to construct theories which depends only on the electromagnetic fields and
not on A4;, in this specific context, see Capri and Roy 1991). Thus the theories based
on gauges A" and A® live in different Hilbert spaces; there is no unitary

transformation connecting them. [Classically too, there can be situations in which

a formal transformation is not canonically implementable. Possibly there is an
interesting avenue here which needs to be explored.]

The overall picture which emerges from the above analysis is the following: If the
electric and magnetic fields vanish asymptotically in space and time, then particles
can be defined unambiguously in these asymptotic regions. (In these regions, we set
A, = 0.) The S-matrix elements describing the transition between the asymptotic states
is well defined and gauge invariant. This is probably the only situation in which an
unambiguous statement can be made. If the field does not vanish asymptotically or if
we desire to have a particle definition in the “strong field region” (rather than be
contend with the particles defined asymptotically), then we have to necessarily specify
the vector potential as well. It is possible that the particle definition remains the same
for a subclass of vector potentials connected by gauge transformations. Whether such
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a subclass can be specified in any meaningful way is not known (at least to the author)
and seems worth investigating. It is also possible to construct toy models which serve
as detectors for particles and use them to define the concept of particle. In general,
such a definition does not agree with the definition based on quantum states. However,
it is probably worth studying the response of detectors and compare them with the
results obtained above. Note that if the detector is made of normal physical systems
and coupled to electromagnetic field in a gauge invariant way then—by very
definition—it will give a gauge invariant response. The ambiguity will not be in the
output we receive from the detector but in translating this output to the concept of
particles. (There is also some issues of principle involved in describing operationally
the concept of an electromagnetic field in a particular gauge; we will comment on this
issue at the end of §4.7) These questions are under study.

4.7 Quantum theory in a singular gauge

We shall now consider quantum theory in a very different kind of background
(Padmanabhan 1991a). These backgrounds, which involve description of nonsingular
fields in singular gauges, occur both in electromagnetism and gravity. We shall consider
the electromagnetic case here; the analogous situation in gravity will be considered
in §5.3.

Since we expect physical processes (like pair creation) to be invariant under the
gauge transformation, A, — A, + 0,f, (at least for a class of functions) we expect L. g
to depend only on F,, and not on the gauge chosen to describe the field. It is interesting
to see how this result comes about in the path integral approach. Under the gauge
transformation A,—A4,+d,f, the term (q4,%*) in the lagrangian picks up the
additional piece (qX*d,f) and the path integral amplitude is multiplied by the factor

P=expig f s dr(%40,f). | (4.110)
0

It is usual to ‘perform’ the integration in the above expression and obtain

P=expiq J; dr%f[x“(r).] =expiq[f(x)—f(x)]. (4.111)

If this result is valid, then the physics will be gauge invariant. The L only involves
the coincidence limit K(x,x;s) for which-assuming we can take f(x')= f(x) when
x = x'—the factor P is unity. The propagator is only modified by a phase, and it can
be shown that amplitudes for physical processes do not change.

The above discussion can be cast in a different form which is more useful in what
follows. We may say that path integral amplitude for a given path x(r), connecting
x and x' gets multiplied by a factor

X

F =exp iqf dixt A, (4.112)

in the presence of the electromagnetic field. If we change the gauge, F will be further
multiplied by P in (4.110). As long as we can integrate (4.110) to obtain (4.111),
each amplitude will be multiplied by a factor which is independent of the path
(and dependent only on the end points); so the physics will remain unchanged.
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There are, however, situations in which the result (4.111) cannot be.obtained from
(4.110). It is precisely these cases which provide interesting analogies with phenomena

in curved spacetime and accelerated frames.

ivation leading to (4.111) fails in two physically interesting cases. The first
onziexsgir::ﬁatils well—kmg;wn(in a different grab—is th.e\ fo}lowigg .(Padmanabhan
1991b): Suppose one of the spatial coordinates we are using lS.pCI'IOdIC but f(x) 'doe?s
not respect this periodicity. For example, we may use the x* =(_t, r,f, 2{) co’?rdmatg
system and take f(x') = B [clearly, f(6 + 2nn) # f(6)]. A path which “winds” aroun
the origin in xy-plane n-times will now produce an additional factor

F,=expigB(@ — 0 + 2znn). (4.113)
The original kernel could have been written as
Kpo¥,x8)= Y K,(x,x5) (4.114)

n= -

where K, is the kernel obtained by summing over paths with a given ‘winding number’
n. The kernel in the presence of a gauge-function f will be

Kptoxs)= 3 K, (¢,xs)expligB(0 — 6 + 2mn)]. (4.115)

n=-—aw

This will modify the L. as well, since the coincidence limit is also affected.

Kp(x',x;8)= Y, K,(x,x;s)exp[— igB2nn)]. (4.116)
n=-o
Notice that the kernel invariant under the change ' — 6 + (2r/gB). Thus 0 now has
a periodicity of (2n/gB). It is clear that the propagator G(x',x) will also exhibit this
periodicity.

This above example is essentially a calculation of K (and L) for an Aharonov-Bohm
potential. It is clear that, even though A, appears to be expressible as (8,)) locally,
we do not have a pure-gauge situation. The ill-defined nature of f at origin leads to
a delta-function magnetic field along z-axis (Aharonov-Bohm field). This is most easily
seen by noticing that the flux through a path around the origin

2n
fj;Audx": f Ayd@ =2nB (4.117)

0

is non-zero. Paths with different winding numbers cannot be continuously deformed

to each other. Note that the f and A, in this case can be written in the Cartesian
coordiantes as

- -1 Y\, _ Y X :
f=Btan (;),Au—B<O,x2+y2,+x2+y2,0). (4.118)

Let us now }ook at a more unfamiliar situation (which is of greater importance in
what follows) in which (4.111) fails. Consider a different vector potential:

- Y b :
Au—B(Oazz’:;E""xT_‘}”z“’O) (4.119)
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which can be obtained from the gauge function

Btanh~(y/x); |y <|x]

Btanh™*(e/y); 3] > e (4.120

f(X)={

In the previous case, f(x) was multivalued; in the present case, it is singular at x = + y.
The function A, is badly divergent on the planes x = +y. The integral I which
determines the phase factor for the path,

I= f dux* A, [x4(r)] 4.121)
0

will give a well-defined answer [f(x(s)) — f(x(0))] only if the path x*(s) does not cross
the singular planes x = 4 y. But in the path integral kernel, we have to sum over all
paths whatever may be the end points. In such a sum all paths which cross this surface
will give a divergent contribution, thereby making the entire kernel ill-defined.

