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Mach’s principle and the notion of time
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Abstract. The role of time coordinate in the realization of Mach’s principle is highlighted.
It is shown that Mach’s principle is linked to the definition of a ‘particle’. These results
suggest a deep connection between quantum gravity and Mach’s principle.
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In classical Newtonian mechanics, the “frame of fixed stars” (S) is of crucial
importantce. This is the frame of reference in which distant matter in the universe
(stars, galaxies, or some such predecided set of objects; here they will be referred to
as “stars”) is at rest. Newton’s laws are usually stated in such a frame. A particle
shielded from all external influences will follow an unaccelerated trajectory in this
frame. This result can be stated as follows: Let x(t), x,(t)---xx(t) be the position
vectors of N stars and let x(t) be the position of a test particle shielded from external
influences. In a reference frame in which x,(t) = x;(0)'[‘distant stars are fixed’], x(t)
satisfies the equation ‘
d%x

7 =0 (1)

Thus, by connecting up the local behaviour of test particles with the state of motion
of distant matter, we have brought in (a particular version of) Mach’s principle (Mach
1912). In contrast, consider another frame ' in which the distant stars are not at rest
but moves according to the law

X0 = 581* | ®

In this frame—in which distant stars are not fixed—we cannot use (1). However, it
is easy to make a coordinate transformation which will bring these stars to rest; we
can, then, use (1) in such a frame. Transforming back we can find the equation of
motion for the free test particle in our original frame S'. By this procedure we will
find that x’ satisfies the equation: ‘

dzx’ ‘ : :
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Ttis usual to call S as ‘inertial frame’ and S’ as ‘non-inertial frame’; and the acceleration
g [in (3)], experienced by a test particle in ', as due to a ‘pseudo-force’. In its true
form, Mach’s principle does not distinguish between coherent motion of all the distant
matter in the universe and a local transformation to a non-inertial frame.

All this is well-known. But the Mach’s principle has another facet which is not
often emphasized. To bring this up, consider again the frame in which x;(t) = x;(0)—1.e.
distant stars are fixed. Suppose all test particles, shielded from external influences,
follow in this frame, a trajectory x(t), such that:

2
%ﬁx = — a(t)X. | @)
What do we make of this? Since the distant stars are now fixed, we will think of this
frame as inertial. We are thus forced to conclude that the particles are experiencing
a velocity dependent drag force and is following an accelerated trajectory. This
conclusion, however, would have been wrong. A transformation of the time coordinate
from t to T such that

T= erz[exp - fa(:)dz] )

will bring the trajectory into that of familiar free particle!

d?x

72=0. | (6)

We have here two coordinate systems for spacetime: (x,t) and (x, T) with t and T
related by (5). Fixed stars stay fixed in both these frames but Newton’s law picks up
a pseudo-force in one of these frames. ‘

In the usual discussions of Mach’s principle, one never bothers about time
transformations like the one in (5). This is because in Newtonian physics, there is a
‘God given’, ‘absolute time’ which ‘flows uniformly’. Motion is described using this
particular time coordinate, which we are not allowed to tamper with. Then—and,

only then—the frame of fixed stars define for us a useful inertial frame. If we have

no information about the time coordinate used then we cannot exclude pseudo-forces
even in a frame of fixed stars.

- This realization raises several interesting questions. It is almost a miracle that we
_ are gifted with such a time coordinate in which “motion appears to be simple”. Where
does such a time coordinate stem from? From cosmological observations, we know
that matter on the very large scale does not have coherent motion. In other words,
a frame with fixed stars does exist. But why is it that in this particular frame of fixed
stars test particles obey equations (1) rather than an equation like (4)? Everyday
experience, of course, shows that (1) is correct rather than (4). What is not often
realized is that this requires an explanation.

If the nature was governed by strictly Newtonian laws then there would have been -

no problem. As we said before, Newtonian physics permits arbitrary transformations
of the space coordinates x but forbids transformations of time (except for scaling and
translation, t' = at + b, under which (1) is invariant). By prescribing an absolute time
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in which (1) is valid and forbidding transformations of t, Newtonian physics has
effectively by passed this question. :

But the world is not Newtonian. It is quantum mechanical and it is general
relativistic. In a universe obeying the laws of quantum mechanics and general relativity
there is no place for a sacred time coordinate. Neither is there the concept of a particle
obeying a particular trajectory. From such an exact world obeying the laws of
relativistic quantum theory, we construct our approximate ‘everyday world’ by taking
two limits. First we take the limit of weak gravitational field (G—0) and then we
take the limit of classical physics (7 — 0). In this limit, particles with definite trajectories
exist; so does a reference frame in which the space coordinates of distant stars fixed.
But what is incredible in the emergence of a time coordinate such that free particles
obey (1) rather than (4). This breaks the invariance of the physical laws under the
reparametrization of time coordinate, which is present at the higher levels of
description of the theory. If the exact theory is fully invariant under arbitrary time
transformations, then a special time coordinate can emerge only if it was put in by
hand. In what follows we will describe how this ‘miracle’ happens and what it means.