We thus reach the conclusion that if the gauge function diverges on some surface
which divides the spacetime into two regions, then the kernel cannot be defined. In
fact we cannot even define the amplitude for any path which crosses the singular
surface; the integral in (4.112) cannot be evaluated across the singularity. This is, of
course, a more serious situation than when gauge function becomes ill-defined only
on a point; in that case we could manage to define the kernel by including the
appropriate phase.

One important consequence of this result is the following: We know that the
semiclassical propagator can be represented as

%(x,x') = N expiS(x, x') (4.122)
where § is the classical action satisfying the Hamilton-Jacobi equation
g""(8,8 — qA,)(0,S — qA,) = m>. (4.123)

[This semiclassical propagator is just a function of the spacetime co-ordinates and
is, of course, quite different from K.]. The Hamilton-Jacobi equation is solved formally
by the function

x!

S=5,(x)+q J A, dx* - (4.124)

X

where S, satisfies the Hamilton-Jacobi equation in the absence of the electromganetic
field. Therefore the probability amplitude for propagation from x to X', in the
semiclassical limit, is now controlled by the factor

-
P=exp[+qu~ A, dx"jl. (4.125)
If x and x’ lie on different sides of the singular surface we have no means of even
defining this amplitude. ‘ .

Unless some external criterion is given, defining the integral, we cannot proceed
any further. In the example given above, no such natural criterion is available and
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we have abandoned the problem as ill-defined. But such a criterion arises in a disguised
form in some other situations when the function f depends on time ¢. This is because
the calculations involving path integrals are usually performed in Euclidean space
(or done in the Lorentzian space with a suitable ie prescription, which is equivalent)
and the final result is analytically continued back to Lorentzian space via the rule
tBuctidean = Lg = it; Sp = is. [Under this substitution we induce the change

| exp[—i j dr(t‘z—)iz)jl—-»exp[-— j de(ig-»xz)J ‘ (4.126)

making the argument of the exponent negative definite.] The nature of the singularities
of the function f(x)- and A,(x)- can change drastically under Euclidean continuation.
Some potentials which are singular in Lorentz spacetime can acquire strange
interpretations in the Euclidean sector and could give raise to interesting effects.
As an example, consider an A, which is obtained by replacing y by ¢ in (4.119):

A”:B<x2x S o,o) (4.127)

-t x2—¥
which corresponds to the gauge-function

e {Btanh‘l(t/x); lt] < |x]

Btanh™!(x/t); |t|> |x| (4.128)

Everything we said above for the potential in (4.119) is applicable to this case as well;
the integral I'is ill-defined for paths which across the x = + ¢ planes (light-‘cone’s).
Unless an extra prescription is given, the integral cannot be evaluated in the Lorentzian
space. , :

Suppose we now decide to invoke the Euclidean prescription to evaluate the path
integrals. This would have made no difference in the case of (4.119); that potential is
as singular in the Euclidean sector as in the Lorentzian sector. However, the situation
is different for the potential in (4.127). The singularity in two planes (x = +¢t) in the
Lorentzian space collapses to a singularity along a hypersurface in the Euclidean
sector. [This is most easily seen in the xt plane. The function in (4.127) is singular
on the two lines x = + ¢ in the Lorentzian sector. Euclidean continuation will change
the denominator of (4.127) to (2 + x?); so the potential in the Euclidean sector will
only be singular at the origin of the t;x-plane. This is precisely the kind of situation
we have encountered previously in the case of Aharonov-Bohm potential which we
know how to handle.] In the Euclidean sector the electromagnetic coupling term

becomes:
dt —
exp[iq Jdr Aua&“}=exp iqBJIix—i——g{jl
x —
xdtp —tgdx
B || Z=E_E°~
Cepe H X1 }

=exp[qBJd(tan“‘%—>} ‘ (4.129)
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Note that the argument of the exponent is real and of indefinite sign but is perfectly
bounded. We can therefore define AP through the relation

t
AP dxt, = gB d( tan~! (f)) ' : (4.130)
corresponding to
. t

This is similar to the Euclidean version of Aharonov-Bohm potential in the tpx-plane
[In the Euclidean space, g x-plane is treated in the same footing as xy-plane]. Since
we know how to handle the singularity at the origin, we can now compute the kernel
etc. by this method and analytically continue back to the Lorentzian spacetime. If
the kernel and Green’s function are defined in the Euclidean sector, they will exhibit
periodicity in the 0. On continuing back to Lorentzian sector, we will get a Green’s
function which is invariant under the strange-looking transformation

tan”(E)etan"i(E)%-zz. (4.132)
x X B

By this process, we can, if we want, give meaning to an object which was originally
ill-defined in the Lorentzian sector. We have to, however, pay a price for this luxury,
which is illustrated in figure 1. Let us compare the propagation amplitude for a
particle to go from A to B with the amplitude to propagate from B to A. Neither
amplitude can be calculated in the Lorentz spacetime because of the singular surface
coming in the way. Calculating it using the Buclidean extension is illustrated
diagrammatically in figure 1. To go from A to B, we first go from A4 to C in the
Euclidean space and then proceed from C to B via analytic continuation. Now consider
the amplitude for propagation from B to 4. Our procedure will be to go along the
path BC first (analytic continuation) followed by CA (in Euclidean space). But in the
Euclidean space, the paths 4 to C and C to A will give amplitudes which differ by

TE= it

Figure 1.
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a real factor in the exponent! The angular co-ordinate in the Euclidean xtg-plane
changes from 0 to (n/2) as we go along A4 to C and contributes a term exp ¢B(/2)
(with no i-factor; see (4.130).); the path from C to 4 gives exp — ql?(n/Z) 0 that these
two amplitudes differ by the factor exp gBn making the probabilities differ as

P(A— B)=P(B— A)exp +2nqB. | (4.133)

Purely from the mathematical point of view, this result suggf?sts that it i; less probable
for the region # to gain particle from & than to lose particles to & if gB> 0. (For
antiparticles with opposite charge, the signs have to be changed.) If we compute
physical processes in # using the usual Feynman rules,_then one has to -add' exterpal
sources along the boundaries x = =+ ¢ to take this effect into account (for a discussion
of this point, see Lee 1986). o

The essential idea which allowed one to perform the above calculation is the fact
that singularities on the light cone are ‘regularized’ in the Euclidean sector. (So,
obviously, the trick works only for a very special class of singular gauges.). The above
result can be seen more clearly by noting that, in the Lorentzian sector, our
prescription is equivalent to replacing the quantity (x* — t?) by (x* — > + ig). This has
the consequence of giving an imaginary part to the integral

?l ——
J=rAidxf=BH —xdt—td"—] (4.134)

2__ 42 4 g
* X —1°+1e

when the path crosses the singular surface. For example, if we evaluate J along a
straight line of infinitesimal length: x=s4¢; t= —~s+¢; —Jd <s< + 6 (which cuts
the singular line x =t orthogonally at (c,c) and has the length 26) the integral will
pick up, over and above the principal value, the imaginary part

ImJ = —inB (4.135)

where we have taken 2 and 2 in the right and the top quadrants respectively. The
amplitude to propagate from 2’ to 2 will contain the negative of the above result
in the exponent. The imaginary part implies that these two amplitudes differ by more
than a phase:

|t (P~ P)2 = |4 (P - P)Pexp(+ 2ngB). : (4.136)

What do we make of this strange result? In a way it is quite upsetting especially
since there is no electromagnetic field anywhere in sight. The initial impulse, of course,
will be to suspect that there is something wrong in the way we have made our
Euclidean continuation. Probably we should search for some other procedure which
will only contribute a phase when we go from A to C or C to A. It is doubtful whether
one can come up with such a procedure; but even if one does for this particular gauge,
it will be possible to produce some other external gauge in which crazy behaviour
occurs. (Notice that, we have just written down the Lorentzian action, and analytically
continued it in the most straightforward way; if the gauge was non-singular, no one
would have raised eyebrows at this procedure.).

On second thoughts, it will be clear that one is not quite right in assuming that
the electromagnetic field is zero. The easiest way to see this is again to look at the
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Euclidean sector. Here the vector potential corresponds to that of Aharonov-Bohm
cylinder situated at the origin of the tgx-plane and hence contributes a delta function
field at the origin. Analytically continuing back to the Lorentz spacetime, one would
be led to a delta function like field along the null surfaces. Such a field will, of course,
make the particles and antiparticles to be polarized away from the singular surfaces
x = + tin the manner discussed above. So if we take Euclidean interpretation seriously,
then we should be cautious about deciding which potentials represent ‘pure’ gauge.

Notice, however, that there exists one physical reason for treating the above result
as of without any operational significance, in the context of electromagnetism. This
- is because we do not know how to give operational meaning to the condition: ‘Describe
a electromagnetic field in a particular gauge corresponding to a given function A,(x)’.
All we can do with capacitor plates and coils of wires is to produce a given
electromagnetic field; there is no known way of operationally implementing a particular
gauge. So if we obtain a strange result in a singular gauge, all we can do is to invoke
a rule that such gauges should not be used in the mathematical description.
[Presumably, this issue is related to the canonical implementability of the gauge
transformation mentioned at the end of §4.6].

All the same there is an important lesson to be learnt from the above example,
which motivated its study in the first place. It turns out that the corresponding
situation in the case of gravity has an entirely different physical meaning. Since it is
possible to invoke observers in different states. of motion, it is probable that one can
give a physical realization to the choice of different co-ordinate systems. Such a choice
is analogous to the choice of a gauge in electrodynamics. We will see that the analysis
performed above in electrodynamics, when carried out in some spacetime manifolds
described in singular co-ordinate charts leads to the familiar ‘thermal’ effects in gravity.

5. Quantum theory in external gravitational field

- We shall now consider the analogies between quantum theory in an external
electromagnetic field and quantum theory in a gravitational field. The discussion will
be limited to three important features: (1) The formal correspondence between pair
creation in an electric field and pair creation in cosmology. (2) A comparison between
gauge invariance in electromagnetism and coordinate invariance in general relativity.
(3) The thermal effects which arise due to quantization in singular gauges.