Let us begin by reversing the process and proceed from (1) to more exact
descriptions. A classical free particle obeying (1) has its quantum mechanical
equivalent, described by the Schrédinger equation

= L y2y, | | (7)

Arbitrary transformations of the time coordinate—of the form t —¢' = F(t)—is still
forbidden. The Schrédinger equation retains the above form only when the ‘sacred
time coordinate’ is used. The transition from (7) to (1) is via the expectation value

(x) = Jlﬁ*ﬁn//d*”x (8)

and Ehrenfest’s theorem. In fact, the evolution equation for the expectation value

0{x> _ i .
() Gona)

remains valid (for a given Hamiltonian) only if the time coordinate satisfying (7) is used.

In the next stage—that of quantum field theory—the situation becomes trickier.
Let us suppose we are working in flat spacetime and that our particle is described
by a scalar field operator obeying the Klein-Gordon equation:

[—g—,ﬁz——vu»-"%ci]&(t,xpo. , (10)

How do we make the transition from (10) to (7)? Note that (10) is an equation in
Heisenberg picture for the operator ¢ while (7) is an equation in Schrodinger picture
for a c-number state connection . To make the proper identification we have to first
define the Fock basis corresponding to ¢ in (10). Let 0> and |1, be the vacuum
and one-particle states of the quantum field theory described by o(t,x). One way of
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making the necessary identification between (10) and (7) w111 be to use the transition
element (Old)ll >

~ 1
(0lg(x, t)]1k>=ﬁ

In the non-relativistic limit of ¢ — oo, we should identify the expression (0_|$[1k>
exp(imc?t/h) with the Schrédinger wave function (x, ) (see e.g. Roman 1968). This
is easily seen from noting that (0|1, > exp (imc?t/h) has the limiting form

exp (it + ik x); ho,=(k*c* +m?ch)2 (11)

)
<0[$|1k>exp(imc2t/h):exp(ik-x—%t) (12)

which is just the free particle wave function with momentum #k. In other words,
correct limiting form for free particle is obtained only after we have defined the
one-particle Fock state |1,). [It is also possible to reach the same conclusion by
working in the Schrddinger picture of the field theory; but the analysis is simpler to
understand in the Heisenberg picture]. As long as we work within the framework of
special relativity and Lorentz transformations, the Fock basis is unique. Though time
can be mixed with space in Lorentz transformations, inertial frames retain their

identity.

This uniqueness is lost once we go beyond the realm of special relativity, and allow

arbitary coordinate transformations. Consider, for example the Rindler frame in
which the line elemcnt has the form

ds? = gx\* ;. 5 2 2 2
§° = 1+23 c¢?dr* —dx*® —dy* —dz° (13)

As is well known the Fock basis defined using 7 is not the same as the one defined
using the inertial time ¢ (Fulling 1973). The transition element constructed from the
Rindler states has the following form:

sinh com)t/?
R<OIB0 NS = TR e (e -+ ) Ko (k1 + )

(14)

where K;,(2) is the modified Bessel function. In the non-relativistic limit, (¢ — c0) the
function ¥ = z (0| (x,7)|1, ) gexp(+ imc?t/h) satisfies the Schrodinger equatlon for
a unlformly accelerated particle:

al// W, ‘
== ——EV W+ mgxi. ‘ (15)

Therefore, in the corresponding Newtonian limit, these particles obey eq. (3)—with
a pseudo-force! Suppose we had described our flat spacetime using x and z. Then, in
the appropriate non-relativistic limit all our test ‘particles’ [defined using the mode
functions in (14)] will experience an acceleration. _

In flat spacetime, of course, this difficulty is easy to cure: we could make a rule
that it is the Minkowski frame, rather than (13) which should be used to define the
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particles. But this example illustrates how a particular time coordinate achieves
preference in the non-relativistic limit. It is the definition of ‘particle’ which breaks
the invariance under time transformations, We choose the quantum vacuum state in
such a way that “particles” in the classical limit experience no pseudo-force.