5.1 Pair creation in electric field and expanding universe

There is a formal correspondence between pair creation in a time dependent electric
field and pair creation in an expanding Friedmann universe. This can be seen as
follows: Consider, for example, the action for a scalar field ®

A= — Jd“x. /—~g3®[0 +m?+LR]D (5.1)

in the Friedmann spacetime with the line element

ds® = a2(¢)(dt? — dr?) (5.2)
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[This action is conformally invariant in the limit of m going to zero. This fact makes
our analysis easy, however the results are valid even for non-conformal coupling].
Writing ® as (¢/a) and exploiting the conformal flatness of the metric, we can reduce
the action to the form

A= —%Jd“wmna&mzaz(lﬁ)] 0. (5.3)

To study the pair creation, we can again use the effective lagrangian method. The
kernel we need is

K(x,y;5) = (xlexp[— sy [0 + m*a?(t) — ie]]1y)

d’p . 1rA2 4 2 2 2 ; /
= W(tlexp[—zs;[@, + p* + m*a*(t) —ic]]|t’)
d3
J(Z 7 exp[— is3(p? —ie)19(¢,t';5) (5.4)

where ¢ is the propagator for the quantum mechanical hamiltonian
H=—-— —im?a®(). (5.5)

Comparing this expression with the corresponding one for the electric field we can
make the identification: m?a?(t)<>(p, — qA(t))>. Thus there exists an one-to-one
correspondence between time dependent electric fields and expanding Friedmann
universes as far as the quantization of an external scalar field is concerned.

‘As an example, consider the case of constant electric field. The analogue in
cosmology will be a universe with the conformal factor:

a®( )--—1—,‘,‘—(pz*i—th)2 —ocz(t+ to)% o= (%) (5.6)

In the more familiar coordinate system with

ds? =dt? — a?(r)dr? (5.7)
this corresponds to the expansion law |

a(t) = (2ut)M? oc 712 (5.8)

This corresponds to a radiation-dominated universe. Similar correspondences can be
established in other cases which allow one to translate the results in one physical
situation to another.

5.2 Quantum theory in a Milne universe

We shall now take up the analogy between gauge and coordinate invariance
(Padmanabhan 1990). To do this, one requires some region of spacetime manifold
which can be represented conveniently in two different co-ordinate systems; one system

*
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in which the metric is static and another in which it depends only on time. The
simplest choice happens to be the upper quarter of the flat spacetime. In this
‘top-quarter’ of the Minkowski spacetime (ie. the region T>|X| which we will call
(U"), the line element can be expressed in two different ways:

ds*=dT?—-dX?—-dY?—-dz>
=dp? —g?p?dl? —dY? - d2Zz2
= [exp(2gt)](df? — dx?) — d ¥? — dZ2 (5.9)

by the transformation gX = exp(gt) sinhgx and g T = exp(gt)cosh gx; gp = exp(gt).
The intermediate form of the transformation shows that the metric belongs to the
class of anisotropically expanding cosmological solutions. Because of this similarity,
we will call this co-ordinate system the ‘Milne Universe.’ Since the ‘static gauge’ now
is just the inertial co-ordinates, we only have to work out the quantum theory in the
Milne universe. We want to study the evolution of a quantum field along the
hypersurfaces defined by constant-t (in the Milne coordinates) and compare it with
the conventional Minkowski quantization. Since the metric in Milne co-ordinates
depend only on ¢, the Klein-Gordon equation

1 :
ﬁai(\/ —99% 9, $)—m*¢p=0 (5.10)
can be separated as

b(x,0)= 3 {afi(t)exp(ik.x) + h-c} = ¥ (¢{H) + h-c). (5.11)

k

This equation has the two linearly independent solutions which may be taken to be
H{)(p) and H®(p) where H 4(2) is the Hankel function. We write

J@)=c H(p) + c, HD(p)
=CI(JV+ iNv)+62(Jv—iNc)
=(c; +¢3)J,(p) +i(c; — ¢2)N,(p)
=b,J,(p)+ib,N, (5.12)

where v=1ip and J, and N, are the Bessel functions (Gradshteyn and Ryzhik 1965).
We are interested in the limits t— + o0. From the properties of the Bessel functions,
it is easy to see that '

) . b1 . p~" 1
~ tvm) R
till}lwfk(t) {(b1 + ib, cot vm) PTA 1) ib,cosecvm 7T —v)}

(5.13)

Since p*' ~exp(+ gvt) = exp(= ilk,|t) (in U) and we want S to go as exp(— iwt) for
the positive frequency mode only the second term is admissible. Therefore the positive
frequency modes in the infinite past are the ones obtained by the condition

COSIPN _ i, OSRPT __p cothp. (5.14)

b1 = "ibz P
sinipm isin pm
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We should take f,(t) to be

b,
sinh pn

fu(t)=ibycosecvnJ _, = J_,. (5.15)

The value of b, is fixed by the normalization condition:

i(f*f—f*) = @m)>. (5.16)
Straightforward calculation gives,
1 \3n(sinh pr) 1\ /m\, .
2 | - = =) (= h 5.17
b2l (Zn) 5=\ az) 35 )einhpm (5:17)
so that
1 \3/ = \cosh?pn
2 2 20p — [ — ) . N
b, = b, coth?mp (m) (2g) e | (518

We know now that, the solution which behaves as exp(— iwt) near t - — o0 in U, is

= —=2_7_(p)

sinhprn

' 1 3/2 1/2 J_ 3
(VT (E) ) ~ (5.19)
2n) \2g/) sinh'Zpn
il | It is clear from the asymptotic form of the equation for f that we will not get
l exp(+ iwt) in the infinite future. Therefore the positive frequency mode has to be
J identified by the WKB analysis, as in the electromagnetic field. This analysis shows

that the proper mode is the one which behaves as exp(—ip) in the infinite future.
Since H'® behaves as exp(—ip) near large p we can set ¢; = 0 and take the solution to be

P g(t) = ¢, HP(p). . ’ (5.20)
. To normalize this solution, we will again use the condition

W=ilg*g — gg*)=(2m)~>. | | (5.21)

lel? = (—1—) (-’i)'expu p) (5.22)
2 2rn | \4g ) ‘

We can now express the positive frequency solution of the infinite past in terms of
the positive and negative frequency solutions of the infinite future and identify the
Bogoliubov coefficients. Using the identities '

This gives

i) ] HY = .i J,— i ive) ]J -
[exp(ivm) 1 HY = ——J,— —— [exp(vm) 1/,

[exp(—ivm)]JHP = —— :

v

sin vzt sin 7tv [exp(—wm)1J -, (5:23)
and

[exp(ivn)] H? + [exp(— ive)]HR =27 _, (5.24)

s

L5 S
B S
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it is easy to show that

1
f(f)—ﬁ(

This corresponds to the Bogoliubov coefficients

1 \1!/2 |
Sinhnp> {lexp(=mp/2)]g*(0) + [exp(np/2)19 (@)} (5.25)

1 1 112 1 1 1/2
o= ﬁ (m) exp ('ﬂ'p/z)v B = —\/—E(Slﬂh 7Zp> CXp( — 7'Cp/2) ‘ (526)
We see that

2 po . Llexp(mp) —exp(—mp)] _

* 2 sinh 7p

1 (5.27)

as it should. The number density of created particles is

_ l 2exp(— mp) _ 1 _ 1
2exp(np) —exp(—mp) [exp(np)]—1  [exp((2n/g)|ks)]— 1
(5.28)

which corresponds to a thermal spectrum of particles in the longitudinal momentum
with the temperature (g/2n).

Similar result can be obtained in a different context which is well-known in literature
(Chitre and Hartle 1977). Investigations in the study of particle production by
expanding Friedmann universes have shown that, in a spatially flat model with the
expansion law a(t)oct a thermal spectrum of particles is produced at late times.
Interestingly enough, the analysis is valid in 2-dimension as well in which case the
spacetime is just the TX-sector of the Milne universe. Our analysis shows that the
other two dimensions merely go for a ride.

Even though (5.28) corresponds to a temperature of (g/2x), the result is very different
from the standard result obtained in Rindler frame (Fulling 1973; Davies 1975; Unruh
1976) for.two reasons: (i) We are working in the upper and lower quarters, while the
Rindler co-ordinates exist only in the right and left quarters. This makes the entire
situation quite different. (ii) There is no ‘particle creation’ in the Rindler co-ordinates
(t,p,y,z). The Rindler mode functions behave as exp +iwt’ for all times. The
conventional result only says that these mode functions are connected to the
Minkowski modes by a Bogoliubov transformation with off-diagonal term which
leads to a result similar to that in (5.28). In contrast, we are now working with a
non-static background; the positive frequency mode in the infinite past does get mixed
up with positive and negative frquency modes of the infinite future.

The last feature is somewhat disturbing; it shows that, if we had no prior knowledge
that we are dealing with flat spacetime we would have accepted the result in (5.28)
as ‘genuine’ particle creation! In fact, the procedure we have followed is identical to,
the one usually adopted to study field theory in expanding universes. Our result
suggests that ‘particle creation’ can be spurious effect even in a curved spacetime; it
certainly will be co-ordinate dependent. We have to produce a sensible criterion
which will distinguish particle creation due to spacetime curvature from effects due
to the choice of co-ordinates. Without such a criterion, it is meaningless to talk of
quantum field theory in curved space.

pr=
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The same region of spacetime can also be represented in the static Minkowski
coordinates with the modes ®* ~ exp Fi(w T— K-X). In this gauge, of course, there
is no particle creation and the vacuum state remains a vacuum state at all times. It
follows that the particle concepts in the Minkowski and Milne co-ordinates are
inequivalent. The Minkowski vacuum will contain Milne particles. We can obtain
this particle content by evaluating the scalar products (®~, f*) and (®~,g*). It turns
out that

- £+12 — 1 . - Y2
@ = e =T (@ =0 (529)

In other words, the particle definitions in the Minkowski and Milne co-ordinates
agree in the asymptotic future. However, the Minkowski vacuum will contain a
thermal spectrum of particles in the asymptotic past.

Similar co-ordinate system can be introduced in the ‘bottom-quarter’ (— T> | X|)
of the Minkowski spacetime. In this region, the particle concepts match in the
asymptotic past but not in the future.

5.3 Spacetime manifold in singular gauges

We shall next consider the gravitational analogue of the effects discussed in §4.7. It
turns out that the ‘thermal’ effects in certain spacetime provide this analogy
(Padmanabhan 1991a). Consider a patch of spacetime, which, in suitable coordinate
system, has the line element,

ds? = + B(r)dt®> — B~ 1(r)dr? — r?(d6? + sin®6d ¢?)

= + B(r)d® — B~ 1(r)dr? — d L2 (5.30)
or
ds? = B(x)dt* — B~ (x)dx? — dy?® — dz?

= B(x)dt> — B~1(x)dx* —d L2 (531

Co-ordinate systems of the form (5.30) can be introduced in parts of Schwarschild
and de Sitter spacetimes while the choice [B(x)=1+2gx] in (5.31) represents a
uniformly accelerated frame (Rindler frame) in flat spacetime. We will be concerned
basically with the structure of the metric in the rt or xt plane. Since this structure is
essentially the same in both (5.30) and (5.31) we shall work throughout with (5.30);
the results are extendable to (5.31) in a straightforward manner.

The exponent of the kernel K (x', x; s) will now contain the integral

ﬂ=[ drgy X%k = j df[Biz-B'1x2_+....]. (5.32)

0 0

Quite obviously we will run into problems if B vanishes along the path of integration.
From the nature of our metric it is easy to see that the surfaces on which B vanishes
are null surfaces corresponding to infinite redshift (‘horizons’).