Real universe, of course, is not flat. To define particles in the real universe, we have
to quantise the fields in a given background. [In fact, if we stick to the usual principles
of flat spacetime field theory and the inertial co-ordinates, then it is possible to define
particle states in an axiomatic manner, without taking a non-relativistic limit. This,
of course, is of no use to us because in order to study questions like Mach’s principle,
one necessarily needs to deal with curved spacetime and curvilinear co-ordinates. It
is extremely difficult to extend the constructions based on axiomatic field theory to
an arbitrary curved spacetime.] Since quantum state is a global concept—defined
on a spacelike hypersurface cutting through the universe—we now have a chance to
introduce ‘distant matter’ in the discussion. We must demand that: “one particle state
should be defined in our universe in such a way that, in the non-relativistic limit,
these particles must be unaccelerated with respect to fixed stars”. '

This version of the Mach’s_principle, viz. that all the test particles in the universe
should respect an equation like (1) rather than (3), imposes some restrictions on the
form of metric describing the large scale universe.

Suppose our universe in the large scale is described by a metric g;,. Quantum field
theory now needs to be done in this background metric. When we take the weak-field
approximation of gravity the generic form of the line element can be taken as:

ds? = (1 +2~u£'-;’-t—)>c2dt2—dx2—dy2——dzz. (16)

Repeating an analysis similar to the one in (13), (14), (15) one can work out the
Schrodinger equation which will result for particles defined using ¢ in (16) as the time
coordinate. This equation will be

oy h?

~ —%Vng—{-mu(x, . (17)

If Mach’s principle—as stated before—has to be realized, then we would, minimally
require the following condition: we would expect a coordinate system to exist in which
JoolX, t) = goo(2) so that no pseudo-force Vu arises in the classical limit.

More generally, we expect two conditions to be satisfied: (1) There should exist a
system of coordinates in which gy, (x, t)=goo(t) and (2). In this frame, in which
Joo(X,t) = goo(t), the distant stars should be unaccelerated, i.e. x = constant should
be geodesics. When and only when—these two conditions are simultaneously
satisfied—can the time coordinate ¢ be used to define particles which will not
experience any pseudo-force. |

Our universe admits precisely such a coordinate system in' the form of the FRW
line element:

dr?
1—kr?

ds? =de? — az(t)[ + r2(d6? + sin? Hdgbz):,. | (18)

Particles defined using Robertson-Walker time coordinate will remain as “good
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particles”. For comparison, consider FRW metric transformed into the “locally
inertial” form (see e.g. Narlikar 1983):

ds? = exp(v)dT? — exp(1)dR? — R?(d6* + sin* 0d¢?) (19)
where ~ ‘
exp(— A) =1 — kr? —r2a?%; exp(v) = exp(d)a?a*(1 —kr?); R=ra(t); (20)

" xdx ¢ dy
T= 1| (21)
J ke f a(y)a(y)
The non-relativistic limit of a quantum field theory in these two coordinate systems
are very different. Using (18) we get the Schrédinger equation

af hz 2 .
A, 22
lha, 5 Vif '( )

where ¢’ = [dta?(r) and = a‘3’2f,.whereas (21) leads to

o W, md_, .
KW, md 23
o= = g V&V — 5 RV @3)

which has a pseudo-force term. Thus. from the point of view expressed above, Machian
particles should be defined using FRW time coordinate ¢ rather than using T. (In
practice, of course, any difference will be insignificantly small; but we are discussing
a question of principle).

Lastly, quantum cosmology raises some more questions as regards Mach’s principle.
Any prescription to assign a “wavefunction for the universe” also contains information
about the quantum state of the matter fields (for a review of quantum cosmology,
see e.g. Hartle 1986; Padmanabhan 1989; Halliwell 1990). To incorporate Mach’s
principle, we have to choose the quantum state of the universe carefully. Firstly it
should be peaked at those geometries in which the coordinate system with goo =1,
g, = 0 is allowed. Secondly, the vacuum state of the matter fields should be consistent
with the one defined naturally by this coordinate system. It would be interesting to
see how much of freedom Mach’s principle still allows for the wave function of the
universe.

In popular quantum cosmological models the quantum state of the matter fields
is determined during the initial deSitter phase. The quantum state is taken to be the
Bunch—-Davies vacuum which is defined with respect to the FRW time coordinate t.
The reason for such a choice is very different from the considerations described above.
It is gratifying to see that this is precisely the choice which leads to Mach’s principle

in the correspondence principle limit. It may not be far fetched to imagine that the

combination of gravity (relevant for describing pseudo-force) and quantum theory
(with its inherently global nature) provides us with a useful version of Mach’s principle.
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