To study the effect of horizons, let us proceed in the following manner: Suppose
that at some r = ro(> 0), B(r) vanishes, B'(r) finite and nonzero. Then near r =r,, we
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can expand B(r) as

B(r)=B'(ro)(r —1o) + O[(r —10)*]
= R(ro)(r—rg). (5.33)

As long as the points 1 and 2 (between which the transition amplitude is calculated)
are in the same side of the horizon [i.e. both are at r>r, or both at r<r,] the
integral in the action is well defined and real. But if the points are located at two
sides of the horizon then the integral does not exist due to the divergence of B~1(r)
at r=r,. ,

Let us first review briefly the conventional derivation of thermal effects using path
integrals, say, in the context of Schwarschild blackhole. Given the co-ordinate system
of (5.30), in some region R, we first verify that there is no physical singularity at the
horizon. Having done that, we extend the geodesics into the past and future and
arrive at two further regions of the manifold not originally covered by the co-ordinate
~system in (5.30). Let us label these regions as F and P. It is now possible to show
that the probability for a particle with energy E to be lost from the region R (i.e.
probability for propagation from £ to £') in relation to the probability for a particle
with energy E to be gained by the region R (i.e. propagation from #' to #) by the
equation

P(loss) = P(gain)exp - ﬁE (534)

This is equivalent to assuming that the region R is bathed in radiation at temperature
B~'. [The derivation in e.g. Gibbons and Hawking (1976) ) actually relates the
amphtudes involving past and future horizons; but it can be reexpressed in the above
manner. ]

The above result can be interpreted differently, so as to bring out the connection
with the case of electromagnetic field. This is most easily done by considering the
semiclassical approximation to the path integral propagator, expressed in the saddle
point approximation, as:

g(xz,tz;xl,tl)=g(2, 1)=N6Xp iA(Z, 1) (5.35)

where A is the action functional satisfying the classical Hamilton-Jacobi equation.
For a particle of mass m, moving in our spacetime the Hamilton-Jacobi equation will
be:

g%(8;A)(8, 4) — m* =0. o (5.36)
The solution to this equation can be represented as

A= —Et+J0+ Ar) (5.37)
with, V

A ()= + f " drB()[E? — B(r)(m? + J*/r3) 142, (5.38)

The sign ambiguity of the square-root is related to the “outgoing” [(0A/dr) > 0] or
“ingoing” [(0A/0r) < 0] nature of the particle.
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The result above is similar to the one obtained earlier in (4.122). This semiclassical
amplitude can be computed using this expression only if the integral in this expression
exist; and it does not exist if the two points lie on different sides of the horizon.

Thus, in order to obtain the probability amplitude in (5.35) for crossing the horizon
(le. when 1 and 2 are on two sides of the horizon), we have to give some extra
prescription for evaluating the integral. Since the surface B = 0 is null (ustlike x = + ¢
in the electrodynamic case) we may carry out the calculation in the Euclidean space
or—equivalently—use the i¢ prescription to specify the contour over which the
integral has to be performed around r =r,. The usual is prescription can be easily
shown to imply that we should take the contour for defining the integral to be an
infinitesimal semi-circle above the pole at r =r,. Thus, the contour is along the real
line from, say, r,(0 <ry <rg) to (ry —¢) and from (r, +¢) to, say, ry(ry >ry). From
(ro —¢) to (ro + &) we go along a semicircle of radius ¢ in the upper complex plane.

Consider an outgoing particle [(04/0r) > 0] at r=r, <r,. What is the amplitude
for it to cross the horizon? Clearly, the contribution to 4 in the range (ry,ro — &) and
(ro +¢,r,) is real. Therefore, '

A(outgoing) = — jmﬂ(dr/B(r))[Ez — B(m? + J*/r¥)]*2 + (real part).
| o (5.39)

[The minus sign corresponds to the initial condition that (04/or)>0atr=r, <ry.For
the sake of definiteness we have assumed R in (5.33) to be positive, so that B <0, at
r<ro. For the cases with R <0, the answer has to be modified by a sign change.]
Evaluating the integral, in the limit of (¢ — 0), we get

A(outgoing) = — [E/R(ry)](— i) + (real part)
| = [inE/R(ry)] + (real part). (5.40)
Now consider an ingoing particle [(04/0r) <0] at r=r,>ry. The corresponding
action is,

ro-

- A(ingoing) = — —[ ‘ (dr/B(r))-[E* — B(m? + J2/r?)]? + (real part)

=[E/R(ro)](+ ir) + (real part)
=[—inE/R(ry)] + (real part). (5.41)

Taking the modulus to obtain the probability, we. get,

P(outgoing) = N exp[ — 2nE/R(r,)] (5.42)
and v
P(ingoing) = Nexp[+ 2zE/R(r,)] ,: (5.43)
$O that |
- P(out) =exp[—4nE/R(r,)]-P(in). , , (5.44)

This result is quite similar to our earlier result (4.136) in the case of electromagnetic
field, and shows that it is more likely for a particular region to gain particles than

[
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lose them. If one tries to do a consistent quantum field theory in this region, one has
to introduce source terms at the singular boundaries. (a detailed discussion of this
point can be found in Lee (1986). Further, the exponential dependence on the energy
allows one to give a ‘thermal’ interpretation to this result. In a system with temperature
B~ then the absorption and emission probabilities are related by

Plemission] = exp(— BE) P[absorption]. (5.45)

Comparing (5.44) and (5.45) we identify the temperature of the horizon in terms of
R(ro). Equation (5.39) is based on the assumption that R > 0. [see the comment after
(5.39)]. For R < 0 there will be a change of sign in this equation. Incorporating both
the cases, we can write the general formula for horizon temperature to be

B~ '=|R|/4n - (5.46)
For the Schwarschild blackhole,

B(r)=(1 —2M/r)~ (1)2M)(r — 2M) +0[(r— 2M)?] (5.47)
giving R =(2M)™ %, and the temperature:

Bt = |R|/dn=1 /87M. (5.48)

[The following point is worth noting regarding the derivation of the thermal effect
in the case of a Schwarschild blackhole: The regularization procedure which is
adopted above is equivalent to replacing M by (M — ic), where M is the mass of the
blackhole. This is identical to the regularization procedure which would have been
adopted in standard field theory if one is dealing with particles of mass M. Probably
this result has no much significance, but it certainly appears as an interesting
coincidence.]. For the de Sitter spacetime,

B(r)=(1—H**)=2H(H ' —r)= —2H(r— H™1) (5.49)
giving ‘
B~'=I|R|fAn=H[2m. (5.50)

Similarly for a metric of the uniformly accelerated frame

| B(x)=(1 + 2gx) = 2g[x + (29) '] (5.51)
and
B~ =(g/2m). , (5.52)

The formula can be used for more complicated metrics as well, and gives the same
results as obtained by more detailed methods.

The above analysis is not intended to be a derivation of the thermal effects;
rather, it is interpretation of results derived by more rigorous methods. This
interpretation, however, has the advantage that it allows one to obtain the thermal
effects by invoking a simple prescription for handling the integrals across the horizon
and emphasizes the role played by the singular gauge.

The Rindler frame discussed above is usually considered to be part of field-free
region, i.e. it represents flat spacetime in a curvilinear co-ordinate system. Our earlier
discussion on pure gauge potential suggests that this aspect needs to be looked at
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closely, especially if Euclidean continuations are used to interpret the theory. In fact,
it has been pointed out by Christensen and Duff (1978) that the Euler characteristic
of the Buclidean sector—obtained by analytically continuing in the Rindler time
co-ordinate—is different from that of standard (Euclidean) space. The difference arises
precisely due to the nature of the singularities along the light cone in the Rindler gauge.

6. Conclusions

One of our aims is to compare the gauge invariance of the particle concept (in
electromagnetism) with the co-ordinate invariance of the particle concept (in gravity).
To do this, we studied the particle definition in two different gauges (which represent
a constant electric field) in Part 4 and the particle definition in two different co-ordinate
systems (which represent a part of flat spacetime) in Part 5. Let us now compare the
results.

To begin with, we need to clarify some conceptual issues. From a mathematical
point of view, the curvature tensor plays the role in gravity which is analogous to
that of the field tensor F; in electromagnetism. (The vanishing of curvature, for example,
signals the absence of gravitational field just as the vanishing of the field tensor signals
the absence of the electromagnetic field.) Similarly we may set up a mathematical
correspondence between the vector potential and the affine connection. These
constructs, of course, are not unique; a given curvature tensor can be obtained from
different sets of connections just as a given electromagnetic field can be obtained from
different sets of vector potential. A gauge transformation connects the different choices
in electromagnetism and the choice of co-ordinate systems connects the different
choices in the case of gravity.

While such a mathematical parallelism can be set up between the two there are
certain important operational differences. A given electromagnetic field will be
produced in the laboratory by using, say, capacitor plates and coils of wire. Such a
field will necessarily be bounded in space and time. More importantly, we do not
know any operational means of implementing a particular gauge potential to describe
the field. (Capacitor plates and coils of wire do not dictate a gauge choice.) Thus the
vector potential is strictly unobservable in electromagnetism (Even phenomenon like
Aharonov-Bohm effect only measure the flux and not the value of the gauge potential).
By asking an operationally well-defined question in electromagnetism, we can be sure

that the results will be independent of the gauge.

The situation is far more unclear in gravity. It is probably possible to produce a
particular curvature in spacetime at one instant by a suitable arrangement of masses,
say. At subsequent moments, the system will evolve in a particular way based on the
laws of gravity. [Coils of wire can be held in place by non-electromagnetic forces; we
cannot do the similar thing for the gravitational case because any agency invoked to
do it will contribute to gravity and change the field significantly.]. Let us assume that
we accept this situation and try to study the quantum theory in such a background
spacetime. We then face the second difficulty: Unlike in electromagnetism, we have
no guarantee that the curvature will be confined to a finite region in space and time.
One of the most interesting situations we want to study involves the expanding
universe which certainly does not seem to have asymptotically flat spacetime regions.

There is also some differences between electromagnetism and gravity as regards
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the observability of the gauge choices. It is usually believed that, by using suitable
rods and clocks, one can actually measure the metric of the spacetime. For example,
the internal dynamics of a system in accelerated motion is expected to be governed
by the proper time measured by clocks co-moving with the system. Thus observers
in different states of motion may provide an operational realization of some of
the gauge choices made in gravity. This is quite different from the situation in
electromagnetism where we have no means of imposing the gauge choice.

However, physically realizable motions of observations cannot lead to gauge choice
which change the behaviour of the metric at infinite distances and time; nor can it
make the gauge function singular at any region. The choice of coordinate system
which led to the Milne universe (or, for that matter, the more familiar Rindler
coordinate system) is certainly not something which can be realized by observers
moving in accordance with the laws of physics. They are mathematical constructs
Just as much as a constant electric field existing from everlasting to everlasting is a
mathematical construct. This is precisely the reason we have decided to compare
them in this paper.

Based on such a comparison, carried out in Parts 4 and 5, we can draw the following
conclusions. If we consider quantum theory in a strictly constant electric field (by
which we mean a field which is never switched off) then we do obtain results which -
are gauge dependent; particles are created in one gauge but not in another. Note that
we cannot use the path integral technique here because no in-out vacuum states exist.
It is indeed possible to reinterpret the particle creation of one gauge as an
over-the-barrier-reflection in the other; such an interpretation is often resorted to but
it does involve certain additional assumptions.

If the field is physically reasonable (in the sense that it does vanish in the asymptotic
past and future) then one can give a gauge invariant meaning to particle creation by
using the particle concepts defined asymptotically. This can be achieved quite neatly
using the Schwinger’s proper time method or more elaborately by matching the
solutions with and without the field.

The connection with gravitational context is as follows: All the examples known
in the literature in which an ambiguity in the definition of particle arises, involve
co-ordinate transformations which either change the asymptotic behaviour of the
metric or become singular at the ‘edges’ of the spacetime domain under consideration
(or both). Milne and Rindler co-ordinates are similar examples of this kind. Such
mathematical constructs are analogous to electric field which is never switched off.
We have shown that under either circumstance the particle concept becomes
ambiguous (gauge ambiguity in electromagnetism and co-ordinate dependence in
gravity). Hopefully this will make the gravitational results somewhat less mysterious.

What about co-ordinate transformations which are physical in the sense that they
are operationally realized by a set of observers moving in accordance with the laws
of physics? A partial answer, in analogy with electromagnetism can be immediately
given. If the asymptotic nature of the metric is not changed by the co-ordinate
transformation then one can always provide an invariant definition of S-matrix
elements using the asymptotic states; then there will be no ambiguity. A more
interesting question would be to ask about the response of physical systems coupled
to the quantum field when the system is in different states of motion. This has been
analyzed extensively in the case of gravity. A similar study can be done in the case
of electromagnetism.
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Lastly one can mention a possible lesson to be learnt from this comparison.
We mentioned before that the breakdown of gauge invariance in the pair creation
in electromagnetic field is due to our using a gauge transformation which cannot
be implemented unitarily in the Hilbert space. We suspect the results in the case
of gravity are of similar origin. The co-ordinate transformations which connect
Minkowski spacetime with Milne co-ordinates (or, for that matter, the Rindler
co-ordinates) spoil the asymptotic behaviour of original metric. It is doubtful whether
such transformations can be unitarily implemented in the Hilbert space of full quantum
theory of gravity. It is very likely that quantum gravity is co-ordinate invariant (just
as QED is gauge invariant) as long as one restricts oneself to transformations which
are unitarily implementable. In such a full theory, the particle concept will be as much
co-ordinate invariant as it is gauge invariant in QED. ‘

The above discussion stresses the fact that the quantum theory remains meaningfully
invariant only under a subset of classically allowed transformations. This subset is
characterized by sensible boundary conditions at large distances. The same conclusion
can be arrived at by a strictly operational approach to the problem: Any physically
realizable electric field has to be confined in space and time; it can be shown that there
is no ambiguity in the particle creation for such fields. Similarly, any physically
realizable co-ordinate system can differ from the Minkowski co-ordinates only in a
finite region of spacetime. (This excludes Milne, Rindler and a host of other co-ordinate
systems as physically unrealizable.). Under such transformations, which leaves the
asymptotic domain unchanged, the standard concepts of field theory will be
co-ordinate invariant. We feel that the results obtained in other cases are not of
practical significance. o

Appendix
A more formal way of deriving the Bogoliubov coefficients in the time dependent

gauge is the following: From the known asymptotic forms of D, functions we get, for
T— + ®©

Dv((l —i)1)= D‘,<\/§exp( — %)r) R (ﬁ ¥ cxp( ——%—v—) exp(+3it?)

D¥((1 + i) = (\/2)" v exp(—}it?) (A.1)

while for 1 — — oo the same functions behave as

Dy((1 ~D)(expim)|z|) =Dv(\/§|1|<exp l¥)> |

3 ,
~ (\/E)Vh["(exp z—;ﬂ) exp(+ %it?)

_ I}(/i‘;cv) exp(inv) eXP(—%ifz)(\/i)v*mv*exp(ii}v)

(A.2)
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and
Dys((1+ i) exp(im)|7]) = D,s(/2|7] exp(— i3m/4))
= (ﬁ)”*lrlv*ew< - :*) exp(—3it?)

1"2/5; )exp( nv¥)exp(+ it?) ﬁ)“\rl‘”exp( — l—i—nv)

(A.3)

Consider now the other two functions. For t— — o0 we have;
. i3n i
D,(—(1—=ipr)= Dv<\/§exp(—z—r)> = Dv(\/iexp(T|r|>>
= D(ﬁexp(%lﬂ)

=(ﬁ)”lrl”em(*in‘))em(%f")
Du(—(1+i7)= (f exp(——v*)exp( 5 ) (A.4)

while for 7 — + o0 we get the behaviour:

D,(1-i)7)= Dv(\/i exp(-ﬁ?)r)
e 5)en( 1)
F\/z_ ) exp(inv) exp(—~ rz)(\/’z‘v"’zv*exp(%fv*))
Dy(—(1+i)1)=D, ( 26xp( )z)
=(/2"" exp( - BT* )exp(gjrz)

- I’?/—%*) éxp(inv*) exp(%.ﬁ) (\/i)“r” exp( — %Ev)

(A.5)

It is clear that near T ~ — oo, D,(— (1 —i)7) is the positive frequency mode while near
TR + 00, Dy ((1+1)7) is the positive frequency mode. Evolving D,(— (1 —i)1) to
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7 =(+4 00) we see

Dv(—(l‘-— i)1)= — F\(/—i—;v) exp(inv)exp(%v*)exp( ~—E§E>DV*((1 +i)7)

+ exp(?) eXp<£§—v>Dv((1 —i)7)

=— 1“\(/——2—;1)) exp(ig(v — 1)>DV*((1 +i)1))

+ (exp inv)D,((1 — i)7). (A.6)

The Bogoliubov coefficients can be read off from this expression; we find:

f = exp(iny) = exp( — g(x + i)); o= %exp( - %u - i)). (A7)

Note that

| BI? =exp(—n4)

B 2nexp(— mA/2) B _ﬁ ‘ ﬂ ~ o
jo* TTE— i) GG +i4) ‘2°Xp( ) )("0311-2 )— 1+ exp(—nd);

(A.8)
clearly, |a|? —|B]*> =1 as it should.
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